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Problem Setting

@ Gradient descent on a connected Riemannian manifold (Q, g) in an
energetic potential E: [0,7] x Q — R with respect to a dissipation
potential ¥: [0,7] x TQ — [0, +00):

OU(t, 2(t), 2(t)) > —~DE(t, 2(1)). (RI)

o Each U(¢,x,-) is 1-homogenous: the dissipation is a Finsler structure
on Q, continuous and non-degenerate w.r.t. g. This makes the
evolution rate-independent (a.k.a. quasi-static): the solution operator
commutes with monotone reparametrizations of time.

@ (RI) models stick-slip dynamics, dry friction, evolution of some
material properties (e.g. the Barkhausen effect in magnetization).

@ We analyse a positive-temperature perturbation of (RI). As an
application, this model explains the creep effects shown by such
systems at positive temperature.
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Incremental Problem

@ The discrete time incremental formulation of (RI) is, given times
{t;=1ih|i=0,...,T/h} and the state z; at time t;, to find the
state z;4+1 at time ¢;4; that minimizes

W(ZZ', Zz’—f—l) = E(tH_l, Zz’—f—l) — E(tz', ZZ) + hW¥ (Logzi(ziﬂ)/h).
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Incremental Problem

The discrete time incremental formulation of (RI) is, given times
{t;=1ih|i=0,...,T/h} and the state z; at time t;, to find the
state z;4+1 at time ¢;4; that minimizes

W (21, zi41) i= E(tis1, ziv1) — E(ti, 1) + ¥ (Log,, (2i1) /).
To model the effect of a heat bath with power 6 > 0 (i.e. injects

energy 0h over [t;,t;+1]), we posit that the random next state Z/
has probability distribution p(-|z;) dVol, on Q that minimizes

/Q W (22, Jo(-|z2) + 08 p(-|22) log p(-]:)] dVol,
W(ZZ', Z )
s >

and consider the Markov chain Z" with such transition probabilities.
For 2-homogeneous W, this procedure corresponds to adding It
noise. What is the continuous-time limit for 1-homogeneous ¥?

i.e. p(zit1|z) o< exp <—

Sullivan (Caltech) Thermalization of Rate-Indep. Processes MFO 22-28 Jan. 2012 3/8



Incremental Distribution

Quick back-of-envelope calculations in T, Q yield
E[Logzz(Zz+1)‘Zz = Zz] ~ —60h D\Tf* (ti, Ziy DE(ILL Zi)),

V[Logzl(zz—i-l)‘Zz = Zi] = (9h)2 Dzi}*(ti, ZZ',DE(tZ', Zz))

Conjecture

The variance is essentially negligible, and so the limit process as h — 0 is
a deterministic flow along the vector field on the RHS of the expression for
the mean:

j(t) = —0 DU (t,y(t), DE(t,y(t))),
ie. DU(t,y(t), —0~1y(t)) = DE(t,y(t)), (NL)
(If U is even) DW(t,y(t),0 ' 4(t)) = —DE(t, y(t)),

i.e. the non-linear \Tl—gradient descent in E.

~
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Effective Dissipation — Cramer Transform

Definitions
The effective dissipation potential T on the previous slide is the Cramer
transform of W, defined for each (¢,z) € [0,7] x Q by

U*(t, 2, 0) := log/ exp (— ((6,v) + ¥(t,z,v)) ) dv, L€ T,0,
29

\Tl(t,x,v) = sup {(Z, v) — \Tf*(t,w,f) ‘ IS T;Q} : v e T,0.
Example 81
6 -
n v
U(v) := o|lv||2 on R", 0 > 0, ul
I n + 1 2 4 v
¥ (l) = log (o — [1£13)
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Convergence Theorem

Theorem (1), y(t)
Under technical conditions, the piecewise-
constant interpolants of the discrete time :
Markov chain Z" converge in probability as NS “\/ R
h — 0 to y, the solution of (NL), i.e.

DU (t,y(t), —0~"y(t)) = DE(t, y(t))

with the same initial condition. That is, for
all§ >0, 2(t), y(t)

lim P| sup d Z"#),y(t)) > 8| = 0. =0\ P
HmP| sup digq)(Z7(1),y() e

Figure: Comparison of the original rate-
independent process z (blue) that solves (RI) and )
the thermalized process y (red) that solves (NL). (b) 0 =15
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Technical Conditions

@ Main technical condition (for the moment!): the vector field
flt,x) = —D\T/*(t,x,DE(t@))

should admit a spacetime neighbourhood of the solution ¥ in which,
for any two initial conditions (¢, ) and (¢, 2’) and small enough h > 0,

d(0,g) (Exp,(hf(t, 2)), Expy (hf(t,2"))) < digg)(z,2").

@ This is can be seen as a combination of two criteria:

» the vector field f should not be outward-pointing;
» the curvature of (Q, g) should not be strongly positive.

N, fo N
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Application: Andrade Creep

Andrade’s creep law (1910)

For soft metals under constant subcritical stress, strain
grows initially ~ ¢1/3 and later ~ t.

@ Work on @ = (0,+00) with energy gradient DE(t,z) = ¢ and the
Finsler dissipation W (¢, z,v) = ox|v|, i.e. linear strain hardening.

@ Solutions to the effective evolution (NL)

y(0) =1, DU(ty(t),—6 () =

: . 200
ie. g(t) = COEEE

do indeed grow ~ /3, in accordance with Andrade’s creep law:
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