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Introduction



Motivation

▶ The recent work of Conrad et al. (2016) proposed the use of probabilistic solvers for
a trajectory [0, T] ∋ t 7→ u(t) ∈ Rn satisfying an ODE/IVP of the form

d
dtu(t) = f(u(t)), for t ≥ 0, (1)

u(0) = u0,

▶ Stochasticity is a way to systematically introduce and probe the model error that
has been introduced by the discretisation, enabling exploration of possible
responses of the system to inputs.

▶ Such ideas have wide application in forward uncertainty quantification, inverse
problems (Kaipio and Somersalo, 2005; Stuart, 2010), and data assimilation (Law
et al., 2015; Reich and Cotter, 2015).

▶ Just as with classical numerical analysis of deterministic integration schemes, we
can analyse the accuracy and convergence properties of probabilistic solvers for (1).
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Previous Convergence Analysis

▶ Conrad et al. (2016, Theorem 2.2) gave a convergence result for the error between the
random values Uk of a discrete-time numerical solution at discrete times tk := kτ ,
τ > 0, and the corresponding values uk := u(kτ) of the exact solution:

max
0≤kτ≤T

E
[
∥uk − Uk∥2

]
≤ Cτ 2p∧2q,

along with an analogous result in continuous time with the same exponent but
possibly different constant.

▶ Loosely speaking, τq is the global order of accuracy of a deterministic method
underlying Uk and the variance of a Gaussian model ξk for the truncation error over
a time horizon [tk, tk+1] of length τ scales like τ 1+2p.

Slogan
“The choice p = q introduces the maximum amount of solution uncertainty consistent
with preserving the order of accuracy of the underlying deterministic integrator.”
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What’s New? The Take-Home Message

▶ We extend the setting of the IVP (1) from Rn to a Hilbert space H .
▶ We relax the assumption that all deviations are Gaussian, and work directly with
conditions on polynomial moments.

▶ We bring the time supremum inside the expectation to yield

E

[
max
0≤kτ≤T

∥uk − Uk∥2
]
≤ Cτ 2p∧2q,

so that the mode of convergence is strengthened to mean square convergence in
the uniform norm on path space, but with the same rate — very useful for later
application to inverse problems (Stuart, 2010).

▶ The assumption that the vector field f is globally Lipschitz is weakened in two ways:
for integrators of arbitrary order, we consider Lipschitz flows; for Euler integrators,
which have q = 1, we consider dissipative vector fields with polynomially-growing
locally Lipschitz constant.
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Setup



Some Notation

▶ H is a Hilbert space with inner product ⟨· , ·⟩ and induced norm ∥·∥.
▶ (Ω,F ,P) is a rich enough probability space; E denotes expectation (integration over

Ω) with respect to P.
▶ C, C′, etc. will denote non-negative constants whose value may change from one
occurence to the next, but will always be independent of any time step τ > 0 used
to numerically solve the ODE of interest.

▶ For real numbers a and b, a ∧ b denotes their minimum.
▶ Lip(Φ) denotes the minimal Lipschitz constant of a function Φ, defined on a subset
of H and taking values in H , i.e. Lip(Φ) is the least L ≥ 0 such that

∥Φ(x)− Φ(y)∥ ≤ L∥x− y∥ for all x, y ∈ domain(Φ).
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More Notation

▶ Φt : H → H will denote the flow map induced by the ODE (1), i.e. Φt(u0) := u(t).
▶ We approximately solve the ODE (1) over [0, T] with uniform time step τ > 0, and
write tk := kτ and K := T/τ ∈ N.

▶ Let uk := u(tk) ≡ Φτ (uk−1) denote the value of the exact solution to (1) at time tk.
▶ Discrete-time deterministic approximate solutions are given by a one-step
integrator, i.e. a numerical flow map Ψτ : H → H ,

Uk+1 := Ψτ (Uk).

▶ Discrete-time stochastic approximate solutions are given by

Uk+1 := Ψτ (Uk) + ξk(τ)

and approximations with continuous-time output by

U(t) := Ψt−tk(Uk) + ξk(t− tk) for t ∈ [tk, tk+1)

for suitable stochastic processes ξk : [0, τ ]× Ω → H .
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High-order integration of
Lipschitz flows



Analysis of high-order integrators of Lipschitz flows

▶ In this section we consider a generic one-step integrator Ψτ , possibly of high order.
▶ The focus here is on:

▶ relaxing regularity assumptions about f to regularity assumptions about Φt;
▶ bringing the time supremum inside the expectation.

▶ The main tools are the Grönwall and Burkholder–Davis–Gundy inequalities.
▶ The analysis is structurally similar to convergence analysis for Wiener–Itô SDEs
(Higham et al., 2002; Mao and Szpruch, 2013), but the noise is smaller.

▶ The surprise is that we don’t lose anything in the convergence rate, only in the
constant.
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Assumptions i

Assumption 1 (Smoothness of the flow)

Suppose that f is smooth enough that, for |t| small enough, its flow map Φt is globally
Lipschitz with Lipschitz constant Lip(Φt) ≤ 1+ C|t|.

▶ Assumption 1 holds in the ‘classical’ Conrad et al. (2016) setting of a globally
Lipschitz vector field.

▶ Assumption 1 also holds if f merely satisfies, for some constant µ ∈ R, the
one-sided Lipschitz condition

⟨f(x)− f(y), x− y⟩ ≤ µ∥x− y∥2 for all x, y ∈ H , (2)

in which case Lip(Φt) ≤ 1+ 2|µ||t| for small enough |t|.
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Assumptions ii

Assumption 2 (Accuracy of the numerical flow)

The numerical flow-map Ψτ has uniform local truncation error of order q+ 1: for some
constant C ≥ 0,

sup
u∈H

∥Ψτ (u)− Φτ (u)∥ ≤ Cτq+1.

▶ Prime example, qth Runge–Kutta.
▶ Implied global convergence rate in the absence of noise:

max
0≤k≤K

∥uk − Uk∥ ≤ Cτq.
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Assumptions iii

Assumption 3 (Regularity of noise)

The ξk are mutually independent and identically distributed mean-zero stochastic
processes, and there are constants C ≥ 0 and p ≥ 1 such that, for all k and all t ∈ [0, τ ],

E
[
∥ξk(t)⊗ ξk(t)∥

]
≤ Ct2p+1,

and, in particular, E
[
∥ξk(t)∥2

]
≤ Ct2p+1.

▶ Prime example: ξ modelled on the time integral of Brownian motion,
ξ0(t) := τp−1

∫ t
0 B(s)ds, where B denotes a standard H -valued Brownian motion.
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Convergence with time supremum outside expectation

The first improvement relative to Conrad et al. (2016) is to obtain the same mode and
rate of convergence with Lipschitz flow instead of Lipschitz vector field:

Theorem 4 (Uniform mean-square convergence)

Under Assumptions 1, 2, and 3, there exist constants C ≥ 0 such that

max
0≤k≤K

E
[
∥uk − Uk∥2

]
≤ Cτ 2p∧2q,

sup
0≤t≤T

E
[
∥u(t)− U(t)∥2

]
≤ Cτ 2p∧2q.

▶ Cf. implied global convergence rate in the absence of noise:

max
0≤k≤K

∥uk − Uk∥ ≤ Cτq.
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Sketch proof

Recurrence for the error ek := uk − Uk:

ek+1 =
(
Φτ (uk)− Φτ (Uk)

)
−
(
Ψτ (Uk)− Φτ (Uk)

)
− ξk(τ).

Hence:

∥ek+1∥2 − ∥ek∥2 ≤ Cτ∥ek∥2 + Cτ 1+2q + ∥ξk(τ)∥2 + 2⟨Φτ (uk)−Ψτ (Uk), ξk(τ)⟩.

Take expectations and apply Assumptions 1–3:

∣∣E[∥ek+1∥2 − ∥ek∥2
]∣∣ ≤ Cτ 1+(2p∧2q) +

k−1∑
j=0

∣∣E[∥ej+1∥2 − ∥ej∥2
]∣∣ .

Then apply Grönwall:∣∣E[∥ek+1∥2 − ∥ek∥2
]∣∣ ≤ Cτ 1+(2p∧2q) exp(kCτ) ≤ Cτ 1+(2p∧2q),
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Convergence with time supremum inside expectation

Theorem 5 (Mean-square uniform convergence)

Under Assumptions 1, 2, and 3, there exists C ≥ 0 such that

E

[
max
0≤k≤K

∥uk − Uk∥2
]
≤ Cτ 2p∧2q.

If, in addition, Assumption 3 is strengthened to

E

[
sup
0≤t≤τ

∥ξ0(t)∥2
]
≤ Cτ 1+2p,

then

E

[
sup
0≤t≤T

∥u(t)− U(t)∥2
]
≤ Cτ 2p∧2q.
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Sketch proof

Applying E
[
maxk≤ℓ ·

]
, where ℓ ≤ K = T/τ , to ∥ek∥2 − ∥e0∥2 =

∑k−1
j=0

(
∥ej+1∥2 − ∥ej∥2

)
gives

E
[
maxk≤ℓ ∥ek∥2

]
≤E

[
maxk≤ℓ

∑k−1
j=0

(
τC∥ej∥2+Cτ 1+2q+∥ξj(τ)∥2

)]
+2E

[
maxk≤ℓ

∥∥∥∑k−1
j=0 ⟨Φ

τ (uj)−Ψτ (Uj),ξj(τ)⟩
∥∥∥].

Burkholder–Davis–Gundy inequality (Peškir, 1996; Ren, 2008) gives

E

[
max
k≤ℓ

∥ek∥2
]
≤ E

[
ℓ−1∑
j=0

(
τC∥ej∥2 + Cτ 1+2q + ∥ξj(τ)∥2

)]
+ CE

[
[⟨Φτ (u•)−Ψτ (U•), ξ•(τ)⟩]1/2ℓ−1

]

≤ τC
ℓ−1∑
j−0

E
[
∥ej∥2

]
+ CTτ 2p∧2q + 1

2E
[
max
k≤ℓ

∥ek∥2
]

≤ τC
ℓ−1∑
j−0

E

[
max
k≤j

∥ek∥2
]
+ CTτ 2p∧2q + 1

2E
[
max
k≤ℓ

∥ek∥2
]
.

Followed by Grönwall to complete the argument.

15



Applicability

The strengthened Assumption 3 holds for at least one reasonable model of truncation
error, namely one that corresponds to the assumption that the true solution u has one
continuous derivative and a second derivative can be modelled as Brownian white noise.
Proposition 6

The strengthened Assumption 3 holds for ξ modelled on the time integral of Brownian
motion, ξ0(t) := τp−1

∫ t
0 B(s)ds, where B denotes a standard H -valued Brownian

motion.
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Euler integration of locally
Lipschitz dissipative vector fields



Analysis of Euler integrators of locally Lipschitz dissipative vector fields

▶ We now consider a randomised version of the implicit Euler scheme defined by

Ψτ (x) = x+ τ f(Ψτ (x)).

and merely locally Lipschitz vector fields.
▶ The proofs heavily use the structure of this particular integrator and a dissipativity
condition on the vector field

▶ Similar but more involved arguments will work for explicit Euler.
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Generalised dissipativity

Assumption 7 (Generalised dissipativity)

Assume that f satisfies, for constants α ≥ 0 and β ∈ R, the generalised dissipativity
condition that

⟨f(v), v⟩ ≤ α+ β∥v∥2 for all v ∈ H . (3)

▶ We allow positive values of β, so Assumption 7 is more general than the usual
dissipativity property found in the literature (Humphries and Stuart, 1994, Eq. (1.2)).

▶ Recent studies in numerical methods for stochastic differential equations consider
constraints on the drift and diffusion of the SDEs that feature the same right-hand
side above (Fang and Giles, 2016; Mao and Szpruch, 2013).
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Polynomial growth

▶ We assume that the vector field satisfies a polynomial growth condition; this
condition may be seen as a kind of local Lipschitz property (Higham et al., 2002,
Assumption 4.1).

Assumption 8 (Polynomial growth condition)

Constants D ≥ 1 and q ∈ N0 are such that

∥f(a)− f(b)∥2 ≤ D(1+ ∥a∥q + ∥b∥q)∥a− b∥2 for all a,b ∈ H . (4)

▶ q is now measuring nonlinearity, not the order of accuracy of the integrator, which is
just 1 for Euler. The case q = 0 is global Lipschitz continuity of f,
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‘Small noise’

Assumption 9 ((p,R)-regularity condition on noise)

We call the process ξ (p,R)-regular if ξ0(t) :=
∫ t
0 χ0(s)ds, where χ0 : [0, τ ]× Ω → H ,

and there exists p ≥ 1, R ∈ N and C(R) ≥ 1 such that

E
[
∥ξ0(τ)∥r

]
≤ C(R)τ r(2p+1)/2 for all r ∈ {1, . . . ,R}.

Remark 10
Setting r = 1 in the inequality above implies that, in the limit of small τ , the mean of
ξ0(τ) converges to zero. However, this does not imply that the mean of ξ0(τ) itself must
be zero.
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Discrete-time convergence result

Theorem 11 (Mean-square uniform convergence in discrete time)

Suppose that Assumptions 7 and 8 hold. Suppose that ξ is (p,R)-regular with
parameters R ≥ 2q+ 2 and p ≥ 1. If

(i) q = 0, or
(ii) q ≥ 1 and p ≥ max

{
2
q +

1
2 ,

3
2

}
,

then, for τ small enough,
E

[
max
k≤T/τ

∥uk − Uk∥2
]
≤ Cτ 2.

In particular, if the noise is (p,R)-regular with R ≥ 2q+ 2 and some p ≥ 5/2, then the
conclusion holds.
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Continuous-time convergence result i

Before we state the continuous-time convergence result, we state the following
modification of Assumption 9:

Assumption 12 (Strong (p,R)-regularity condition on noise)

We call the process ξ strongly (p,R)-regular if ξ0(t) :=
∫ t
0 χ0(s)ds, where

χ0 : [0, τ ]× Ω → H , and there exists a p ≥ 1 and R ∈ N such that

E

[
sup
t∈[0,τ ]

∥ξk(t)∥r
]
≤ C(R)τ r(2p+1)/2 for all r ∈ {1, . . . ,R}.
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Continuous-Time Convergence Result ii

Theorem 13 (Mean-square uniform convergence in continuous time)

Suppose that Assumptions 7 and 8 hold. Suppose that ξ is strongly (p,R)-regular with
parameters R ∈ N and p ≥ 1. If

(i) q = 0 and R ≥ 2, or
(ii) q ≥ 1, R ≥ 2q+ 2, and p ≥ max

{
2
q +

1
2 ,

3
2

}
,

then, for τ small enough,

E

[
sup
0≤t≤T

∥u(t)− U(t)∥2
]
≤ Cτ 2.

In particular, if ξ is strongly (p,R)-regular with R ≥ 2q+ 2 and some p ≥ 5/2, then the
conclusion holds.
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Sketch proof

▶ Establish uniform bounds on the numerical solution up to time T:

max
i∈[T/τ ]

∥Ui∥2n ≤ 2n−1Cn
1+ τ−n

 T/τ∑
i=1

∥ξi(τ)∥2
n

▶ Use (p,R)-regularity to control the moments of these sums of norms. Hence show
that the maximum of the numerical solution has finite MGF.

▶ Bound the (differences of) displacements V(x, y) :=
(
Φτ (x)− x

)
−

(
Ψτ (y)− y

)
as

|⟨x− y, V(x, y)⟩| ≤ 2τD (1+ ∥x∥q + ∥y∥q) ∥x− y∥2 + C4(x, y)τ 3,
∥V(x, y)∥2 ≤ 2τ 2D (1+ ∥x∥q + ∥y∥q) ∥x− y∥2 + 2C4(x, y)τ4.

and, for Vk−1 := V(uk−1,Uk−1),

E
[
|⟨ek−1, Vk−1⟩|

]
≤ C′(k− 1,q)

(
τE

[
∥ek−1∥2

]
+ τ 3

)
E
[
∥Vk−1∥2

]
≤ C′(k− 1,q)

(
τ 2E

[
∥ek−1∥2

]
+ τ4

)
.

▶ Use these to build even more moment bounds, and finish with a Grönwall argument.
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Applicability: integrated Brownian motion prior revisited

Lemma 14 (Integrated Brownian motion satisfies regularity condition)

Let τ > 0 be fixed, 0 ≤ t ≤ τ , p ≥ 1 be arbitrary, and (Bt)t be H -valued Brownian
motion. Then ξ0(t) := τp−1

∫ t
0 Bs ds satisfies

E

[
sup
t≤τ

∥ξ0(t)∥r
]
≤ 4τ rp+r/2 for all r ∈ N.
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Closing Remarks



Conclusions

▶ Randomised integrators for ODEs really do enjoy the same convergence rate as the
underlying time-stepper, provided that the noise is not ‘too large’, in a very strong
sense, under weakened regularity assumptions.

▶ When we use these integrators as forward solvers for Bayesian inverse problems, we
expect the forward convergence rate to transfer to the BIP (Stuart, 2010).

▶ Indeed, one could analyse the impact of solver accuracy on the BIP in term of Bayes
factors; Capistrán et al. (2016) observe the same convergence rate.

▶ Although the presentation here looks like an argument about randomly perturbed
dynamical systems, the results can be read as saying something about any path
measure with well-understood mean.
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Open Problems

▶ Mathematical aesthetics: can the proofs for locally Lipschitz flows be shortened?
▶ From constant time step to adaptive time steps?
▶ Active calibration of the noise structure at runtime?

▶ Oksana Chkrebtii Wed 09:00
▶ Hans Kersting Fri 11:30

Thank You
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