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Introduction Problem Description

Problem Setting

Challenge

@ Give optimal bounds on some quantity of interest Ex.p[q(X, G(X))],
which depends on some response function G: X — ) with
P-distributed inputs X in X, given only incomplete information about
the pair (G,P).

@ Archetypical example: to bound P[G(X) < 0], where the event
[G(X) < 0] corresponds to failure of some kind.

Why Optimality?
@ We seek bounds that are both rigorous and optimal in order to be
most informative in a decision-making context.

@ The bound
0<P[GX)<0]<1

is rigorous, but usually not optimal, and hardly informative!

o
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Introduction  Optimal Uncertainty Quantification (OUQ)

Formulation of OUQ Problems

@ The key step in the Optimal Uncertainty Quantification approach is
to specify a feasible set of admissible scenarios (g, i) that could be
(G,P) according to the available information:

(9: X > R, u € P(X)) is consistent with
A:= 1< (g,p)| all given information about the real system (G, P)
(e.g. legacy data, first principles, expert judgement)

@ A encodes everything that we know about the “reality” (G,P).

@ A priori, all we know about (G, P) is that (G,P) € A; we have no
idea exactly which (g, ) in A is actually (G,P). No (g,u) € A'is
“more likely” or “less likely” to be (G,P) than any other.
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Formulation of OUQ Problems

@ The key step in the Optimal Uncertainty Quantification approach is
to specify a feasible set of admissible scenarios (g, i) that could be
(G,P) according to the available information:

(9: X > R, u € P(X)) is consistent with
A:= 1< (g,p)| all given information about the real system (G, P)
(e.g. legacy data, first principles, expert judgement)

@ Optimal bounds on the quantity of interest Ex.p[¢(X,G(X))]
(optimal w.r.t. the information encoded in .A) are found by
minimizing/maximizing Ex.~,[q(X, g(X))] over all admissible
scenarios (g, 1) € A:

L(A) < Ex~plg(X,G(X))] <U(A),
where

L(A):= inf Ex.,[¢(X,9(X))], U(A):= sup Ex~u[¢(X,g(X))].
(g,n)€eA (g,n)EA
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Introduction

Dimensional Reduction
@ A priori, OUQ problems are
infinite-dimensional, non-convex,
highly-constrained, global
optimization problems.

@ However, they can be reduced
to equivalent finite-dimensional
problems in which the
optimization is over the
extremal scenarios of A.

@ The dimension of the reduced
problem is proportional to the
number of probabilistic
inequalities that describe A.

Sullivan & al. (Caltech)

Optimal Uncertainty Quantification

Optimal Uncertainty Quantification (OUQ)

Reduction of OUQ Problems — LP Analogy

ex(A)

Figure: Just as a linear program
finds its extreme value at the
extremal points of a convex
domain in R™, OUQ problems
reduce to searches over finite-
dimensional families of extremal
scenarios.
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Introduction  Optimal Uncertainty Quantification (OUQ)

Reduction of OUQ Problems — Theorem

Theorem (Reduction for moment and independence constraints)

For fixed measurable functions p;: X — R and <p§k) : XL — R, let

g: X =X X --- X X — R is measurable,
K
p=pm Q- Qpux € Qr_, P(X),
A=< (g,1) (any conditions on g alone),
]EXN# [cpl(X)} <0fori=1,...,no,
]EXRNM[ (Xk)]SOforizl,...,nkandkzl,...,K

W IS a convex combination of at most } cA

Ap = {(Qaﬂ) €Al

1 := 14+ ng + ng Dirac measures on X

Then «
dim(Aa) < Z (1 + dim(Xy)) HNk —
L(A) = L(Ax) and U(A) = U(AA).
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Introduction  Optimal Uncertainty Quantification (OUQ)

Reduced OUQ Problems

@ The finite-dimensional problems £(Aa) and
U(AA) can be solved numerically.

@ Current tool of choice: mystic, a Python-based
open-source optimization framework.

o Easily swappable strategies for optimization,
population generation, enforcement of
constraints, termination criteria.

¢ Manages optimizations on scales ranging from .
the small (second-long on a laptop) to the i
large (days on dozens-of-cores clusters). Z’_ h
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@ Depending on the specific structure of A, there
are additional layers of reduction theorems.
E.g. in the McDiarmid example that follows, a
theorem enables us to “forget” the coordinates
in the input spaces.
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Examples of OUQ

Examples of OUQ in Action

McDiarmid's Inequality: Parameter (In)Sensitivity
Large-Scale Example: Seismic Safety Certification

Improving the Bounds: Optimal Knowledge Acquisition /
Experimental Design
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Examples of OUQ Optimal Concentration Inequalities

McDiarmid’s Inequality

Consider the admissible set corresponding to the assumptions of
McDiarmid’s inequality (a.k.a. the bounded differences inequality):
g: X1 x -+ x X = R,
W= ®sz1 ug, (i.e. Xy, ..., Xk independent)
Ex~ulg(X)] = m 20, '
osci(g) < Dy, for each k € {1,..., K}

with componentwise oscillations/global sensitivities defined by
/
L B , r,x' € X1 x - X X,
oscu(g) = sup {loe) — gl | ©1 CHT

Note that saying “(G,P) € Aucp” specifies neither G nor P exactly. As
usual, we want to know the worst-case probability of failure

U(Amcp) == sup  plg(X) < 0]
(9:#)EAMD

Amep = ¢ (g9, 1)
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McDiarmid’s Inequality

Consider the admissible set corresponding to the assumptions of
McDiarmid’s inequality (a.k.a. the bounded differences inequality):
g: X1 x -+ x X = R,
W= ®sz1 ug, (i.e. Xy, ..., Xk independent)
Ex~ulg(X)] = m 20,
osci(g) < Dy, for each k € {1,..., K}

with componentwise oscillations/global sensitivities defined by

r,0' € Xy x - x Xk,
oscu(g) = sup {loe) — gl | ©1 CHT

Amep = ¢ (g9, 1)

Theorem (McDiarmid’s Inequality, 1988)

2m?
UAmep) = sup  plg(X) < 0] < exp (——)
¢ (9,1)EAmecp 2521 D/%
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Examples of OUQ Optimal Concentration Inequalities

Optimal McDiarmid — Non-Propagation

Theorem
For K =1,
OI ifDl Sm,
U(AMCD) = . ﬂ’ if0 <m< Dl.
D,
For K =2,
0. if D1 + Dy < m,
(D1+D2—m)2 .
. if|D1 — D3| <m < D; + D,
U(Amep) = 4Dy Do if | Dy ol <m < Dy + Dy
m
-, if0<m < Dy — D).
max{ D1, Do} if0 <m < [D 2|

There are similar explicit formulae for K = 3 (involving roots of cubic
polynomials) and higher K.
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Examples of OUQ Optimal Concentration Inequalities

Optimal McDiarmid — Non-Propagation

Theorem
For K = 2,
m .
U(Amep) =1 — P TSR if0 <m < [Dy — Ds.

o If the “sensitivity gap” |D1 — D3| is large enough relative to the
performance margin m, then max{D;, Dy} dominates all the
uncertainty about P[G(X) < 0.

@ The smaller of D1 and Dy could be reduced to zero without
improving the worst-case bound on the probability of failure.

@ In the presence of uncertainty about input probability distributions
and input-output relationship, there can be screening effects and
sensitivities can fail to propagate.
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Examples of OUQ Seismic Safety

Large-Scale Example: Seismic Safety

@ Consider the safety of a truss
structure under an earthquake.
@ The truss dynamics and material
properties are assumed to be known:
o density 7860 kg - m~3;
@ Young's modulus 2.1 x 10! Pa;
o yield stress 2.5 x 108 Pa;
o damping ratio 0.07.

) i Figure: A 198-member steel
@ Failure consists of any truss member truss electrical tower.

i's axial strain Y; exceeding its yield
strain .5;.

@ The uncertainty with respect to which
we perform OUQ is the unknown
earthquake ground motion that the
structure will experience.
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Examples of OUQ Seismic Safety

Frequency Domain Formulation

An admissible set A can be constructed using the common seismological

technique of considering the mean power spectrum, which is relatively well
understood:

—Mean PS
*  — Observed PS

— Mean PS

—Mean PS
I 12— Observed PS
I

f\ 12 —— Observed PS
I

Amplitude

W W ‘\»‘“

\\\\\\\\\\\\\\\\\\\\\\\\\

;;;;;;;;

Matsuda—Asano shape function (mean power spectrum) with Richter
magnitude Mj, and site-specific natural frequency wy and damping &;:
2,2
Ca M, W
smA(w) = Ce~?"r .
mA () ! (w2 — w?)? 4 4€2wkw?
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Examples of OUQ Seismic Safety

Frequency Domain Formulation

Aura [ is a prob. dist. on ground motions,
MA and E,, [power spectrum]| = sya

@ The typical approach is to repeatedly sample white noise, then filter
those samples through a shape function (such as the Matsuda—Asano
one) to generate samples with a “typical” power spectrum, and use
the resulting ground motions as tests for the safety of the structure.

@ This procedure amounts to sampling from just one possible
probability distribution pfw ., € Ama — there are many others!.

@ The collection Apma can be traversed using OUQ. In our example, the
optimizer manipulates 200 3-dimensional random Fourier coefficients:
the reduced OUQ problem has dimension 600.
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Examples of OUQ Seismic Safety

Numerical Results: Vulnerability Curves

1.00 /3/3 =
0.75
min and max
probability
of failure 0.50
over .AMA
0.25
0 } } i

M,

Figure: The minimum and maximum probability of failure as a function of Richter
magnitude My, where the power spectrum is constrained to have mean equal to
the Matsuda—Asano shape function sma with natural frequency w, and natural
damping &, taken from the 24 Jan. 1980 Livermore earthquake. Each data point
required O(1 day) on 44+44 AMD Opterons (shc and foxtrot at Caltech).
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1.00 O
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Examples of OUQ Knowledge Acquisition / Experimental Design

Optimal Knowledge Acquisition / Experimental Design

@ Range of prediction given A:

R(A) small +— A very predictive.

o Let Ag . denote those scenarios in A
that are consistent with getting
outcome ¢ from some experiment E.

@ The optimal next experiment E* solves
a minimax problem, i.e. E* is the most
predictive even in its least predictive
outcome:

E* minimizes E— sup R(Ag.).
outcomes ¢
of £
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Conclusions

Conclusions

@ Optimal UQ is a general framework for the sharp propagation of
information/uncertainties. It can assist in decision-making under
uncertainty by identifying key vulnerabilities in and assumptions about
the system, and what new information would be most informative.

@ Dimensional reduction theorems make what is mathematically The
Right Thing To Do into a computationally tractable approach —
small problems can be done in minutes on a laptop, larger ones in
hours/days on clusters.

@ Future work: connections between OUQ and (robust) Bayesian
inference — (families of) priors and posteriors on A?

Preprint: arXiv:1009.0679v2
Under consideration at SIAM Review

Open-source optimization framework: dev.danse.us/trac/mystic

Sullivan & al. (Caltech) Optimal Uncertainty Quantification INFORMS, 13-16 Nov. 2011 18 /18


http://arxiv.org/pdf/1009.0679v2
http://dev.danse.us/trac/mystic

	Introduction
	Examples of OUQ
	Conclusions

