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Introduction Heuristics & Examples

A Toy Model for Rate-Independence and Plasticity

@ Consider a block, thought of as a point mass, sliding down a rough
plane inclined at angle 6 to the horizontal. For small €, the block
sticks; for large 0, it slips.
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Introduction Heuristics & Examples

A Toy Model for Rate-Independence and Plasticity

@ Consider a block, thought of as a point mass, sliding down a rough
plane inclined at angle 6 to the horizontal. For small 6, the block
sticks; for large 0, it slips.

@ From the macroscopic viewpoint, this is due to friction.

@ From the microscopic viewpoint, this is due to microstructural
variation; there are lots of local energy minima in which the evolution
can get stuck.
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Introduction Heuristics & Examples

A Toy Model for Rate-Independence and Plasticity

@ Consider a block, thought of as a point mass, sliding down a rough
plane inclined at angle 6 to the horizontal. For small 6, the block
sticks; for large 0, it slips.

@ From the macroscopic viewpoint, this is due to friction.

@ From the microscopic viewpoint, this is due to microstructural
variation; there are lots of local energy minima in which the evolution
can get stuck.

@ We “ought” to be able to mathematically derive the macroscopic
friction coefficient from the statistical properties of the
microstructure.

Moral /General Theme

Microstructural variations in the energy landscape “average out” to give a
qualitative change in the dissipation potential.
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Introduction Heuristics & Examples

Barkhausen Effect

A less toy-like example with many of the same features is the Barkhausen
effect, which describes the rate independent evolution of a magnetic wall
in a ferromagnetic material sample under a varying applied field:

AJ,B

>
H

Figure: Magnetization (J) or flux density (B) as a function of applied magnetic
field intesity (H). The inset shows Barkhausen jumps.
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Introduction Gradient Descents

Gradient Descents — The Basics

@ Many models for plastic evolutions are phrased in terms of a
quantity/field of interest, z: [0,7] — Z, Z being some (suitably nice)
linear space (e.g. Hilbert, Banach, BV(Q;R3), ...).
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Gradient Descents — The Basics

@ Many models for plastic evolutions are phrased in terms of a
quantity/field of interest, z: [0,7] — Z, Z being some (suitably nice)
linear space (e.g. Hilbert, Banach, BV(Q;R3), ...).

@ The evolution of z is determined by an initial condition, an energetic
potential E': [0,T] x Z — R U {400} and a dissipation potential
U: Z — [0, +o0].
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Introduction Gradient Descents

Gradient Descents — The Basics

@ Many models for plastic evolutions are phrased in terms of a
quantity/field of interest, z: [0,7] — Z, Z being some (suitably nice)
linear space (e.g. Hilbert, Banach, BV(Q;R3), ...).

@ The evolution of z is determined by an initial condition, an energetic
potential E': [0,T] x Z — R U {400} and a dissipation potential
U: Z — [0, +o0].

Example

In Z = R" with dissipation ¥ = 1 - |2, we have the classical gradient
descent

(t) = —VE(t, 2(t)).

Along a trajectory, the energy satisfies the energy balance

%E(t, 2(t) = —2(0)2 + (D) (t, 2(8)).

'
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Introduction Gradient Descents

Gradient Descents — Energetic Solutions

Definitions

z:10,T] — Z is said to be an energetic solution of the gradient descent
problem in E and ¥ if z is absolutely continuous, satisfies the prescribed
intitial condition, and, a.e. in [0, 7], the energy balance

%E(t, z(t)) = —(¥(2(t)) + ¥*(DE(, 2(1)))) + (B:E) (¢, 2(t)),

where U*: Z* — R U {400} is the convex conjugate of ¥:

U*(¢) :=sup{({,z) — ¥(z) | x € Z}.

Much of this carries over to state spaces with no linear structure: see
Ambrosio, Gigli & Savaré (2008), Gradient Flows in Metric Spaces and in
the Space of Probability Measures.
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Introduction Gradient Descents

Gradient Descents — Energy Inequality

o Often we work with the integrated form of the energy balance
equation instead: for every [a,b] C [0,7],

0= E(b,z(b)) — E(a, z(a))

b
+ / (U(2(t)) + U (DE(t, 2(t))) — (O E)(t, 2(t))) dt.
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Introduction Gradient Descents

Gradient Descents — Energy Inequality

o Often we work with the integrated form of the energy balance
equation instead: for every [a,b] C [0,7],
0= E(b,z2(b)) — E(a, 2(a))

b
+ / (U(2(t)) + U (DE(t, 2(t))) — (O E)(t, 2(t))) dt.

@ In this equality, < always holds, so it is enough to check whether or
not the following energy inequality holds: for every [a,b] C [0, 7],

0> E(b,z(b)) — E(a, z(a))

b
+ / (U (2(t) + U*(DE(t, 2(t))) — (& E)(¢, 2(t))) dt.
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Introduction Rate-Independent Processes

Rate Independent Processes

@ A rate-independent evolution is one “with no time-scale of its own”,
one for which time-reparametrized solutions are solutions to the
time-reparametrized problem. In terms of the above set-up, this
corresponds to W being homogeneous of degree one.
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Introduction Rate-Independent Processes

Rate Independent Processes

@ A rate-independent evolution is one “with no time-scale of its own”,
one for which time-reparametrized solutions are solutions to the
time-reparametrized problem. In terms of the above set-up, this
corresponds to W being homogeneous of degree one.

@ In this case, U* only takes the values 0 and 400 and we can re-write
the definition of an energetic solution in terms of an energy constraint
and a stability constraint:

b

0> E(b,z(b)) — E(a, z(a)) —I—/ (P(2(t)) — (O E)(t, 2(t))) dt.

—DE(t,2(t)) € & :=={l € Z* | U*(¢) = 0}.
@ We call & the elastic region and call S(t) := {z | -DE(t,z) € &}
the (locally) stable region at time ¢.
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Introduction Rate-Independent Processes

Rate Independent Processes
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Figure: In blue, a typical rate-independent evolution in one dimension. The
frontier of the stable region is shown in green.

SULLIVAN & Theil (Caltech & Warwick) Gradient Descents in Wiggly Energies 15 March 2010 @ MFO 9 /24



Convergence Theorems

What We Seek

We seek theorems of the following type:

Theorem (“Proto-theorem™)

If E. is a suitable random (spatial) perturbation of E, then there exists a

1-homogeneous dissipation potential ¥ such that if z. solves the wiggly
classical gradient descent

1
Ze(t) = —EVEE(t,zg(t)),
and z solves the rate-independent problem in E and U,
0(%(t)) > —DE(, (1)),

then z. — z in some sense as € — 0.

We expect ¥ to depend on the structure of the perturbation £, — E.
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Convergence Theorems  Previous Results

Previous Results

@ Abeyaratne—Chu—James 1996: in n = 1 with periodic perturbations,
up to a subsequence,

2. — z uniformly on [0,7] and 2. = % in L>°([0,T]; R).
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Previous Results

@ Abeyaratne—Chu—James 1996: in n = 1 with periodic perturbations,
up to a subsequence,

2z — z uniformly on [0, T] and 2. = % in L>([0, T]; R).

@ Menon 2002: in n = 2, periodic perturbations, same result as in
n = 1 but with caveats — horrible grid effects and resonance zones.
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Convergence Theorems Previous Results

Previous Results

@ Abeyaratne—Chu—James 1996: in n = 1 with periodic perturbations,
up to a subsequence,

2z — z uniformly on [0, T] and 2. = % in L>([0, T]; R).

@ Menon 2002: in n = 2, periodic perturbations, same result as in
n = 1 but with caveats — horrible grid effects and resonance zones.

Periodicity is a rather unnatural assumption to have to make and — as
Menon's results show — it even introduces some undesirable features.
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Convergence Theorems  1-Dimensional Convergence Theorem

1-Dimensional Set-Up
@ Consider the moving uniformly convex energy
E(t,z) :==V(x) — L(t)x,

where V € C3(R;R) is uniformly convex and £: [0,T] — R* is
uniformly Lipschitz.
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Convergence Theorems 1-Dimensional Convergence Theorem

1-Dimensional Set-Up

@ Consider the moving uniformly convex energy
E(t,z) :==V(x) — L(t)x,

where V € C3(R;R) is uniformly convex and £: [0,T] — R* is
uniformly Lipschitz.

@ The perturbed energy will be
E.(t,x) := E(t,x) + eG(z/e),

where
g:=-G: QxR — [—0,+0]

is P-almost surely defined, continuous and surjective.
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Convergence Theorems 1-Dimensional Convergence Theorem

1-Dimensional Set-Up

@ Consider the moving uniformly convex energy
E(t,z) :==V(x) — L(t)x,

where V € C3(R; R) is uniformly convex and £: [0,7] — R* is
uniformly Lipschitz.

@ The perturbed energy will be
Ee(t,x) := E(t,z) + eG(x/e),
where
g:=-G: QxR — [—0,+0]

is P-almost surely defined, continuous and surjective.

@ We will show that if G is “wiggly enough”, then the wiggles “average
out” as € — 0 to give the 1-homogeneous dissipation potential
V=0l

SULLIVAN & Theil (Caltech & Warwick) Gradient Descents in Wiggly Energies 15 March 2010 @ MFO 12 / 24



Convergence Theorems 1-Dimensional Convergence Theorem

How Wiggly is “Wiggly Enough”?

Definition

Fix o > 0. For a continuous, surjective function g: R — [—0, +0], define
Dd > 0 to be the least © > 0 such that g(z) = —o; inductively define
Dn+1 to be the least positive number such that g takes both values —o
and +o in the interval

n+1

S 0r. Y Dt
=0 =0

and define D,; < 0 similarly. Then g is said to have property (") if
° DTT exists and is finite for all n;
°e > >, Di = 4o0;
o lim,_o (D5,,/ 3", D) = 0.

SULLIVAN & Theil (Caltech & Warwick) Gradient Descents in Wiggly Energies 15 March 2010 @ MFO 13 / 24



Convergence Theorems 1-Dimensional Convergence Theorem

1-Dimensional Convergence Theorem

Theorem (S. & T. 2007)
Let E, E., ¥ be as above, and
. 1_,
Ze(t) = —gEa(t,zE(t)),

U(:(t)) > —E'(t, 2(t)).

Then z. — z in probability (and hence in distribution) in C°([0,T];R) as
e — 0 if, and only if, g has property ("X). That is, for any 6 > 0,

P| sup |z(t) —2(t)] >d| — 0ase— 0.
0<t<T

Hence, up to subsequences, z. — z uniformly on [0, T], P-almost surely.

~
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Convergence Theorems  n-Dimensional Convergence Theorem

n-Dimensional Set-Up

@ For simplicity, we consider a moving quadratic energy
E(t,z):= 32+ Az — ((t) - 2, A € R™" postive definite, ¢ Lipschitz.
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Convergence Theorems n-Dimensional Convergence Theorem

n-Dimensional Set-Up

@ For simplicity, we consider a moving quadratic energy
E(t,z):= 32+ Az — ((t) - 2, A € R™" postive definite, ¢ Lipschitz.
@ We randomly “dent” E by adding to it the dent function

x—y2
)
€

for y € the points of a dilute Poisson point process O of intensity
e~P; for technical reasons, we require that p € (n — 1,n). Set

E.(t,z) :== E(t,z) + Z D(z;y,¢).
yeO

D(z;y,¢) = % (
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Convergence Theorems n-Dimensional Convergence Theorem

n-Dimensional Set-Up

@ For simplicity, we consider a moving quadratic energy
E(t,z):= 32+ Az — ((t) - 2, A € R™" postive definite, ¢ Lipschitz.
@ We randomly “dent” E by adding to it the dent function

x—y2
)
5 J—

for y € the points of a dilute Poisson point process O of intensity
e~P; for technical reasons, we require that p € (n — 1,n). Set

E.(t,z) :== E(t,z) + Z D(z;y,¢).
yeO

D(z;y,¢) = % (

@ Since the dents are isotropic, we expect that the dissipation potential
for the hoped-for rate-independent limit will be isotropic as well; set
Ui=ol-]|.
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Convergence Theorems n-Dimensional Convergence Theorem

n-Dimensional Convergence Theorem

Theorem (S. & T. 2009)
Let E, E., ¥ be as above, and

Ze(t) = —éan(tv ze(t)),

U(s(t)) > —DE(t, 2(t)).

Then z. — z in probability (and hence in distribution) in C°([0, T]; R™) as
e — 0. That is, for any § > 0,

P| sup |z(t) —2(t)] >d| — 0ase— 0.
0<t<T

Hence, up to subsequences, z. — z uniformly on [0, T, P-almost surely.

'
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Convergence Theorems A Sketch of the Proof

Strategy of the Proof

For [a,b] C [0, T, define the energy surplus of u: [a,b] — R™ by the
L*>-lower semicontinuous functional ES(—, [a,b]): BV([a,b];R") — R

ES(u, [a,b]) :=

b
E(b, u(b)) — E(a,u(a)) +/ (W(a(t)) — (O E)(t, u(t))) di.

This is the amount by which the desired energy inequality fails to hold.

SULLIVAN & Theil (Caltech & Warwick) Gradient Descents in Wiggly Energies 15 March 2010 @ MFO 17 / 24



Convergence Theorems A Sketch of the Proof

Strategy of the Proof

For [a,b] C [0, T, define the energy surplus of u: [a,b] — R™ by the
L*-lower semicontinuous functional ES(—, [a,b]): BV([a,b];R") — R

ES(u, [a,b]) :=

b
E(b, u(b)) — E(a,u(a)) +/ (W(a(t)) — (O E)(t, u(t))) di.

This is the amount by which the desired energy inequality fails to hold.

We show that
® (2z¢)e>o is tight (has a uniformly convergent subsequence);
@ liminf. o ES(z,[0,7]) <O0;
@ any such uniform limit will satisfy stability;

@ uniqueness results (e.g. Mielke—T. 2004) for rate-independent
processes imply that the limit process must be z.
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Convergence Theorems A Sketch of the Proof

An Important Observation

@ It follows from the set-up that if z. enters a dent B.(y), y € O, and
that dent is stable is contained within the stable region, then 2.
cannot leave B.(y). Moreover, z. leaves B.(y) precisely at

7% = inf{t | B.(y) N S(t) = 0}.
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Convergence Theorems A Sketch of the Proof

An Important Observation

@ It follows from the set-up that if z. enters a dent B.(y), y € O, and
that dent is stable is contained within the stable region, then 2.
cannot leave B.(y). Moreover, z. leaves B.(y) precisely at

7% = inf{t | B.(y) N S(t) = 0}.

@ This observation helps to keep everything under control: even though
z. falls from one dent to another at speed ~ é it must then remain
in a dent for a time period inversely proportional to the distance
fallen, where it waits for S(t) to “catch up”.
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Convergence Theorems A Sketch of the Proof

Dent Entry and Exit Times

Ze (Tzoﬂ)

o5 (7" oS (r2ts 05 (731%)

Figure: A “top-down” schematic illustration of z. (blue). The frontier of the
stable region is shown in green at the three exit times; everything to the right of
the green line is the stable region at that time. Dents are shown as black circles.
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Convergence Theorems A Sketch of the Proof

Dent Entry and Exit Times

Stable region

Dent

i Tz‘ifh T
Figure: A “cross-sectional” schematic illustration of z. (blue). The frontier of the
stable region is shown in green, and the piecewise-constant cadlag solution to the
Moreau—Yosida incremental formulation of the rate independent problem is shown
in red.
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Convergence Theorems A Sketch of the Proof

Sketch of the Proof

@ In what follows, for simplicity, it will be assumed that dents never
overlap.

@ In practice, overlaps can happen, and one must use statistical
properties of the Poisson point process O to ensure that they do not
happen “too often” and thereby ruin the total variation estimates.

@ One could condition the process O to rule out overlaps (e.g. Matérn
clustering and hard core processes), but would thereby lose explicit
representation of the distance-to-nearest-neighbour distribution.
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Convergence Theorems A Sketch of the Proof

Sketch of the Proof

Asymptotic stability is easy to get, and tightness will follow from the
energy estimates. The following lemma controls the energy surplus:

Lemma (Variation and energy surplus control)

If z:|(a) lies wholly outside all dents, then

|b— al \b—a\2>
Varj, p1(2:) — |2:(b) — z:(a §C< + ;

and if z|(, ) lies wholly inside a dent, then

Var[a,b} (ZE) < Ce.
Hence,

__ ~out|2

Cloltin, — 7
BS (e, 1, 7234]) < Ce ST T
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Convergence Theorems A Sketch of the Proof

Sketch of the Proof

Armed with

out ‘2

Clolrin, —
ES (e, [r ) < Ce 4 COTHL

)

we just need to make sure that the rapid descents don't last too long, and
that there are not so many of them that all these order ¢ errors will
accumulate and ruin all our estimates as we take the limit ¢ — 0. We get
this control from the observation about waiting times and the distribution
of the Poisson point process O:
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Convergence Theorems A Sketch of the Proof

Sketch of the Proof

Armed with

out ‘2

Clolrin, —
ES (e, [r ) < Ce 4 COTHL

)

we just need to make sure that the rapid descents don't last too long, and
that there are not so many of them that all these order ¢ errors will
accumulate and ruin all our estimates as we take the limit ¢ — 0. We get
this control from the observation about waiting times and the distribution
of the Poisson point process O:

Proposition (Energy surplus goes to zero in mean square)
E[ES(z,[0,T])] < CTeP™"*! — 0,
V[ES(z,[0,T])] < CTeP~"2 — 0.
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Conclusions and Outlook

Conclusions and Outlook

To conclude, we have rigorously established a passage from a viscous

evolution in a random energy landscape to a rate-independent evolution in
the limit of the random landscape.
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Conclusions and Outlook

Conclusions and Outlook

To conclude, we have rigorously established a passage from a viscous
evolution in a random energy landscape to a rate-independent evolution in
the limit of the random landscape.

What's next?
@ Anisotropic dents and dissipation potentials.
@ Perturbations/dents without a priori bounds on V(E. — E).

@ Extension to energies that are more general than quadratic forms?
What if E is only uniformly convex? What about strictly convex,
convex, or non-convex energies?

@ Extension to infinite-dimensional spaces Z7
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