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The Filtering Problem

Suppose that a system of interest evolves according to deterministic discrete time dynamics

vj+1 = Ψ(vj) (1)

where vj in some Banach space V denotes the state of the system at the jth time step, and the initial
condition is a Gaussian random variable v0 ∼ N (m0, C0). Suppose also that we have noisy observations
in some other Banach space Y (usually of much lower dimension than V ):

yj+1 = Hvj+1 + ηj+1 (2)

where ηj ∼ N (0,Γ), and H : V → Y is some (linear) operator. Suppose that v0 and all the ηj
are pairwise independent, and let Yj := (y`)

j
`=0. The filtering problem is to determine the filtering

distribution P(vj |Yj). This can be split into two steps, that of prediction

P(vj |Yj) 7→ P(vj+1|Yj)

and analysis/correction
P(vj+1|Yj) 7→ P(vj+1|Yj+1).

This is a Bayesian approach in which the prediction performs the role of the prior.

The Kálmán Filter

The Kálmán Filter (KF) is the case of linear dynamics, i.e. Ψ(v) = Lv for some linear map L : V → V .
In this case, the filtering distribution is always Gaussian (since a linear image of a Gaussian measure is
again Gaussian). If P(vj |Yj) = N (mj , Cj), then the prediction is that P(vj+1|Yj) = N (m̂j+1, Ĉj+1)
where

m̂j+1 = Lmj ,

Ĉj+1 = LCjL
>.

For the analysis step, if we introduce a cost function

J(m) :=
1

2

∥∥∥Ĉ−1/2j+1

(
m− m̂j+1

)∥∥∥2 +
1

2

∥∥∥Γ−1/2(yj+1 −Hm)
∥∥∥2

then the posterior mean and covariance are given by completing the square:

mj+1 = arg min
m

J(m)

C−1j+1 = Ĉ−1j+1 +H>Γ−1H.



Gaussian Approximate Filters

When the forward dynamics Ψ are non-linear, the filtering distribution is at best approximately Gaussian.
Inspired by the KF, we take

mj+1 = arg min
m

J(m)

J(m) =
1

2

∥∥∥Ĉ−1/2j+1

(
m−Ψ(mj)

)∥∥∥2 +
1

2

∥∥∥Γ−1/2(yj+1 −Hm)
∥∥∥2 .

Once the {Ĉj+1}∞j=0 are specified, this minimization determines a map (mj , yj+1) 7→ mj+1. We have
the following equations for the evolution of the state vj and the mean state estimate mj :

C−1j+1mj+1 = Ĉ−1j+1Ψ(mj) +H>Γ−1yj+1 (3)

C−1j+1vj+1 = Ĉ−1j+1Ψ(vj) +H>Γ−1HΨ(vj) (4)

yj+1 = HΨ(vj) + ηj+1. (5)

Equations (3–5) imply that

C−1j+1(mj+1 − vj+1) = Ĉ−1j+1(Ψ(mj+1)−Ψ(vj)) +H>Γ−1ηj+1. (6)

Equation (6) underwrites the long-time asymptotic behaviour of the filter, and in particular the recovery
from a (large) initial error. If we let δj := mj − vj denote the error, then δj evolves according to

δj+1 = Cj+1Ĉ
−1
j+1(Ψ(vj + δj)−Ψ(vj)) + ξj+1 (7)

ξj+1 = Cj+1H
>Γ−1ηj+1. (8)

In the good cases, the operator on the right-hand side of (7) will be a contraction overall, and so δj
will shrink to 0 in long time.

3DVar

This is an approximate filter. The “3D” comes from physical application in which minimization (the
variational approach) is performed over the spatial dimensions at fixed time, as opposed to the 4DVar
filter in which minimization is performed over time as well. In 3DVar, Ĉj is a fixed matrix/operator Ĉ,
inspired by the fact that in the KF the covariance matrix Cj tends to a limit as j →∞. The use of a

‘large’ Ĉ is referred to as ‘variance inflation’, and is used to compensate for model error (a wrong Ψ).

ExKF

The Extended Kálmán Filter uses DΨ as L, and Ĉj+1 = DΨ(vj)CjDΨ(vj)
>. This can be a prohibitively

large matrix to calculate and store, e.g. in weather applications with 109 × 109 matrices.

EnKF

Ensemble Kálmán Filters use an ensemble v(1), . . . , v(K) of state estimates with

v
(k)
j+1 = arg min

m
J (k)(m)

J (k)(m) =
1

2

∥∥∥Ĉ−1/2j+1

(
m−Ψ(v

(k)
j )

)∥∥∥2 +
1

2

∥∥∥Γ−1/2(y
(k)
j+1 −Hm)

∥∥∥2 .
The empirical covariance of {Ψ(v

(k)
j )}Kk=1 is used as Ĉj+1. One implementation of the EnKF uses data

perturbation, so that the kth member of the ensemble uses the perturbed observation

y
(k)
j+1 = yj+1 + η

(k)
j

where η
(k)
j ∼ N (0,Γ) are independent and identically distributed for each k = 1, . . . , K.


