
NOTES ON CONCENTRATION OF MEASURE, PART 1

HAN CHENG LIE

Abstract. Notes for a 90-minute presentation on Concentration of Measure for the Uncertainty Quan-

tification seminar at Freie Universität Berlin, held on Tuesday, the 3rd of May, 2016. Based on resources
from Wikipedia, unpublished notes by A. M. Stuart and T. J. Sullivan [2] on uncertainty quantification,

and M. Ledoux’s book on concentration of measure [1].

1. Motivation: uncertainty quantification (from [2])

Let (Θ,A,P) be a probability space, D ⊂ Rd be a bounded, open set, and u : D×Θ→ R be a random
field, so that u(x, ·) : Θ → R is a random variable and u(·, θ) : D → R is a function for P-almost all θ.
Define the Hilbert space

H := L2(D;R) =

{
u : D → R |

∫
D

|u(x)|2dx <∞
}

In UQ applications, dim H = +∞, and we seek to approximate a random field u (e.g. the solution to
some PDE with random coefficients) in some orthonormal basis (ψn)n∈N, where the ψn : D → R are
deterministic.

Key question: convergence of sequence of partial sums

uN (x, θ) := m(x) +

N∑
n=1

γnθnψn(x)

to a limit u.

Assumption 1.1 (Assumption 2.4.2 in [2]). The sequence γ = (γj)j∈N ∈ `2(N;R) and the sequence
θ = (θj)j∈N is a sequence of i.i.d. N(0, 1) random variables.

Theorem 1.2 (Construction of Gaussian prior (Theorem 2.4.3 in [2]). Under Assumption 1.1, the se-
quence of partial sums (uN )N∈N is Cauchy in the Hilbert space H := L2

P(Θ;H), and the limit u is a
H-valued random variable with law given by a probability measure µ.

High-dimensional probability:
Let θ = (θj)j∈N be a sequence of independent, N(0, 1) random variables. Then θN = (θj)

N
j=1 is a

RN -valued random variable, distributed according to N(0, IN ) for the N ×N identity matrix IN .
Question: Where is θN most likely to be found?

2. First example (excerpt from §1.1 of [1])

Notation:

• (X, d) - metric space X endowed with metric d : X ×X → [0,∞)
• B(X) - Borel sigma-algebra of X
• M1(X) - space of probability measures on X (with Borel sigma-algebra)
• Bn+1

r (x) =
{
y ∈ Rn+1 | |y − x| < r

}
- open ball of radius r, centre x in Rn+1

• λn+1 - Lebesgue measure in Rn+1

• ω(n+ 1) = λn+1(Bn+1
1 (0)) - volume w.r.t Lebesgue measure of Bn+1

1 (0)
• Sn =

{
x ∈ Rn+1 |‖x‖ = 1

}
- sphere of radius 1 in Rn+1 (= ∂Bn+1

1 (0))

Given A ∈ B(X) and r > 0, we shall write the open r-neighbourhood of A as

(2.1) Ar := {x ∈ X | d(x,A) < r} .

Date: May 3, 2016.

1



2 HAN CHENG LIE

2.1. Paul Lévy’s example (from Wikipedia). We recall the ‘wedge’ construction of the uniform mea-
sure σn on Sn. Equip Sn with the geodesic distance on the sphere. Given A ∈ B(Sn), the corresponding

wedge is a subset of the closed unit ball Bn+1
1 (0), given by

wed(A) := {tx |x ∈ A, t ∈ [0, 1]} ,

i.e. the volume obtained by scaling the set A using a scaling parameter t ∈ [0, 1]. Then the uniform
measure σn defined on Sn is given by

(2.2) σn(A) :=
1

ω(n+ 1)
λn+1(wed(A)), ∀A ∈ B(Sn)

Theorem 2.1 (Conc. of unif. meas. on Sn for n ≥ 2). Given the uniform measure σn constructed in
(2.2), suppose that A ∈ B(Sn) satisfies σn(A) ≥ 0.5. Then

(2.3) σn(Ar) ≥ 1− exp

(
−(n− 1)

r2

2

)
∀0 < r ≤ π.

Remark 1. The result (2.3) may be interpreted (see [1]) as the statement that almost all points on Sn

(for n ≥ 2) are within geodesic distance 1√
n

from A.

Note that the lower bound is less useful for ‘large’ values of r: since if r = π, then the lower bound
given by (2.3) is rather bad, since

1− exp

(
−(n− 1)

π2

2

)
< 1 ∀n ∈ N

whereas it must hold that σn(Aπ) = 1, since the geodesic distance between any two distinct points on
Sn is at most π, by definition of geodesic distance. Since we are interested in high-dimensional spheres,
an appropriate way of interpreting (2.3) is to fix 0 < r � π, and to observe that the σn- measure of Ar
increases rapidly in the dimension n. Alternatively, if we let n grow large, r must decrease as O(n−1/2)
in order for the measure of Ar to remain O(1). A nice feature of the concentration result is that it does
not matter what the set A looks like, provided that σn(A) ≥ 1/2.

3. §1.2 from [1]: Concentration functions

Definition 3.1 (Concentration function). Let (X, d) be a metric space. The concentration function
associated to µ ∈M1(X) is given by

(3.1) α(X,d,µ)(r) := sup

{
1− µ(Ar) | A ∈ B(X), µ(A) ≥ 1

2

}
, ∀r > 0.

Note that by definition, a concentration function is always bounded from above by 1
2 .

If (X, d) is a bounded metric space, the r-enlargement Ar defined in (2.1) is sensible for 0 < r bounded
above by

(3.2) Diam(X, d) := sup {d(x, y) | x, y ∈ X} .

We have the properties that

α(X,d,µ)(r) = 0 ∀r > Diam(X, d)(3.3a)

α(X,d,µ)(r)↘ 0 as r → +∞.(3.3b)

The basic idea of concentration of measure can be described as follows:

(3.4) α(X,d,µ)(r)↘ 0 rapidly with r or dim(X).

3.1. Concentration for Gaussian measure. Let γ (γk) denote the canonical Gaussian probability
measure on R (Rk) equipped with the Euclidean metric. We will abuse notation and also use γ as a
density, viz., for the cumulative distribution function (CDF) of the Gaussian probability measure on R
and any a ∈ R, we shall write Φ(a) :=

∫ a
−∞ γ(x)dx.

Let A ∈ B(Rk) such that γk(A) = Φ(a) for some −∞ ≤ a ≤ +∞. Then ∀r > 0,

(3.5) γk(Ar) ≥ Φ(a+ r).

Define the concentration function for γ by

(3.6) αγ(r) := sup

{
1− γk(Ar) | A ∈ B(Rk), γk(A) ≥ 1

2

}
∀r > 0.
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Since Φ(0) = 1
2 and 1 − Φ(r) ≤ exp

(
− r

2

2

)
for r > 0, the concentration function αγ defined in (3.6)

satisfies

(3.7) αγk(r) ≤ exp

(
−r

2

2

)
, ∀r > 0.

The interpretation of (3.7) is that for any A ∈ B(Rk) with γk(A) ≥ 1
2 , γk-almost all points in Rk are

within distance 10 of A. In this case, “γ-almost all” has the quantitative meaning

exp(−102

2
),

which is very close to zero.

3.2. Concentration for uniform measure on Sn. Note that we can define the concentration function
for the uniform measure σn on Sn similarly, as

ασn(r) := sup

{
1− σn(Ar) | A ⊂ Rk, σn(A) ≥ 1

2

}
and by (2.3) we have, analogous to (3.7),

(3.8) ασn(r) ≤ exp

(
−(n− 1)

r2

2

)
.

Remark 2. Note that, unlike the statement for the product measure γ in (3.7), the bound on the con-
centration function in (3.8) depends on the dimension n.

3.3. Formal definitions of concentration.

Definition 3.2. A probability measure µ ∈ M1(X) exhibits normal (exponential) concentration on
(X, d) if ∃C, c > 0 not depending on r such that

(3.9) α(X,d,µ)(r) ≤ C exp (−crp) , ∀r > 0,

for p = 2 (p = 1).

Examples of normal concentration: (X, d, µ) = (Sn, d, σn) or (Rk, | · |, γk).
Note: the bound µ(A) ≥ 1/2 may be replaced by µ(A) ≥ ε > 0, which yields corresponding statements

on concentration functions.

4. §1.3 Deviation inequalities

4.1. Concentration around medians for continuous functions. Let µ ∈ M1(X), F : X → R
measurable.

Definition 4.1 (Median of F ). A median of F for µ is a number mF such that

(4.1) µ ({F ≤ mF }) ≥
1

2
and µ ({F ≥ mF }) ≥

1

2

Definition 4.2 (Modulus of continuity). For F ∈ C(X;R), the modulus of continuity of F is a function
ωF : R++ → R+ ∪ {+∞} defined by

(4.2) ωF (η) = sup {|F (x)− F (y)| | d(x, y) < η} , η > 0.

Interpretation: Functions that exhibit large, highly localised oscillations have large values of ωF (η)
for small η. Functions that exhibit very small local oscillations, i.e. are almost constant, have very small
values of ωF (η) for large η.

Observe that if mF is a median and A := {F ≤ mF }, then for all x ∈ X such that d(x, y) < η for
some y ∈ A,

F (x) ≤ F (y) + ωF (η) ≤ mF + ωF (η),

where the first inequality follows from (4.2) and the second inequality follows from the fact that y ∈ A.
From the above inequality we may deduce

(4.3) µ ({F > mF + ωF (η)}) ≤ αµ(η).

Why is this important? It gives us a quantity which we can control using the concentration function.
Analogously, if A = {F ≥ mF }, then

µ ({F < mF + ωF (η)}) ≤ αµ(η),



4 HAN CHENG LIE

which with (4.3) yields the two-sided inequality

(4.4) µ ({|F −mF | > ωF (η)}) ≤ 2αµ(η).

The left-hand side of (4.4) gives the measure of the set of points at which the function deviates from
a given median value. Recall that the concentration function αSn,d,σn decays exponentially with the
dimension n.

Interpretation: Equation (4.4) expresses that continuous functions defined on X with small local
oscillations are almost constant on µ-almost all of X as n increases.

Note: for X = Sn and d the geodesic distance on Sn, equations (4.3) and (4.4) are called “L’evy’s
inequalities”’.

4.2. Concentration around medians of Lipschitz functions. Now consider the subset of Lipschitz
functions in C(X;R).

Definition 4.3 (Lipschitz functions). F ∈ C(X;R) is Lipschitz if

(4.5) ‖F‖Lip := sup
x 6=y

|F (x)− F (y)|
d(x, y)

<∞,

and F is “1-Lipschitz” if ‖F‖Lip ≤ 1.

Note that by (4.2) and (4.5) we have

(4.6) ωF (η) ≤ η‖F‖Lip, ∀η > 0.

In particular, if F is Lipschitz, then its modulus of continuity is finite for all finite η. Lipschitz continuity
is a stronger property than continuity.

Our first “deviation inequality” is of the form

(4.7) µ ({F ≥ mF + r}) ≤ αµ
(

r

‖F‖Lip

)
, ∀r > 0,

and from it we can derive the “concentration inequality” of F around the median mF with rate αµ,

(4.8) µ ({|F −mF | ≥ r}) ≤ 2αµ

(
r

‖F‖Lip

)
, ∀r > 0.

We interpret (4.8) as saying that F concentrates around mF on a portion of its domain that has large
µ-measure.

Remark 3. No constraints have been placed on mF and ‖F‖Lip, especially their relative sizes. The
concentration phenomenon does not yield any information on ‖F‖Lip or mF .

We can replace the median mF in (4.7) with the mean
∫
Fdµ:

Proposition 4.1. For µ ∈M1(X), α : R+ → R+ and F 1-Lipschitz such that

(4.9) µ

({
F ≥

∫
Fdµ+ r

})
≤ α(r), ∀r > 0,

it holds that

∀A ∈ B(X) such that µ(A) > 0, 1− µ(Ar) ≤ α(µ(A)r) ∀r > 0,

and in particular α(X,d,µ)(r) ≤ α(r/2).

4.3. Some consequences of normal concentration. Next proposition shows that normal concentra-
tion implies strong integrability properties for Lipschitz functions.

Proposition 4.2. Let F : X → R be measurable with respect to (X,A, µ) such that ∃aF ∈ R, C, c > 0
constants such that

µ ({|F − aF | ≥ r}) ≤ C exp(−cr2), ∀r > 0.

Then ∫
exp(ρF 2)dµ <∞ ∀ρ < c,∣∣∣∣∫ Fdµ− aF

∣∣∣∣ ≤ C

2

√
π

c
,

Varµ(F ) ≤ C

c
.
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Prop. 4.2 is typical of CoM: we don’t know anything about the size of F - only about the fluctuations
of F about its mean.

We end with the following equivalent characterisation for normal concentration.

Proposition 4.3. Let µ ∈M1(X, d). Then normal concentration holds if and only if ∃K > 0 (depending
on the constant C > 0 in normal concentration statement) such that for any 1-Lipschitz function F :
X → R,

‖F −
∫
Fdµ‖q ≤ K

√
q

c
∀q ≥ 1.

The significance of the above result is that if normal concentration holds, then

(4.10) ‖F‖q ≤ ‖F‖1 +K
√
q‖F‖Lip

If the concentration functions are of type C exp(−crp) for p > 0, then the growth rate in q ≥ 1 is q1/p in
Proposition 4.3.
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