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Introduction and motivation.

Brief review of (some) previous studies in the area.
Statement of main result.

Sketch of the proof of the main result.

Directions for future research.
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Introduction

Motivation

@ Many physical processes exhibit “frictional /stick-slip
behaviour”.
@ Simple examples:
o Ball rolling/person skiing down a slope with some bumps.
@ Progression of a dislocation line in a crystal.
@ Evolution of a magnetic domain under an applied field
(Barkhausen effect).
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Introduction

Motivation

@ Intuition suggests that stick-slip behaviour arises from
microstructural variations.

@ Microstructure ~» macroscopic observables, e.g. yield stresses,
coefficients of friction & c.

@ These “macro” quantities can be used as parameters in
(relatively) successful models, e.g. rate-independent
differential inclusions.

@ Exactly how the microstructure determines macroscopic
behaviour is still not generally understood.
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Introduction

Existing approaches

@ Rate-independent solutions to differential inclusions:
—VV(X) + f(t) € 0v(Xy)

with 1 convex and homogeneous of degree one.

@ Over-damped limit (neglect kinetic energy):
Xf=-VVe(t,X}).

@ Is it possible to extract the first model from the second as a
suitable limit as € | 07
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Introduction

Previous one-dimensional studies

X:=-V'(X) - (eG) (X?ta) + f(et).

@ Abeyaratne-Chu-James (1996), Menon (2002): averaging
methods for periodic perturbations of the potential; not
rate-independent, but can extract a rate-independent corollary
(limit satisfies a deterministic ordinary differential inclusion
determined by bounds on G’).

@ Grunewald (2005): perturbation is an (integrated)
Ornstein-Uhlenbeck process; Fokker-Planck methods
insufficient to establish stick-slip behaviour in the limit.
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Model

Model in one dimension — random ODE

On the real line R, consider

@ a potential V(z) = £a?, k > 0;

@ a CY gradient field g := G’ : Q@ x R — [y, ~v7];
e (Q,7,P) a probability space;
o wiggly potential = — V(z) + eG(w, £);

@ a CY external loading f : [0, +00) — R;
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Model

Model in one dimension — random ODE

On the real line R, consider
@ a potential V(z) = £a?, k > 0;
@ a CY gradient field g := G’ : Q@ x R — [y, ~v7];

o (9, .%,P) a probability space;
o wiggly potential x — V(z) + 5G(w, f)

@ a CY external loading f : [0, +00) — R;
Random gradient flow ODE with “landscape parameter” w € (:

X (w)

X () = V' (x7w) - & (0,722 ) 4 g

Standard results give existence of solutions for all positive time.
Later results remove any need for uniqueness.
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Model

Model in one dimension — random landscape




T.J. Sullivan & F. Theil — Deterministic stick-slip dynamics in a one-dimensional random potential
[o] le]e}

Model

Model in one dimension — random landscape
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Model

Model in one dimension — random landscape

—V'(z)
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Model

Model in one dimension — random landscape

—V'(z), —(V +G)(x)
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Model in one dimension — limit process

Random ODE:

X7 () = kX7 (@) ~ g
Limiting process as ¢ | 0:

XP = lim X¢,_.
t 210 t/e
In principle, this limiting object is a stochastic process
X0 Q x [0,+00) — R dependent on the choice of process g and
the “landscape parameter” w € €2, but...
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in theorem — first draft

Theorem (T.J.S.—F.T. (2006))

Let g: Q xR — [y, "] be a doubly-reflected Wiener process and
let f € C°([0,+00);R). Then, for P-a.a. w € Q, X°(w) satisfies
the deterministic ordinary differential inclusion

—V'(X?) + f(t) € 097 (X7, (ODI)
where the dissipation 17 : R — [0, +00) is given by

. v & & <0
(=
vi(#) {'y*dj; z > 0.

Note that (ODI) is deterministic and has a unique deterministic
solution, which can be easily visualised by the “drainpipe rule”.
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Results

“Drainpipe rule” for solutions of (ODI)

X9, (1),
N

A typical deterministic, rate-independent P-a.s. limit X°, shown in
blue. Loading f(t) = sint + cos 2t shown in red; “sticky attractor”
AY(f(t)) shown in
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Results

Hysteresis loops

-1.5¢
Hysteresis loops for the deterministic, rate-independent P-a.s. limit
X0 shown in blue. Again, f(t) = sint + cos 2t.
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Results

Sticky attractor for X dynamics

@ The A7 R — 2R.

_ ~t o~
AV(F)::[F v Ey

KR KR

@ Attractor in the sense that all trajectories lie in AY(f(t)) for
all t > 0, regardless of initial condition.

@ Sticky in the sense that if a trajectory can remain stationary
and stay inside A (f(¢)), it will.
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Outline of proof

Strategy of proof of main theorem

@ ldentify the fixed-point set for the dynamics at scale € > 0,
some fixed landscape given by w € €2, constant loading

ft)y=o.
@ Take a suitable limit of these sets as € | 0, P-almost surely
losing w-dependence along the way.

@ No loading ~~ constant loading ~ variable loading.

@ Show that the limit “tube” t — AY(f(t)) has the desired
properties (sticky attractor) for the process X0



T.J. Sullivan & F. Theil — Deterministic stick-slip dynamics in a one-dimensional random potential
[o] lelele]e]

Outline of proof

Limits of sets

Definition (Kuratowski (1966))

Let (M, d) be a metric space. Define the Kuratowski limit inferior
of a family of subsets {A. C M}.5¢ to be

LiElO A = {33 eM

limsupdy(x, A;) = O} ,
€10

where di(z, A.) = infyc 4, d(z,y) is the usual Hausdorff
semi-distance.

(The Kuratowski notions of limit superior (Ls) and limit (Lim) are
not required in this analysis.)
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Outline of proof

Key lemma

Lemma

Let g: QxR — [y~,vT| be a doubly-reflected Wiener process and
let .
Ag(“’)(()) = {w eR ‘—mj —qg (w, E> = O} ,

the fixed-point set for the dynamics in the landscape
V(:) +eG(w,-/e) at scale e > 0 with no loading. Then

_l’_

Lic o AZ“)(0) = AY(0) = [%, %] for P-a.a. w € Q.

“The attractors for € > 0 fill up the correct interval as ¢ | 0."
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Outline of proof

Sketch proof of key lemma

@ ldea: intermediate value theorem + scaling.
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Outline of proof

Sketch proof of key lemma

@ ldea: intermediate value theorem + scaling.

@ Define “first return separations” D,,(w) from 4T to v~ and
back to .

@ Require (in both directions): sample-continuity of g,
D,, < 400 P-as., ), D, = +oo P-as. and

D,
n—1 _
Zi:O DZ n—00

0 P-as. (%)
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Outline of proof

Sketch proof of key lemma

@ ldea: intermediate value theorem + scaling.

@ Define “first return separations” D,,(w) from 4T to v~ and
back to .

@ Require (in both directions): sample-continuity of g,
D,, < 400 P-as., ), D, = +oo P-as. and

Dp

0 P-a.s. "N
Z?:_()l D; n—oo (%)

@ For g: Q xR — [y~,v"] a doubly-reflected Wiener process,
all the conditions (") are met (g sample-continuous with D,,
1D, E[D,] = 4]y" — v~ |?, Var[D,] = 32|yt —y~|*).
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Outline of proof

Sketch proof of key lemma

@ Clearly, many more processes satisfy ("K), but a
doubly-reflected Wiener process is a good prototype.

@ In fact, something better is true: the conditions (X&) are
necessary and sufficient to conclude that

P
Li. 1o A2 (0) = [L, L] P-as.

K K

o Argue from contradiction.

o If any one of the conditions (") fails then there is a collection
of “bad” landscapes of positive probability for which
Lic 0 A2 (0) is not what we want.



T.J. Sullivan & F. Theil — Deterministic stick-slip dynamics in a one-dimensional random potential
0O0000e

Outline of proof

Further lemmata

Lemma (Stickiness locally in time)

Let 0 <ty <ty < oo and let I denote any interval from ty to t;
with either end open or closed. P-a.s., if f|; is bounded, and

Xp € A(f(t) forallt eI,

then X = X} forallt € I.

Lemma (Right limit property)
Let ty > 0 be such that f(to+) exists. Then

X9, = Xp o A(f(to+)) P-as,,

where y o A denotes the closest point of the interval A to y.
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Conclusions and further work

Main theorem revisited

Theorem (T.J.S.—F.T. (2006-07))

Let f € C°([0,4+00);R) and let g : 2 x R — [y~,y*] be any
stochastic process. Then g satisfies (X) if, and only if, X° P-a.s.
satisfies the deterministic ordinary differential inclusion

—V'(XP) + f(t) € oy (XY), (ODI)

where the dissipation 17 : R — [0, +00) is given by

V(@) = {’Y‘a’?; & < 0;

NtrE @ > 0.
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Conclusions and further work

Some conclusions

@ If one subscribes to the idea that rate-independent evolutions
like (ODI) should arise as small-scale limits of deterministic
evolutions in wiggly energies, our theorem shows that the
precise choice of wiggle is not so important.

@ “Homogenization without periodicity of the fast (microscale)
process.”
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Conclusions and further work

Further work

@ Extension to more general spatial noise processes g?

@ Extension to R%, d > 1? To infinite-dimensional spaces like
WHP(D;R)?

. X
@ Include the effects of a heat bath via a stochastic differential?

£

Xf(wy,ws) = -VV(X;) - VG (wl, %) + (&)W (ws).

Which “wins” as ¢ | 07 The diffusive or the stick-slip
dynamics?



