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What is “Probabilistic Numerics”?

I Beginning with a seminal papers1 of Kadane (1985), Diaconis (1988),
O’Hagan (1992), and Skilling (1992) there has been interest in giving
probabilistic answers to ostensibly deterministic problems, e.g.
quadrature, optimisation, solution of differential equations.

I In some sense, this is a Bayesian statistician’s natural approach to
numerical analysis, phrasing computational tasks as inference
problems using finite/incomplete/imperfect information.

I Disadvantage: costs more, and gives ‘fuzzier’ answers, so why bother?

I Advantage: fold uncertainty arising from numerical error into
inferences, and propagate this uncertainty through later
computations.

I Replicability of results 6= accuracy.
I Good data + bad/overconfident model =⇒ faulty inferences.
I In many practical examples from physical, social, and data sciences, we

know that our numerical solutions are coarse approximations of models
that are themselves approximate.

1But actually going all the way back to Poincaré (1896).
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Motivating Example I: Bayesian Quadrature

∫ 1

0
exp

(
cosh

(
x + 2x2 + cos x

3 + sin x3

))
dx = ???

Diaconis (1988) offers a Bayesian approach to quadrature:

I Put a prior µ on the space of integrands f : [a, b]→ R.

I Evaluate the integrand at nodes {xi}ni=1 ⊂ [a, b] to get f (xi ) = yi
(possibly with errors).

I The posterior distribution

Pf∼µ
(∫ b

a f (x) dx
∣∣f (xi ) = yi for i = 1, . . . , n

)
is the Bayesian statistician’s estimate of the integral.

I Brownian motion prior ←→ posterior mean is linear interpolation;
Sul′din (1959, 1960): associated trapezoidal rule is optimal (Bayes)
for quadratic loss.

I Integrated BM prior ←→ cubic spline interpolation.

I How are the posterior variance and classical numerical analysis error
bounds related? Does the posterior concentrate on the truth?
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Motivating Example II: Lorenz-63
Ensembles for Deterministic Solver Accuracy

d

dt

xy
z

 =

 σ(y − x)
x(ρ− z)− y
xy − βz

 σ = 10

ρ = 28

β = 8/3

I Integrated with a time step τ = 10−3 using classical RK4.
I Global error is of order τ4. . . right?

I Determistic trajectory in red;

I 2048 PN trajectories with
Gaussian perturbations with
variance 1

2τ
9, in blue.

I Why? Morally, this models
accumulated local errors of the
same scale as the s.d. of the
perturbations.
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Motivating Example III: Allen–Cahn PDE
Inappropriately Concentrated Posteriors in Parameter Inference

−θ∆u + θ−1(u3 − u) = 0 in D = (0, 1)2,

u(x1, x2) = +1 for x1 = 0 or 1;

u(x1, x2) = −1 for x2 = 0 or 1.
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Figure: Comparison of posteriors for θ with various forward models (likelihoods).
Ground truth θ† = 0.04, with prior θ ∼ Unif(0.02, 0.15). More details later.
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Setting

I We consider the following autonomous ODE for u : [0,T ]→ S,
S = Rn or a separable Hilbert space, with vector field f : S → S:

d

dt
u(t) = f (u(t)), for t ∈ [0,T ], (1)

u(0) = u0,

where the initial state u0 ∈ S is given.

I Write Φt : S → S for the flow: u(t) = Φt(u0).

I Aim: Build a probabilistic numerical approximation to solutions of
(1), with convergence guarantees.

I Motivation: The ODE solver is often a forward model (likelihood) in a
Bayesian inverse problem, so a statistical description of the
discretisation error is essential for valid inferences.

I Following Conrad et al. (2016), our will be an ensemble-based
approach, cf. the global Gaussian process approach of Schober et al.
(2014).
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PN for ODEs

We need assumptions on (1) the underlying exact flow, (2) the
deterministic numerical method, and (3) the random perturbation.

Assumption 1 (re: exact flow)

Suppose that f is smooth enough that, for |t| small enough, its flow map
Φt is globally Lipschitz with Lipschitz constant 1 + L|t|:

‖Φt(u)− Φt(v)‖ ≤ (1 + L|t|)‖u − v‖.

Assumption 1 holds if, e.g., f is one-sided Lipschitz:

〈f (u)− f (v), u − v〉 ≤ µ‖u − v‖2 (2)

for all u, v ∈ S, for some constant µ ∈ R; in this case, Φt has Lipschitz
constant exp(µ|t|), which for small enough |t| is dominated by 1 + 2|µ||t|.
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PN for ODEs

I Fix a time step τ > 0. Set tk := kτ and uk := u(tk).

I Let Ψτ : S → S be a one-step numerical integrator for the ODE (1)
with time step τ .

I This class includes all Runge–Kutta methods and Taylor methods.

I That is, Ψτ is a numerical flow map, an approximation to the exact
flow Φτ . This numerical flow produces a sequence of deterministic
approximations to the solution of the ODE (1),

Uk+1 := Ψτ (Uk) ≈ uk+1 = Φτ (uk).

Assumption 2 (re: numerical flow)

Suppose that the numerical flow-map Ψτ has uniform local truncation
error of order q + 1: for some constant C ≥ 0,

sup
u∈S
‖Ψτ (u)− Φτ (u)‖ ≤ Cτq+1.
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PN for ODEs (Euler)

I Integral formulation for u(t), tk ≤ t ≤ tk+1:

u(t) = uk +

∫ t

tk

f (u(s)) ds =

∫ t

tk

g(s) ds.

I Numerical integrators amount to a choice of g( · ), subject to the
common-sense criterion that g(tk) = f (Uk).

I If we posit e.g. a Gaussian random field for g , then we get a sequence
of random approximations to u:

U(t) = Uk + (t − tk)f (Uk) + ξk(t − tk)

Uk+1 = Uk + τ f (Uk) + ξk(τ),

where Eg = f (Uk) and ξk = g − Eg .

I Extend this idea to more general means (deterministic integrators).

Tim Sullivan (FUB/ZIB) PN for DE Magdeburg, 22 Nov 2016 12 / 44



PN for ODEs (General)

I Let (Θ,F ,P) be an abstract probability space, assumed to be rich
enough for all the following arguments.

I We now define a new randomised one-step integrator

Uk+1 := Ψτ (Uk) + ξk(τ)

with ξk(t) :=
∫ t

0 χk(s) ds, where χk ∼ N (0,C τ ) are Gaussian. The
covariance structure should reflect the smoothness of f and the
accuracy of Ψτ in terms of numbers of derivatives.

I This definition not only provides for forward propagation of the the
numerical state Uk , but also a continuous output via

U(t) = Ψt−tk (Uk) + ξk(t − tk) for t ∈ [tk , tk+1].

I Note: this approach is intended to model sub-grid effects rather than
sub-floating point effects, though a comprehensive analysis would
include the latter (Hairer et al., 2008; Mosbach and Turner, 2009).
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PN for ODEs

Assumption 3 (re: random perturbation)

Suppose that ξk(t) :=
∫ t

0 χk(s) ds, where χk ∼ N (0,C τ ) are i.i.d., and
that there are constants C ≥ 0 and p ≥ 1 such that, for all t ∈ [0, τ ],
E‖ξk(t)⊗ ξk(t)‖ ≤ Ct2p+1, and, in particular, E‖ξk(t)‖2 ≤ Ct2p+1.

I Prime Gaussian example is a scaled integrated Brownian motion:

ξk(t) = τp−1

∫ t

0
B(s) ds.

I Our τ → 0 convergence results only use the highlighted bound on the
second moment, Eξk = 0, and independence of the ξk , so the
Gaussian structure is not essential to the construction.

I We can and should enlist the help of numerical analysis to inform
other priors for the truncation error for finer analysis.
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Strong Convergence Result

In the absence of noise:

max
0≤k≤T/τ

‖uk − Uk‖ ≤ Cτq, sup
0≤t≤T

‖u(t)− U(t)‖ ≤ Cτq.
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Strong Convergence Result

In the absence of noise:

max
0≤k≤T/τ

‖uk − Uk‖2 ≤ Cτ2q, sup
0≤t≤T

‖u(t)− U(t)‖2 ≤ Cτ2q.
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Strong Convergence Result

In the absence of noise:

max
0≤k≤T/τ

‖uk − Uk‖2 ≤ Cτ2q, sup
0≤t≤T

‖u(t)− U(t)‖2 ≤ Cτ2q.

Theorem 4 (Conrad et al., 2016)

Under Assumptions 1–3, with Gaussian ξ, there exists C ≥ 0 such that

max
0≤k≤T/τ

E
[
‖uk − Uk‖2

]
≤ Cτ2p∧2q, (3)

sup
0≤t≤T

E
[
‖u(t)− U(t)‖2

]
≤ Cτ2p∧2q. (4)

I A natural choice of scaling for the noise is p = q, for maximal
uncertainty consistent with the deterministic convergence rate.

I But there is still plenty of scope for numerical analysis and domain
expertise to inform the fine structure of ξ (covariance structure,
non-Gaussian structure, . . . ).
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Stronger Convergence Result

The previous result, asserting convergence in L∞
(
[0,T ]; L2(Θ,P;S)

)
, can

be strengthened to convergence in L2
(
Θ,P; L∞([0,T ];S)

)
:

Theorem 5 (Lie, Stuart & S., in prep.)

Under Assumptions 1–3, with non-Gaussian ξ, there exists C ≥ 0 such that

E

[
max

0≤k≤T/τ
‖uk − Uk‖2

]
≤ Cτ2p∧2q. (5)

If Assumption 3 is strengthened to E
[
sup0≤t≤τ ‖ξ0(t)‖2

]
≤ Cτ2p+1, then

E

[
sup

0≤t≤T
‖u(t)− U(t)‖2

]
≤ Cτ2p∧2q. (6)
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Other Convergence Results

If Assumptions 1 (the flow being globally Lipschitz) and 2 (the numerical
integrator having globally bounded truncation error) are relaxed to local
bounds, then we get convergence without a rate:

Theorem 6 (Lie, Stuart & S., in prep.)

If, on each closed and bounded ball BR(0) ⊂ S, the flow Φt has Lipschitz
constant 1 + LR |t| and ‖Φτ −Ψτ‖∞ ≤ CRτ

1+q, then

E

[
max

0≤k≤T/τ
‖uk − Uk‖2

]
→ 0 as τ → 0.

We expect control of the growth rates of the LR and CR to give a
convergence rate for the PN integrator, as in the case of integrators for Itô
SDEs (Higham et al., 2002).
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Example: FitzHugh–Nagumo

FitzHugh–Nagumo Oscillator

Nonlinear oscillator u : [0,T ]→ R2:

du

dt
= f (u) :=

[
u1 −

u3
1

3 + u2

− 1
θ3

(u1 − θ1 + θ2u2)

]

Note that f is not globally Lipschitz, but is one-sided Lipschitz!

I Aim: infer θ ∈ R3
>0 from observations yi = u(tobs

i ) + ηi at some
discrete times tobs

i = 0, 1, . . . , 40, ηi ∼ N (0, 10−3I ) i.i.d.
I Take ground truth u(0) = (−1, 1) and θ = (0.2, 0.2, 3); generate data

from a reference trajectory using RK4 with time step τ = 10−3.
I Infer θ using PN explicit Euler solvers with noise

E
[
ξk(τ)⊗ ξk(τ)

]
= σI τ2p+1 p = q = 1.

I Take log-normal prior for θ and compute the Bayesian posterior
EξP[θ|y , τ, ξ] for various τ > 0 and σ ≥ 0.
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Example: FitzHugh–Nagumo

The deterministic posteriors are over-confident at all values of the time
step τ = 0.1, 0.05, 0.02, 0.01, 0.005, do not overlap, and are biased.
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Example: FitzHugh–Nagumo

The PN-Euler posteriors for τ = 0.1, 0.05, 0.02, 0.01, 0.005 are less
confident and overlap more, though are still biased.
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Next Steps

I Relaxed regularity assumptions: convergence rates for locally
Lipschitz flows and locally accurate deterministic solvers. Connections
to numerical analysis for random dynamical systems.

I Construct structure-preserving PN integrators, e.g. for Hamiltonian
dynamics the PN perturbation should not push the trajectory off the
energy contours. Connections to stochastic analysis on manifolds,
thermostats in molecular dynamics.

I ‘On the fly’ calibration of the noise covariance, and non-Gaussian
structure. Connection to local error estimation and adaptivity, and to
hierarchical Bayesian inversion.
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Filtering Approach in Brief

I For R-valued u, Schober et al. (2014) propose an alternative
approach, based upon a linear Gaussian Kálmán filter.

I Prior model for u: q-times integrated Brownian motion. Hence,
X = (u, u′, u′′, . . . , u(q)) solves the linear Itô SDE

dX (t) =


0 1 · · · 0
...

. . .
. . .

...
...

. . .
. . . 1

0 · · · · · · 0

X (t) dt +


0
...
0
σ

 dB(t).

I Data: pointwise observations of the vector field f (i.e. indirect
observation of u′).

I For 1 ≤ q ≤ 4, the minimum posterior variance is achieved by
evaluating at the Runge–Kutta points, and then classical RKq is the
posterior mean.

I Ongoing work: runtime calibration of σ, matching it to classical
error indicators.
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PN for (Elliptic) PDEs

I Huge zoo of numerical methods for PDEs =⇒ many possible PN
constructions.

I PN perturbation of FE bases for elliptic PDEs treated by Conrad
et al. (2016):

I qualitatively similar examples to ODE case — some correction of
over-confident posteriors;

I but the construction of the PN-FEM basis is tricky.

I Owhadi (2016) offers a game-theoretic approach: elementary gambles
(“gamblets”) on the value of PDE solution u given observations of
action of test functions on the RHS; near-linear complexity if given a
hierarchical structure.

I Here we build a meshless construction using Gaussian processes.
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Strong Formulation of Elliptic PDE

I General elliptic PDE on a bounded Lipschitz domain D ⊂ Rd :

Au(x) = g(x) in D,

Bu(x) = 0 on ∂D.

I Assume we have a Green’s function available, defined by

AG (x ; x ′) = δ(x − x ′) in D,

BG (x ; x ′) = 0 on ∂D.

Example: Poisson’s equation with Dirichlet BCs

Au := −∇ · (κ∇u)

Bu := trace u
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‘Natural’ Prior Measure for u

I We aim to infer a GP emulator for u given observations of the
right-hand side g .

I First construct a prior measure for u, before evaluation of g(x), which
incorporates information from the known form of the linear system.

I Assume g ∈ H(Λ), where

I Λ: Rd ×Rd → R is a positive definite function, and
I H(Λ) is the reproducing kernel Hilbert space induced by Λ.

I Consider

k(x , x ′) :=

∫∫
D
G (x ; z)Λ(z , z ′)G (x ′; z ′) dzdz ′,

which is the natural kernel for the problem in the sense that its native
RKHS H(k) consists exactly of functions u that satisfy the boundary
conditions and such that Au ∈ H(Λ).
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‘Natural’ Posterior Measure for u

I Now construct the posterior for u given observations g = g(X o) of
the RHS g at locations X o = {xo

i }ni=1.

I For subsets A = {ai}, B = {bj} of D:

K (A,B) = [k(ai , bj)]ij

AK (A,B) = [Ak(ai , bj)]ij etc.

I ĀK (A,B) denotes A applied to the second argument of k.

Theorem 7 (Posterior Measure for u)

u|(g(X o) = g) is Gaussian N (µ,C ), where, for finite X ⊂ D,

µ(X ) := AK (X o,X )
(
AĀK (X o,X o)

)−1g

C (X ) := K (X ,X )− ĀK (X ,X o)
(
AĀK (X o,X o)

)−1AK (X o,X )
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‘Practical’ Prior and Posterior

I The ‘natural’ kernel k encodes the boundary conditions, but is
difficult to access in practice.

I Instead, following Cialenco et al. (2012, Lemma 2.2) we work with a
‘practical’ kernel k̂ of the form

k̂(x , x ′) :=

∫
D
k̃(x , z)k̃(z , x ′) dz ,

where k̃ is a ‘generic’ kernel such as Whittle–Matérn or Wendland.

I Boundary conditions are now enforced by adding additional
observations b on ∂D.

Theorem 8 (Posterior Measure for u)

u|g ,b ∼ N (µ,C ), where, for L :=
[
A B

]>
and X ⊂ D,

µ(X ) := LK̂ (X o,X )
(
LL̄K̂ (X o,X o)

)−1
[g>,b>]>

C (X ) := K̂ (X ,X )− L̄K̂ (X ,X o)
(
LL̄K̂ (X o,X o)

)−1LK̂ (X o,X )
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Accuracy and Contraction of the Posterior for u

Theorem 9 (Cockayne et al., 2016, Prop. 6–Theorem 8)

Let u† ∈ H(k̂) be the exact solution to the PDE, and uPN := u|g ,b the
PN solution (posterior GP). Then µ = E[uPN] coincides with the
symmetric collocation solution of Fasshauer (1999) and

local accuracy: |E[uPN(x)]− u†(x)| ≤ σ(x)‖u†‖k̂ ,

minimax rate: σ(x) = O
(
hβ−d/2−ρ),

contraction: P
[
‖uPN − u†‖L2(D) > ε

]
= O

(
h2β−d−2ρ

ε

)
,

where

I h denotes the fill distance of the observation sites X o ⊂ D;

I H(k̂) is norm-equivalent to Sobolev space Hβ(D);

I the PDE is of order ρ < β − d/2, d = dimD.
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Comparison of PN Solutions in 1d

−u′′(x) = sin(2πx) with Dirichlet BCs on [0, 1]
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Bayesian Parameter Inference with PN: Simple Example

I We now consider PDE-constrained parameter inference problems.

I Continue with the previous 1d example:

−θu′′(x) = sin(2πx) with Dirichlet BCs on [0, 1]

I Infer θ given observations of u with θ = θ† = 1 at x = 0.25 and 0.75,
corrupted by additive noise N (0, 10−6I ).

I Compare PN to its deterministic counterpart, symmetric collocation.
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Figure: Posterior distributions for θ using integral Wendland kernel.
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I Continue with the previous 1d example:

−θu′′(x) = sin(2πx) with Dirichlet BCs on [0, 1]
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Bayesian Parameter Inference with PN: Simple Example

I We now consider PDE-constrained parameter inference problems.
I Continue with the previous 1d example:

−θu′′(x) = sin(2πx) with Dirichlet BCs on [0, 1]

I Infer θ given observations of u with θ = θ† = 1 at x = 0.25 and 0.75,
corrupted by additive noise N (0, 10−6I ).

I Compare PN to its deterministic counterpart, symmetric collocation.
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Figure: Posterior credible (1 s.d.) intervals for θ using integral Wendland kernel, as
a function of n = #X o.
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Posterior Contraction for the Inverse Problem

More generally, for the Poisson problem

−∇ · (θ∇u) = g in D ⊂ Rd ,

u = b on ∂D,

with data yi = u†(xi ;κ
†) + ξi , ξ ∼ N (0, Γ), we obtain contraction of the

posterior for θ using the PN forward solver provided the idealised problem
is also contractive and the observation set X o is ‘dense enough’:

Theorem 10 (Cockayne et al., 2016, Theorem 11)

If the posterior for θ under the idealised exact solution u† contracts in
probability to δθ† , then so too does the posterior for θ under the PN
solution uPN := u|g(X o), provided the fill distance h of X o and the
number of data points n scale as

h = o

(
1

n1/(β−d/2−ρ)

)
.
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Semi-Linear Example: Steady-State Allen–Cahn

−θ∆u + θ−1(u3 − u) = g in D = (0, 1)2,

u(x1, x2) = +1 for x1 = 0 or 1;

u(x1, x2) = −1 for x2 = 0 or 1.

I ‘Mild’ nonlinearity: linear + monotone.
I Extend PMM to handle this nonlinearity by introducing a latent

variable z , which is later marginalised out:

−θ∆u − θ−1u = z , θ−1u3 = g − z .

I Exhibits multiple solutions for θ ≈ 0.04, g = 0:
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Allen–Cahn Parameter Inference

We try to recover θ from 16 observations of u on a 4×4 regular interior
grid, corrupted by N (0, 1

10 I ) noise.
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Figure: Comparison of posteriors for θ with various forward models (likelihoods).
Ground truth θ† = 0.04, with prior θ ∼ Unif(0.02, 0.15). PN forward model uses
squared exponential kernel, marginalising over a half-range Cauchy length scale
parameter. Details of pseudomarginal MCMC etc. in Cockayne et al. (2016,
Section 7).
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Allen–Cahn: A-Optimal Experimental Design
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Figure: A-optimal (minimal trace of the posterior covariance) locations of 20 RHS
evaluations for the PMM forward solution u. In practice, the optimal designs for
θ = θ† = 0.04 and other values of θ were indistinguishable in the ‘eyeball norm’.
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Next Steps

I Statistical methods for the approximation of the Green’s function or
the ‘natural’ optimal kernel (White and Stuart, 2009; Fasshauer,
2012) — if the cost-accuracy tradeoff relative to the ‘practical’
integral kernel makes it worthwhile.

I Connections to Bayesian numerical homogenisation (Owhadi, 2015)
and the gamblet method (Owhadi, 2016).

I Extensions to evolutionary problems and more profound nonlinearities.

I Escape from the Gaussian Alcatraz!
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Overview

1 Introduction

2 PN for ODEs
Sampling-Based PN for ODEs (Forward Problems)
PN for ODE Inverse Problems
Filtering-Based Approaches

3 Probabilistic Meshless Methods for PDEs
PMM for PDEs (Forward Problems)
PMM in PDE Inverse Problems

4 Closing Remarks
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General Comments

I PN offers ways to fold uncertainty arising from numerical error into
inferences, and propagate this uncertainty to later computations.
I Thus, we don’t confuse the replicability of deterministic simulations

with their accuracy.
I Good data + appropriately skeptical model =⇒ sound inferences.

I For both ODEs and PDEs, we have a good idea of how to proceed
with Gaussian priors. In some cases, we can see how Gaussian and
non-Gaussian priors have the same high-precision limits, but we can’t
expect this Gaussian universality to always hold true.

I Numerical analysis expertise is needed to build more realistic priors.

I Statistical expertise is needed to explore their posteriors.

http://probabilistic-numerics.org

https://github.com/jcockayne/bayesian_pdes

Thank You
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