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INTRODUCTION



INVERSE PROBLEMS |

» Inverse problems — the recovery of parameters in @ mathematical model that ‘best
match’ some observations — are ubiquitous in applied mathematics.

» The Bayesian probabilistic perspective on blending models and data is arguably a
great success story of late 20t"-early 215t Century mathematics — e.g. numerical
weather prediction.

» This perspective on inverse problems has attracted much mathematical attention in
recent years (Kaipio and Somersalo, 2005; Stuart, 2010). It has led to algorithmic
improvements as well as theoretical understanding — and highlighted serious open
questions.



INVERSE PROBLEMS |1

» Particular mathematical attention has fallen on Bayesian inverse problems (BIPs) in
which the parameter to be inferred lies in an infinite-dimensional space U, e.g. a
scalar or tensor field u coupled to some observed data y via an ODE or PDE.

» Numerical solution of such infinite-dimensional BIPs must necessarily be
performed in an approximate manner on a finite-dimensional subspace U™, but it
is profitable to delay discretisation to the last possible moment.

» Careless early discretisation may lead to a sequence of well-posed
finite-dimensional BIPs or algorithms whose stability properties degenerate as the
discretisation dimension increases.



A LITTLE HISTORY

Prehistory
Bayes (1763) and Laplace (1812, 1814) lay the foundations of

Late 1980s—Early 1990s
Physicists notice that well-posed inferences degenerate in high finite dimension —

Late 1990s-Early 2000s
The Finnish school, e.g. Lassas and Siltanen (2004), formulate
of finite-dimensional problems.

Since 2010
Stuart (2010) advocates direct study of



INVERSE PROBLEMS |

Forward Problem
Given spaces U and 9, a G:U—9,andu €U, findy = G(u).

Inverse Problem
Given spaces U and 9, a forward operator G: U — 9", and y € 9, find u € U such that
G(u) =vy.

» The distinction between forward and inverse problems is somewhat subjective,
since many ‘forward’ problems involve inversion, e.g. of a square matrix, or a
differential operator, etc.

» In practice, the forward model to reality, and the
or corrupted.



INVERSE PROBLEMS |1

Inverse Problem (revised)
Given spaces U and 9/, and a forward operator G: U — 9, recover u € U from an
imperfect observation y € & of G(u).

» Asimple example is an inverse problem with additive noise, e.g.

y = G(u) +n,

where 7 is a draw from a 9 -valued random variable, e.g. a Gaussian n ~ A(0,T).

» Crucially, we assume knowledge of the probability distribution of n, but not its exact
value.



PDE INVERSE PROBLEMS |

FIDEn‘j’L’IL’Iu A

Lan et al. (2016)

inverse problem: recover u such that =V - (uVp) = fin D c R?, plus
boundary conditions, from pointwise measurements of p and f.



PDE INVERSE PROBLEMS |1
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PDE INVERSE PROBLEMS III

Numerical weather prediction:

| 2

recover pressure, temperature, humidity,
velocity fields etc. from meteorological
observations

reconcile them with numerical solution of the
Navier-Stokes equations etc.

predict into the future
within a tight computational and time budget

ECMWF
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Temperature [*C]
10 hPa

(H-40
28.01.16
12 UT
to

07.02.16
12 UT

ECMWF/DWD/NOAA/NASA
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BAYESIAN INVERSE PROBLEMS



LEAST SQUARES AND CLASSICAL REGULARISATION |

» Prototypical ill-posed problem from linear algebra: given A € R™*" and
ye9 =R™ find u € U4 = R" such that

y = Au.

» More often: recover u from y := Au + 7.

» If nis centred with covariance matrix ' € R™*™ then the Gauss-Markov theorem
says that (in the sense of minimum variance, and minimum expected squared error)
the best estimator of u minimises the weighted misfit &: R" — R,

1 UV e
o(u) = 2lau— |2 = 22 (au - )2
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LEAST SQUARES AND CLASSICAL REGULARISATION I

» A least-squares solution will exist, but may be non-unique and depend very
sensitively upon y through ill-conditioning of A*I~'A.

» The classical way of simultaneously enforcing uniqueness, stabilising the problem,
and encoding prior beliefs about what a ‘good guess’ for u is to regularise the
problem:

minimise ®(u) + R(u)
» classical Tikhonov (1963) regularisation: R(u) = 3|ul|?
» weighted Tikhonov / ridge regression: R(u) = 3||Cy V24— ug) ||§
> LASSO: R(u) = 2|5 (u — wo)||,

» Bayesian probabilistic interpretation: regularisations encode priors ug for u with
Lebesgue densities d“O(u) x exp(—R(u)) .

12



BAYESIAN INVERSE PROBLEMS

» The variational approach does not easily select among multiple minimisers. Why
prefer one with small Hessian to one with large Hessian?

» In the Bayesian formulation of the inverse problem (BIP) (Kaipio and Somersalo,
2005; Stuart, 2010):

» U is aU-valued random variable, initially distributed according to a prior probability
distribution pg on U,

» the forward map G and the structure of the observational noise determine a
probability distribution for y|u;

» and the solution is the posterior distribution ¥ of uly.

» ‘Lifting’ the inverse problem to a BIP resolves several well-posedness issues, but
also raises new challenges in the definition, analysis, and access of 1.

13



BAYESIAN MODELLING SETUP

Prior measure pg on U:
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Prior measure pg on U:

Joint measure pon U x 9
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BAYESIAN MODELLING SETUP

Prior measure pg on U:

Joint measure pon U x 9

Posterior measure 1/ = po(-|y) o plgsx gy ON U:




BAYES'S RULE

Theorem (Bayes's rule in discrete form)
If u and y assume only finitely many values with probabilities 0 < p(u) < 1 etc,, then

— py|u)p(u)
PO = ot lup(e)
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BAYES'S RULE

p(ylu)p(u)
> =1 P(ylu")p(u’)
Theorem (Bayes's rule with Lebesgue densities)

If u and y have positive joint Lebesgue density p(u,y) on finite- dimensional space
U x 9, then

p(uly) =

C pyu)e(w)
U = Ty oy dur
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BAYES'S RULE

p(y|u)p(u)
PUW) = S b yiuwp()
T pu)e(w)
N W TR OO,

Theorem (General Bayes's rule: Stuart (2010))
If G is continuous, p(y) has full support, and po(U) = 1, then the posterior ¥ is

well-defined, given in terms of its probability density (Radon-Nikodym derivative) with
respect to the prior pg by

d o exp(=®(u;y)) _ .
() = 2B 20) = | ew(=o(u:y)) duov),
where the ®(u; y) differs from —log p(y — G(u)) by an additive function

of y alone.
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PRIOR SPECIFICATION

» Subjective belief: classically, uo really is a belief about u before seeing y.

» Regularity: in PDE inverse problems, uo describes the smoothness of u, e.g. on
D c RY (0, (—A)~°) with s > d/2 charges C(D; R) with mass 1.

» Physical prediction: in data assimilation / numerical weather prediction (Reich and
Cotter, 2015; Law et al., 2015), the prior is a propagation of past analysed states.



QUESTIONS TO ASK

» Existence and uniqueness: does the posterior really exist as a probability measure
@ onU?

» Well-posedness: does the posterior ¥ depend in a ‘nice’ way upon the problem
setup, e.g. errors or approximations in the observed data y, the potential ®, the
prior ug?

» Consistency: in the limit as the observational errors go to zero (or number of
observations — co), does the posterior concentrate all its mass on u, at least
modulo non-injectivity of G?

» Computation: can p¥ be efficiently sampled (MCMC etc.), summarised or
approximated (posterior mean and variance, MAP points, etc.)?



WHY BE NONPARAMETRIC? WHY THE FUNCTION SPACES?

» In computational practice, BIPs have to be discretised: we seek an approximate
solution in a finite-dimensional u(" c .

» Unfortunately, it is not enough to study the just the finite-dimensional problem.

» Analogy with numerical analysis of PDE: discretised wave equation is controllable
and has no finite speed of light.

» A cautionary example was provided by Lassas and Siltanen (2004): you attempt
n-pixel reconstruction of a piecewise smooth image, from linear observations with
additive A(0,a?I) noise, and allow for edges in the reconstruction u(™ € ¢(M =~ R"
by using the discrete total variation prior

dio

an (“(n)) x exp(—anHu(”)HTv).



DISCRETISATION INVARIANCE |

Total Variation Priors: Lassas and Siltanen (2004)
du’ . () 1 e ol o Sy ()
d—/\(u ) o exp = |Gu —yHy_O‘”Z’ujH —u; |
J=1

» In one non-trivial scaling of the TV norm prior (a;, ~ 1), the MAP estimators converge
in bounded variation, but the TV priors ,and so do the CM estimators.

» In another non-trivial scaling (o, ~ +/n), the posterior converges to a Gaussian
random variable, so the CM estimator is not edge-preserving, and the MAP estimator
converges to zero.

» In all other scalings, the TV prior distributions diverge and the MAP estimators
either diverge or converge to a useless limit.



DISCRETISATION INVARIANCE |

1 0.0313

0 1/3 2/3 1 0 1/3 2/3 1

Figure 2. Left: simulated intensity distribution u(r). Right
dots are plotted at centre points of pixels.

mulated noisy measurement /. The

agy =01 gz = 10 agz = 1000

N, Jr \\_

0 1/3 t 2/3 1

Figure 3. Gaussian MAP estimates with three different choices of wg3. The function u(r} is plotted
with a thin line. Left: too small gz, Middle: satisfactory solution. Right: too large wqa.
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Figure 4. In all the plots in this figure, the coordinate axis limits are the same to allow easy
comparison. Left column: MAP estimates for the TV prior with parameter @, = 135 (thin line)
anda, = 16.875y/n + 1 (thick line). Right column: CM estimates for the TV prior with parameter
a, = 135 (thin line) and @, = 16.875/n + 1 (thick linc).

Lassas and Siltanen (2004)
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WHY BE NONPARAMETRIC? WHY THE FUNCTION SPACES?

» The infinite-dimensional point of view is also very useful for constructing

dimensionally-robust sampling schemes, e.g. the Crank-Nicolson proposal of Cotter
et al. (2013) and its variants.

» The definition and analysis of MAP estimators (points of maximum y/-probability) in
the absence of Lebesgue measure is also mathematically challenging, but yields
yields similar fruits for robust finite-dimensional computation (Dashti et al., 2013;
Helin and Burger, 2015; Dunlop and Stuart, 2016b).

21



WELL-POSEDNESS OF BIPS




ILL- AND WELL-POSEDNESS OF INVERSE PROBLEMS

» Recall that inverse problems are typically ill-posed: there is no u € U such that
G(u) =y, or there are multiple such u, or it/they depend very sensitively upon the
observed data y.

» Regularisation typically enforces existence; the extent to which it enforces
unigueness and robustness depends is problem- dependent.

» One advantage of the Bayesian approach is that the solution is a probability
measure: the posterior p¥ can be shown to be exist, be unique, and stable under
perturbation.

» Stability in what sense...?

22



PRIORS ON FUNCTION SPACES

The following well-posedness results work for, among others,

» Gaussian priors (Stuart, 2010)

» Gaussian prior, linear forward model, quadratic misfit = Gaussian posterior, via
simple linear algebra (Schur complements).

» Besov priors (Lassas et al., 2009; Dashti et al., 2012).

» Stable priors (Sullivan, 2016) and infinitely-divisible heavy-tailed priors (Hosseini,
2016).

» Hierarchical priors (Agapiou et al., 2014; Dunlop et al,, 2016): careful adaptation of
parameters in the above.

23



HELLINGER METRIC

The between probability measures pand v on U is

artury = [ [V 2] ar=r-e [ ]
dv
where ris any measure with respect to which both x and v are absolutely continuous,
eg.r=p+u.
Lemma (Hellinger controls second moments)
Eulf] — B[] < V2EL[72] +E. [117] du(a, v)
when f € L?(U, u) N L2(U,v) and, in particular,

[E.[f] = Ev[f]] < 20fllsod(p, v).

24



OTHER DISTANCES ON PROBABILITY MEASURES

» The Lévy-Prokhorov distance metrises (for separable ) the topology of weak
convergence:

dup(u, v) = inf{e > 0|VA € B(U), w(A) < v(A%) + & & v(A) < u(A) + €}

dip(pn, pp) = 0 <= [;; fdun — [, fdu for all bounded continuous f

» The Hellinger metric is topologically equivalent to the total variation metric:

1
drv(p,v) = ZA

» The relative entropy distance or Kullback-Leibler divergence:

’ - 1‘ dv= sup |u(A)—v(A)|.
AeB(U)

[ dr o9
D) = | g, log g dv

25



WELL-DEFINEDNESS OF THE POSTERIOR |

Theorem (Stuart (2010); Sullivan (2016); Dashti and Stuart (2017))

Suppose that & is locally bounded, Carathéodory (i.e. continuous in y and measurable
in u), bounded below by ®(u;y) > Mi(||ulle;) with exp(=M1(||-|ja)) € L'(U, po). Then

dw . exp(=(u:y))
duo™ ~ 2(y) 7

2(y) = ja exp(—(u; ) duo(u) € (0, 00)

does indeed define a Borel probability measure on U, which is Radon if ug is Radon,
and

26



WELL-DEFINEDNESS OF THE POSTERIOR I

» The spaces U and 9 should be separable (but see Hosseini (2016)), complete, and
normed (but see Sullivan (2016)).

» For simplicity, the above theorem and its sequels are actually slight misstatements:
more precise formulations would be local to data y with |y[|y <.

» The lower bound on ¢ is allowed to tend to —oo as ||uljgz — oo or |ly||ly — oo. Indeed
this is essential If dim 9 = oo or if one Is preparing for the limit dim 9 — oo.

» For Gaussian priors this means that quadratic blowup is allowed (Stuart, 2010); for
a-stable priors only logarithmic blowup is allowed (Sullivan, 2016).

27



WELL-POSEDNESS W.R.T. DATA

Theorem (Stuart (2010); Sullivan (2016); Dashti and Stuart (2017))
Suppose that ¢ satisfies the previous assumptions and

@ (uiy) = o(uiy)| < exp(Ma(llulla))ly = ||,

with exp(2My (|| ler) — Ma(ll- llr)) € L'(U, po). Then there exists C > 0 such that

du (', 1) < Clly =¥,

(Local) Lipschitz dependence of the potential ® upon the data transfers to the BIP.

28



WELL-POSEDNESS W.R.T. LIKELIHOOD POTENTIAL

Theorem (Stuart (2010); Sullivan (2016); Dashti and Stuart (2017))
Suppose that ® and &, satisfy the previous assumptions uniformly in n and

|®n(uiy) — (i )| < exp(Ms(|lulla))e(n)

with exp(2Ms (|| ler) — Mr(|l- llzr)) € L' (U, po). Then there exists C > 0 such that

du (1, 1) < Cy(n).

The convergence rate of the forward problem / potential, as expressed by v(n),
transfers to the BIP.

29



MORE CONSEQUENCES OF APPROXIMATION

» Even the numerical posterior x> will have to be approximated, e.g. by MCMC
sampling, an ensemble approximation, or a Gaussian fit.

» The bias and variance in this approximation should be kept at the same order as
the error " — 1.

» It is mathematical analysis that allows the correct tradeoffs among these sources of
error/uncertainty, and hence the appropriate allocation of resources.

30



BRITTLENESS OF BIPS




WELL-POSEDNESS W.R.T. PRIOR?

» As seen above, under reasonable assumptions, BIPs are well-posed in the sense
that the posterior i/ is Lipschitz in the Hellinger metric with respect to the data y
and uniform changes to the likelihood .

» What about simultaneous perturbations of the prior ug and likelihood model, i.e.
the full Bayesian model pon U x 97

» When the model is well-specified and dimU < oo, we have the Bernstein-von Mises
theorem: p¥ concentrates on ‘the truth’” as number of samples — oo or data noise
— 0.

» Freedman (1963, 1965) showed that this can fail when dim U = oc; even limiting
inferences can be model-dependent!

» The situation is especially bad if the model is misspecified, i.e. doesn't cover ‘the
truth’.

31



BRITTLENESS UNDER MISSPECIFICATION

du(2, /) < C- du(p, i)?

32



BRITTLENESS UNDER MISSPECIFICATION

(1, I (11, 1)?

Theorem (Owhadi et al. (2015a,b))

For any misspecified model y on ‘general’ spaces U and ¢, for any Q: U — R, any any
essinf,, Q < g <esssup,, Q, there is another model i as close as you like to y1 so that

Ej [Q] ~{q

for all sufficiently finely observed data y.

Closeness is measured in the Hellinger, total variation, Levy-Prokhorov, or
common-moments topologies. BIPs are ill-posed in these topologies, because
, by slightly
(de)emphasising particular parts of the data.
2



BRITTLENESS IN ACTION

Should we worry about this?

» Maybe.. The explicit examples in Owhadi et al. (2015a,b) have a very slow
convergence rate. Approximate priors arising from numerical inversion of
differential operators appear to have the ‘wrong’ kind of error bounds.

» Yes! Koskela et al. (2017), Kennedy et al. (2017), and Kurakin et al. (2017) observe
brittleness-like phenomena ‘in the wild'.

» No! Just stay away from high-precision data, e.g. by coarsening a la Miller and
Dunson (2015), or be more careful with the geometry of credible/confidence regions
(Castillo and Nickl, 2013, 2014), e.g. adaptive confidence regions (Szabo et al,, 2015a,b).

33



CLOSING REMARKS




CONCLUSIONS AND OPEN PROBLEMS

» Mathematical analysis reveals the well- and ill-posedness of Bayesian inference
procedures, which lie at the heart of many modern applications in physical and now
social sciences.

» This quantitative analysis allows tradeoff of errors and resources.

» Open topic: fundamental limits on the robustness and consistency of general
procedures.

» Interpreting (forward) numerical tasks as Bayesian inference tasks leads to Bayesian
probabilistic numerical methods for linear algebra, quadrature, optimisation, ODEs
and PDEs (Hennig et al., 2015; Cockayne et al., 2017).

34



BIBLIOGRAPHY |

S. Agapiou, J. M. Bardsley, O. Papaspiliopoulos, and A. M. Stuart. Analysis of the Gibbs sampler for hierarchical inverse
problems. SIAM/ASA J. Uncertain. Quantif, 2(1):511-544, 2014. doi10.1137/130944229.

T. Bayes. An Essay towards solving a Problem in the Doctrine of Chances. 1763.

I. Castillo and R. Nickl. Nonparametric Bernstein-von Mises theorems in Gaussian white noise. Ann. Statist., 41(4):
1999-2028, 2013. d0i:10.1214/13-A0S1133.

. Castillo and R. Nickl. On the Bernstein-von Mises phenomenon for nonparametric Bayes procedures. Ann. Statist., 42(5):
19411969, 2014. d0i:101214/14-A0S1246.

J. Cockayne, C. Oates, T. J. Sullivan, and M. Girolami. Bayesian probabilistic numerical methods, 2017. arXiv::1702.03673.

S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. MCMC methods for functions: modifying old algorithms to make them
faster. Statist. Sci., 28(3):424-446, 2013. doi:10.1214/13-STS421.

M. Dashti and A. M. Stuart. The Bayesian approach to inverse problems. In R. Ghanem, D. Higdon, and H. Owhadi, editors,
Handbook of Uncertainty Quantification. Springer, 2017. arXiv:1302.6989.

M. Dashti, S. Harris, and A. Stuart. Besov priors for Bayesian inverse problems. Inverse Probl. Imaging, 6(2):183-200, 2012.
d0i:10.3934/ipi.2012.6.183.

M. Dashti, K. J. H. Law, A. M. Stuart, and J. Voss. MAP estimators and their consistency in Bayesian nonparametric inverse
problems. Inverse Probl., 29(9):095017, 27, 2013. d0i:10.1088/0266-5611/29/9/095017.

35


http://dx.doi.org/10.1137/130944229
http://dx.doi.org/10.1214/13-AOS1133
http://dx.doi.org/10.1214/14-AOS1246
http://arxiv.org/abs/:
http://dx.doi.org/10.1214/13-STS421
http://arxiv.org/abs/1302.6989
http://dx.doi.org/10.3934/ipi.2012.6.183
http://dx.doi.org/10.1088/0266-5611/29/9/095017

BIBLIOGRAPHY I

M. M. Dunlop and A. M. Stuart. The Bayesian formulation of EIT: analysis and algorithms. Inverse Probl. Imaging, 10(4):
1007-1036, 2016a. doi:10.3934/ipi.2016030.

M. M. Dunlop and A. M. Stuart. MAP estimators for piecewise continuous inversion. Inverse Probl., 32:105003, 2016b.
doi:10.1088/0266-5611/32/10/105003.

M. M. Dunlop, M. A. Iglesias, and A. M. Stuart. Hierarchical Bayesian level set inversion. Stat. Comput., 2016.
doi:10.1007/511222-016-9704-8.

D. A. Freedman. On the asymptotic behavior of Bayes’ estimates in the discrete case. Ann. Math. Statist., 34:1386-1403,
1963. doi:10.1214/aoms/1177703871.

D. A. Freedman. On the asymptotic behavior of Bayes estimates in the discrete case. Il. Ann. Math. Statist., 36:454-456,
1965. doi:10.1214/aoms/1177700155.

T. Helin and M. Burger. Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems.
Inverse Probl., 31(8):085009, 22, 2015. doi:10:1088/0266-5611/31/8/0850009.

P. Hennig, M. A. Osborne, and M. Girolami. Probabilistic numerics and uncertainty in computations. Proc. A., 471(2179):
20150142, 17, 2015. doi:10.1098/rspa.2015.0‘l42.

B. Hosseini. Well-posed Bayesian inverse problems with infinitely-divisible and heavy-tailed prior measures, 2016.
arXiv:1609.07532.

36


http://dx.doi.org/10.3934/ipi.2016030
http://dx.doi.org/10.1088/0266-5611/32/10/105003
http://dx.doi.org/10.1007/s11222-016-9704-8
http://dx.doi.org/10.1214/aoms/1177703871
http://dx.doi.org/10.1214/aoms/1177700155
http://dx.doi.org/10.1088/0266-5611/31/8/085009
http://dx.doi.org/10.1098/rspa.2015.0142
http://arxiv.org/abs/1609.07532

BIBLIOGRAPHY Il

J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems, volume 160 of Applied Mathematical Sciences.
Springer-Verlag, New York, 2005. doi:10.1007/b138659.

L. A. Kennedy, D. J. Navarro, A. Perfors, and N. Briggs. Not every credible interval is credible: Evaluating robustness in the
presence of contamination in Bayesian data analysis. Behav. Res. Meth., pages 1-16, 2017. doi:10.3758/s13428-017-0854-1.

J. Koskela, P. A. Jenkins, and D. Spano. Bayesian non-parametric inference for A-coalescents: posterior consistency and a
parametric method. Bernoulli, 2017. To appear, arXiv:1512.00982.

A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical world, 2017. arXiv:1607.02533.

S. Lan, T. Bui-Thanh, M. Christie, and M. Girolami. Emulation of higher-order tensors in manifold Monte Carlo methods for
Bayesian inverse problems. J. Comput. Phys., 308:81-101, 2016. d0i:10.1016/}.jcp.2015.12.032.

P-S. Laplace. Théorie analytique des probabilités. 1812.
P-S. Laplace. Essai philosophique sur les probabilités. 1814.

M. Lassas and S. Siltanen. Can one use total variation prior for edge-preserving Bayesian inversion? Inverse Probl., 20(5):
15371563, 2004. doi:10.1088/0266-5611/20/5/013.

M. Lassas, E. Saksman, and S. Siltanen. Discretization-invariant Bayesian inversion and Besov space priors. Inverse Probl.
Imaging, 3(1):87-122, 2009. d0i:10.3934/ipi.2009.3.87.

K. Law, A. Stuart, and K. Zygalakis. Data Assimilation: A Mathematical Introduction, volume 62 of Texts in Applied
Mathematics. Springer, 2015. doi:10.1007/978-3-319-20325-6.

37


http://dx.doi.org/10.1007/b138659
http://dx.doi.org/10.3758/s13428-017-0854-1
http://arxiv.org/abs/1512.00982
http://arxiv.org/abs/1607.02533
http://dx.doi.org/10.1016/j.jcp.2015.12.032
http://dx.doi.org/10.1088/0266-5611/20/5/013
http://dx.doi.org/10.3934/ipi.2009.3.87
http://dx.doi.org/10.1007/978-3-319-20325-6

BIBLIOGRAPHY IV

J. W. Miller and D. B. Dunson. Robust Bayesian inference via coarsening, 2015. arXiv:1506.06101.

H

. Owhadi, C. Scovel, and T. J. Sullivan. On the brittleness of Bayesian inference. SIAM Rev., 57(4):566-582, 2015a.

doi:10.1137/130938633.

. Owhadi, C. Scovel, and T. J. Sullivan. Brittleness of Bayesian inference under finite information in a continuous world.

Electron. J. Stat., 9(1):1-79, 2015b. do0i:101214/15-EJS989.

. Reich and C. Cotter. Probabilistic Forecasting and Bayesian Data Assimilation. Cambridge University Press, New York,

2015. doi:101017/CB09781107706804.

.M. Stuart. Inverse problems: a Bayesian perspective. Acta Numer., 19:451-559, 2010. d0i:10.1017/50962492910000061.

T.J. Sullivan. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors, 2016.

A

arXiv:1605.05898.

. Szab0, A. W. van der Vaart, and J. H. van Zanten. Honest Bayesian confidence sets for the L2-norm. J. Statist. Plan.

Inference, 166:36-51, 2015a. doi:10.1016/].jspi.2014.06.005.

.Szabo, A. W. van der Vaart, and J. H. van Zanten. Frequentist coverage of adaptive nonparametric Bayesian credible sets.

Ann. Statist., 43(4):1391-1428, 2015b. d0i:10.1214/14-A0S1270.

N. Tikhonov. On the solution of incorrectly put problems and the regularisation method. In Outlines Joint Sympos.
Partial Differential Equations (Novosibirsk, 1963), pages 261-265. Acad. Sci. USSR Siberian Branch, Moscow, 1963.

38


http://arxiv.org/abs/1506.06101
http://dx.doi.org/10.1137/130938633
http://dx.doi.org/10.1214/15-EJS989
http://dx.doi.org/10.1017/CBO9781107706804
http://dx.doi.org/10.1017/S0962492910000061
http://arxiv.org/abs/1605.05898
http://dx.doi.org/10.1016/j.jspi.2014.06.005
http://dx.doi.org/10.1214/14-AOS1270

	Introduction
	Bayesian Inverse Problems
	Well-Posedness of BIPs
	Brittleness of BIPs
	Closing Remarks

