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The Problem: Optimal Bounds

Optimal Uncertainty Quantification: Formulation, Reduction and
Implementation
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Introduction Problem Description

Problem Setting

Challenge

Give optimal bounds on some quantity of interest EX∼P[q(X,G(X))],
which depends on some response function G : X → Y with
P-distributed inputs X in X , given only incomplete information about
the pair (G,P).

Archetypical example: to bound P[G(X) ≤ 0], where the event
[G(X) ≤ 0] corresponds to failure of some kind.

Why Optimality?

We seek bounds that are both rigorous and optimal in order to be
most informative in a decision-making context.

The bound
0 ≤ P[G(X) ≤ 0] ≤ 1

is rigorous, but usually not optimal, and hardly informative!
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Introduction Optimal Uncertainty Quantification (OUQ)

Formulation of OUQ Problems

The key step in the Optimal Uncertainty Quantification approach is
to specify a feasible set of admissible scenarios (g, µ) that could be
(G,P) according to the available information:

A :=







(g, µ)

∣

∣

∣

∣

∣

∣

(g : X → R, µ ∈ P(X )) is consistent with
all given information about the real system (G,P)
(e.g. legacy data, first principles, expert judgement)







.

A encodes everything that we know about the “reality” (G,P).
A priori, all we know about (G,P) is that (G,P) ∈ A; we have no
idea exactly which (g, µ) in A is actually (G,P). No (g, µ) ∈ A is
“more likely” or “less likely” to be (G,P) than any other.
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Optimal bounds on the quantity of interest EX∼P[q(X,G(X))]
(optimal w.r.t. the information encoded in A) are found by
minimizing/maximizing EX∼µ[q(X, g(X))] over all admissible
scenarios (g, µ) ∈ A:

L(A) ≤ EX∼P[q(X,G(X))] ≤ U(A),

where

L(A) := inf
(g,µ)∈A

EX∼µ[q(X, g(X))], U(A) := sup
(g,µ)∈A

EX∼µ[q(X, g(X))].
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Introduction Optimal Uncertainty Quantification (OUQ)

Reduction of OUQ Problems — LP Analogy

Dimensional Reduction

A priori, OUQ problems are
infinite-dimensional, non-convex,
highly-constrained, global
optimization problems.

However, they can be reduced
to equivalent finite-dimensional
problems in which the
optimization is over the
extremal scenarios of A.

The dimension of the reduced
problem is proportional to the
number of probabilistic
inequalities that describe A.

bC

bC bC

bC

bC

bC bC

bC

bC bC

bC

A

ex(A)

Figure: Just as a linear program
finds its extreme value at the
extremal points of a convex
domain in Rn, OUQ problems
reduce to searches over finite-
dimensional families of extremal
scenarios.
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Introduction Optimal Uncertainty Quantification (OUQ)

Reduction of OUQ Problems — Theorem

Theorem (Reduction for moment and independence constraints)

For fixed measurable functions ϕi : X → R and ϕ
(k)
i : Xk → R, let

A :=























(g, µ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g : X = X1 × · · · × XK → R is measurable,

µ = µ1 ⊗ · · · ⊗ µK ∈
⊗K

k=1 P(Xk),
〈any conditions on g alone〉,

EX∼µ

[

ϕi(X)
]

≤ 0 for i = 1, . . . , n0,

EXk∼µk

[

ϕ
(k)
i (Xk)

]

≤ 0 for i = 1, . . . , nk and k = 1, . . . ,K























A∆ :=

{

(g, µ) ∈ A

∣

∣

∣

∣

µk is a convex combination of at most

Nk := 1 + n0 + nk Dirac measures on Xk

}

⊆ A.

Then

dim(A∆) ≤

K
∑

k=1

Nk(1 + dim(Xk)) +

K
∏

k=1

Nk −K,

L(A) = L(A∆) and U(A) = U(A∆).
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Introduction Optimal Uncertainty Quantification (OUQ)

Reduced OUQ Problems

The finite-dimensional problems L(A∆) and
U(A∆) can be solved numerically.

Current tool of choice: mystic, a Python-based
open-source optimization framework.

Easily swappable strategies for optimization,
population generation, enforcement of
constraints, termination criteria.
Manages optimizations on scales ranging from
the small (second-long on a laptop) to the
large (days on dozens-of-cores clusters).

Depending on the specific structure of A, there
are additional layers of reduction theorems.
E.g. in the McDiarmid example that follows, a
theorem enables us to “forget” the coordinates
in the input spaces.
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Examples of OUQ

Examples of OUQ in Action

McDiarmid’s Inequality: Parameter (In)Sensitivity

Large-Scale Example: Seismic Safety Certification

Improving the Bounds: Optimal Knowledge Acquisition /
Experimental Design
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Examples of OUQ Optimal Concentration Inequalities

McDiarmid’s Inequality

Consider the admissible set corresponding to the assumptions of
McDiarmid’s inequality (a.k.a. the bounded differences inequality):

AMcD =















(g, µ)

∣

∣

∣

∣

∣

∣

∣

∣

g : X1 × · · · × XK → R,

µ =
⊗K

k=1 µk, (i.e. X1, . . . , XK independent)
EX∼µ[g(X)] ≥ m ≥ 0,

osck(g) ≤ Dk for each k ∈ {1, . . . ,K}















,

with componentwise oscillations/global sensitivities defined by

osck(g) := sup

{

|g(x) − g(x′)|

∣

∣

∣

∣

x, x′ ∈ X1 × · · · × XK ,
xi = x′i for i 6= k

}

.

Note that saying “(G,P) ∈ AMcD” specifies neither G nor P exactly. As
usual, we want to know the worst-case probability of failure

U(AMcD) := sup
(g,µ)∈AMcD

µ[g(X) ≤ 0]
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∣

∣

∣

∣

x, x′ ∈ X1 × · · · × XK ,
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}

.

Theorem (McDiarmid’s Inequality, 1988)

U(AMcD) := sup
(g,µ)∈AMcD

µ[g(X) ≤ 0] ≤ exp

(

−
2m2

∑K
k=1D

2
k

)
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Examples of OUQ Optimal Concentration Inequalities

Optimal McDiarmid — Non-Propagation

Theorem

For K = 1,

U(AMcD) =







0, if D1 ≤ m,

1−
m

D1
, if 0 ≤ m ≤ D1.

For K = 2,

U(AMcD) =



























0, if D1 +D2 ≤ m,

(D1 +D2 −m)2

4D1D2
, if |D1 −D2| ≤ m ≤ D1 +D2,

1−
m

max{D1,D2}
, if 0 ≤ m ≤ |D1 −D2|.

There are similar explicit formulae for K = 3 (involving roots of cubic
polynomials) and higher K.
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Examples of OUQ Optimal Concentration Inequalities

Optimal McDiarmid — Non-Propagation

Theorem

For K = 2,

U(AMcD) = 1−
m

max{D1,D2}
, if 0 ≤ m ≤ |D1 −D2|.

If the “sensitivity gap” |D1 −D2| is large enough relative to the
performance margin m, then max{D1,D2} dominates all the
uncertainty about P[G(X) ≤ 0].

The smaller of D1 and D2 could be reduced to zero without
improving the worst-case bound on the probability of failure.

In the presence of uncertainty about input probability distributions
and input-output relationship, there can be screening effects and
sensitivities can fail to propagate.
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Examples of OUQ Seismic Safety

Large-Scale Example: Seismic Safety

Consider the safety of a truss
structure under an earthquake.

The truss dynamics and material
properties are assumed to be known:

density 7860 kg ·m−3;
Young’s modulus 2.1× 1011 Pa;
yield stress 2.5× 108 Pa;
damping ratio 0.07.

Failure consists of any truss member
i’s axial strain Yi exceeding its yield
strain Si.

The uncertainty with respect to which
we perform OUQ is the unknown
earthquake ground motion that the
structure will experience.

Figure: A 198-member steel
truss electrical tower.
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Examples of OUQ Seismic Safety

Frequency Domain Formulation

An admissible set A can be constructed using the common seismological
technique of considering the mean power spectrum, which is relatively well
understood:

Matsuda–Asano shape function (mean power spectrum) with Richter
magnitude ML and site-specific natural frequency ωg and damping ξg:

sMA(ω) := C1e
C2ML

ω2
gω

2

(ω2
g − ω2)2 + 4ξ2gω

2
gω

2
.
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Examples of OUQ Seismic Safety

Frequency Domain Formulation

AMA :=

{

µ

∣

∣

∣

∣

µ is a prob. dist. on ground motions,
and Eµ[power spectrum] = sMA

}

The typical approach is to repeatedly sample white noise, then filter
those samples through a shape function (such as the Matsuda–Asano
one) to generate samples with a “typical” power spectrum, and use
the resulting ground motions as tests for the safety of the structure.

This procedure amounts to sampling from just one possible
probability distribution µf.w.n. ∈ AMA — there are many others!.

The collection AMA can be traversed using OUQ. In our example, the
optimizer manipulates 200 3-dimensional random Fourier coefficients:
the reduced OUQ problem has dimension 600.
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Examples of OUQ Seismic Safety

Numerical Results: Vulnerability Curves

min and max
probability
of failure
over AMA

ML
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Figure: The minimum and maximum probability of failure as a function of Richter
magnitude ML, where the power spectrum is constrained to have mean equal to
the Matsuda–Asano shape function sMA with natural frequency ωg and natural
damping ξg taken from the 24 Jan. 1980 Livermore earthquake. Each data point
required O(1 day) on 44+44 AMD Opterons (shc and foxtrot at Caltech).
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narrowed by acquiring
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passing to A ( AMA.
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Examples of OUQ Knowledge Acquisition / Experimental Design

Optimal Knowledge Acquisition / Experimental Design

Range of prediction given A:

R(A) := U(A)− L(A),

R(A) small ←→ A very predictive.

Let AE,c denote those scenarios in A
that are consistent with getting
outcome c from some experiment E.

The optimal next experiment E∗ solves
a minimax problem, i.e. E∗ is the most
predictive even in its least predictive
outcome:

E∗ minimizes E 7→ sup
outcomes c

of E

R(AE,c).

bCbC
A

E1 E2

bCbC

run exp’t E2

AE2,c2F1 F2

bCbC

run exp’t F1

A(E2,c2),(F1,d1)
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Conclusions

Conclusions

Optimal UQ is a general framework for the sharp propagation of
information/uncertainties. It can assist in decision-making under
uncertainty by identifying key vulnerabilities in and assumptions about
the system, and what new information would be most informative.

Dimensional reduction theorems make what is mathematically The

Right Thing To Do into a computationally tractable approach —
small problems can be done in minutes on a laptop, larger ones in
hours/days on clusters.

Future work: connections between OUQ and (robust) Bayesian
inference — (families of) priors and posteriors on A?

Preprint: arXiv:1009.0679v2
Under consideration at SIAM Review

Open-source optimization framework: dev.danse.us/trac/mystic

Sullivan & al. (Caltech) Optimal Uncertainty Quantification INFORMS, 13–16 Nov. 2011 18 / 18

http://arxiv.org/pdf/1009.0679v2
http://dev.danse.us/trac/mystic

	Introduction
	Examples of OUQ
	Conclusions

