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Introduction



Working Group II: Probabilistic Numerics

WG II Mission Statement
The accuracy and robustness of numerical
predictions that are based on mathematical models
depend critically upon the construction of accurate
discrete approximations to key quantities of
interest. The exact error due to approximation will
be unknown to the analyst, but worst-case upper
bounds can often be obtained. This working group
aims, instead, to develop Probabilistic Numerical
Methods, which provide the analyst with a richer,
probabilistic quantification of the numerical error in
their output, thus providing better tools for reliable
statistical inference.

PN ensemble solution of the
Lorenz-63 system; convergence
rate of the (non-Gaussian!)
solution distribution to the exact
solution is given by Lie, Stuart,
and Sullivan (2017a).



Why Probabilistic Numerics?

The last 5 years have seen a renewed interest, at various levels of rigour, in
probabilistic perspectives on numerical tasks — e.g. quadrature, ODE and PDE
solution, optimisation.
A long heritage: Poincaré (1896); Larkin (1970); Diaconis (1988); Skilling (1992).
There are many ways to motivate this modelling choice:

To a statistician’s eye, numerical tasks look like inverse problems.
Worst-case errors are often too pessimistic — perhaps we should adopt an average-case
viewpoint (Traub et al., 1988; Ritter, 2000; Trefethen, 2008)?
“Big data” problems often require (random) subsampling.
If discretisation error is not properly accounted for, then biased and over-confident
inferences result (Conrad et al., 2016).
Accounting for the impact of discretisation error in a statistical way allows forward and
Bayesian inverse problems to speak a common statistical language.

We think that some concrete definitions and theory-building are needed!
We also think that concrete applications are needed!



Who has Taken Part?



Members∗ of the Working Group

Name Affiliation WG Role
1. Alessandro Barp Imperial College London, UK
2. David Bortz University of Colorado, US
3. François-Xavier Briol University of Warwick, UK and Imperial College London, UK RG Chair
4. Ben Calderhead Imperial College London, UK
5. Oksana Chkrebtii Ohio State University, US
6. Jon Cockayne University of Warwick, UK
7. Vanja Dukic University of Colorado, US
8. Ruituo Fan University of North Carolina, US
9. Mark Girolami Imperial College London, UK and the Alan Turing Institute, UK

10. Jan Hannig University of North Carolina, US
11. Philipp Hennig Max Planck Institute, Tübingen, DE
12. Fred Hickernell Illinois Institute of Technology, US
13. Toni Karvonen Aalto University, FI
14. Han Cheng Lie Freie Universität Berlin, DE RG Chair
15. Chris Oates Newcastle University, UK and the Alan Turing Institute, UK WG Leader
16. Houman Owhadi California Institute of Technology, US
17. Jagadeeswaran Rathinavel Illinois Institute of Technology US
18. Florian Schäfer California Institute of Technology, US
19. Andrew Stuart California Institute of Technology, US
20. Tim Sullivan Freie Universität Berlin, DE and Zuse Institute Berlin, DE WG Leader
21. Onur Teymur Imperial College London, UK
22. Junyang Wang Newcastle University, UK



What Have We Been Up To?



Publications acknowledging SAMSI support

Published
1. Briol, Cockayne, Teymur, Yoo, Schober, and Hennig (2016) SAMSI Optimization 2016–2017
2. Dukic and Bortz (2018)
3. Oates, Niederer, Lee, Briol, and Girolami (2017b)

Submitted and under review

4. Cockayne, Oates, Sullivan, and Girolami (2017) Best Paper Award at JSM 2018
5. Lie, Stuart, and Sullivan (2017a)
6. Lie and Sullivan (2017)
7. Lie, Sullivan, and Teckentrup (2017b)
8. Oates, Cockayne, and Ackroyd (2017a)
9. Schäfer, Sullivan, and Owhadi (2017)

10. Karvonen, Oates, and Särkkä (2018)
11. Cockayne, Oates, and Girolami (2018)
12. Xi, Briol, and Girolami (2018)

In preparation
13. Chkrebtii (In preparation)
14. Hennig, Kersting, and Sullivan (In preparation)
15. Rathinavel and Hickernell (In preparation)



PN Reading Group

Teleconference over Skype, later Webex.
1 hour session every 1 or 2 weeks.
22 presentations by WG members and guests on

PN history, e.g. the work of Mike Larkin in the 1970s;
Ongoing research on the WG’s topics of interest: quadrature, random Bayesian inverse
problems, probabilistic linear algebra, information dynamics, …

Speaker schedule, technicalities etc. kindly coordinated by François-Xavier Briol
(Warwick & Imperial College London) and Han Cheng Lie (Freie Universität Berlin).



SAMSI–Lloyd’s–Turing Workshop on PN, 11.–13.04.2018

Venue: the Alan Turing Institute, the UK’s national
institute for data science, housed in the British Library,
Euston Road, London
34 participants from US, UK, FR, FI, DE, CH
17 talks, 4 research sessions, and 1 panel discussion

prob-num.github.io

Generously supported by:

https://prob-num.github.io


PN Minisymposium @ SIAM UQ18, 16.–19.04.2018

“Probabilistic Numerical Methods
for Quantification of Discretisation Error”

3 × 2-hour minisymposium at SIAM UQ18
Organisers: Mark Girolami (Imperial & Turing), Philipp
Hennig (MPI Tübingen), Chris Oates (Newcastle &
Turing), and Tim Sullivan (FU Berlin / ZIB)

MS4 Monday 09:30–11:30 MS17 Monday 14:00–16:00 MS32 Tuesday 09:10–11:10
Sullivan Kanagawa Hickernell
Campbell

∫
u(x)dx Oates −∇ · (κ∇u) = f Briol

∫
u(x)dx

Cockayne Ax = b Teymur d
dtu = f(t, u) Gessner

∫
u(x)dx

Kersting d
dtu = f(t, u) Schäfer Ax = b Karvonen

∫
u(x)dx



Research Tour I



Bayesian Probabilistic Numerical Methods

Cockayne, Oates, Sullivan, and Girolami (2017) arXiv:1702.03673
[*Best Student Paper Award, ASA Section on Bayesian Statistical Science at JSM!]

Goal is to formulate a Bayesian approach to
traditional “numerical tasks”, such as the
solution of a differential equation

du
dt

= f(t, u)

that enables uncertainty quantification due
to space and time discretisation, necessitated
by a finite computational budget.

http://arxiv.org/abs/1702.03673


Bayesian Probabilistic Numerical Methods

Prior: u ∼ P

Posterior:
Pn : lim

ϵ↓0

dPϵ

dP0

where
dPϵ

dP0
= exp

(
−1

ϵ

n

∑
i=1

∣∣∣∣du
dt

(ti, xi)− f(ti, xi)

∣∣∣∣2
)

Relationship to average case analysis and optimal algorithms?
Design criterion:

arg min
A∈A

∫
d︸︷︷︸

e.g. Wasserstein

(
δ(u†), Pn

)
dP(u†)

is in general distinct to average case analysis!
Closure under composition (see next project…)
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Bayesian PNMs for Industrial Process Monitoring

Oates, Cockayne, and Ackroyd (2017a) arXiv:1707.06107

Goal is to perform Bayesian uncertainty
quantification for the time-dependent
conductivity field a(x; t) s.t.

∇ · (a∇u) = 0 in D∫
Ei

a∇u · n dσ = Ii

u + ζia∇u · n = Ui on Ei

a∇u · n = 0 on ∂D \
m∪

i=1
Ei

based on noisy observations of Ui(t) whilst
propagating uncertainty due to
discretisation of the PDE.

http://arxiv.org/abs/1707.06107


Bayesian PNMs for Industrial Process Monitoring

The hydrocyclone operates at a high velocity, so this demands coarse discretisation of
the PDE.

Exploits closure of Bayesian PNM under composition!
Better reflection of uncertainty on the unknown field.
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UQ using PN: Application to Models in Mathematical Epidemiology

Dukic and Bortz (2018) Inv. Probl. Sci. Engrng. 28(2):223–232

Goal is to perform Bayesian uncertainty
quantification for the solution to an
epidemiological model

S(t) = −βS(t)I(t)
I(t) = βS(t)I(t)− γI(t)

R(t) = γI(t)

that captures uncertainty due to finite
computational budget.



A Bayesian Conjugate Gradient Method

Cockayne, Oates, and Girolami (2018) arXiv:1801.05242

Goal is to perform Bayesian uncertainty
quantification for the solution x ∈ RN to a
linear system

Ax = b

where only n ≪ N vector-matrix
multiplications can be performed.

http://arxiv.org/abs/1801.05242


A Bayesian Conjugate Gradient Method

See Jon Cockayne’s talk!



Automatic Bayesian Cubature

Rathinavel and Hickernell (In preparation)

Goal is to perform Bayesian uncertainty
quantification for an integral∫

f(x)dµ(x)

where
f(x) is expensive to evaluate
uncertainty estimates should be
“well-calibrated”
computational overhead should be
O(n log n)



Automatic Bayesian Cubature

Ask Fred!

Fix a tolerance 0 < τ ≪ 1.
Prior: f ∼ GP(m, k) where m ≡ mθ and k ≡ kθ , θ ∈ Θ.
For each n = 1, 2, . . .

Select
θ̂ = arg max

θ∈Θ
prob(f(x1), . . . , f(xn)|θ)

(i.e. empirical Bayes)
If 99% of the mass of

prob
(∫

f(x)dµ(x)
∣∣∣∣ f(x1), . . . , f(xn), θ̂

)
lies in an interval A of width τ, then break.

Return the credible set A.
Efficient computation of evidence at O(n log n) cost.
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Bayesian Quadrature for Multiple Related Integrals

Xi, Briol, and Girolami (2018) arXiv:1801.04153

Goal is to perform Bayesian uncertainty
quantification for the related integrals∫

f1(x)dx
...∫

fm(x)dx

where each fi(x) is expensive to evaluate.

http://arxiv.org/abs/1801.04153


Bayesian Quadrature for Multiple Related Integrals

Main tool: vector-valued GP/RKHS

Kernels:
k((x, i), (y, j)) = k1(i, j)k2(x, y)

Interesting applied work around elicitation of k1:
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A Bayes–Sard Cubature Method

Karvonen et al. (2018) arXiv:1804.03016

Given a cubature rule

µ̂(f) =
n

∑
i=1

wif(xi)

≈
∫

f(x)dµ(x)

can we cast µ̂ as a Bayes rule in a
decision-theoretic framework?

http://arxiv.org/abs/1804.03016


A Bayes–Sard Cubature Method

Pick ϕi(x) such that ϕi(xj) = δi,j and
∫

ϕi(x)dµ(x) = 1
n .

Form a regression model:

f(x) =
n

∑
i=1

βiϕi(x) + g(x)

βi ∼ Uniform
g ∼ GP(0, k)

Then ∫
f(x)dµ(x)

∣∣∣∣f(x1), . . . , f(xn) ∼ N
(

µ̂(f), σ2
)

where σ is the worst case error of the cubature rule µ̂ in the RKHS H(k).
Enables Bayesian uncertainty quantification for QMC?
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Probabilistic Models for Integration Error in Assessment of Functional
Cardiac Models

Oates, Niederer, Lee, Briol, and Girolami (2017b)
Advances in Neural Information Processing Systems (NIPS 2017)

Goal is to perform Bayesian uncertainty
quantification for the integral∫

f(x)p(x)dx

where
f(x) is expensive to evaluate
p(x) can only be sampled
p(x) is expensive to sample



Probabilistic Models for Integration Error in Assessment of Functional
Cardiac Models

Assessment of functional cardiac models is difficult.

Prior: f ∼ GP(m, k), p ∼ DirichletProcessMixtureModel(α, P0, ϕ(·, ·)) (ϕ a RBF)
Data: {xi}n

i=1 ∼ p(x) and f(xi) ∈ R

Posterior can be sampled:
p̃ ∼ Posterior(p|{x1, . . . , xn})
p̃(·) = ∑∞

i=1 w̃iϕ(·, x̃i)∫
k(·, x)dp̃(x) = ∑∞

i=1 w̃i
∫

k(·, x)ϕ(x, x̃i)dx
For conjugate (k, ϕ) have a closed-form kernel mean embedding!
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Research Tour II



Adaptive grid designs for state-space probabilistic ODE solvers

Chkrebtii (In preparation)

For state-space probabilistic ODE solvers, the selection of the discretization grid is a
problem of statistical design.

A maximum entropy design yields a closed-form objective function that can be used
to control the step size — step length decreases when the predicted and the actual
model evaluations differ, i.e. when the state changes quickly.

Marginal sample paths (gray) over the unknown
state, the exact solution shown in red. Gray lines in
the background illustrate the adaptive time step.

Mean over 100 simulation runs of the logarithm of
IMSE for the adaptive (aUQDES) and equally spaced
grid probabilistic numerical solver (UQDES).
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Strong and weak modes of measures

Lie and Sullivan (2017) arXiv:1708.02516

A mode of a probability measure µ on a Banach space U is a point u⋆ ∈ U of
maximum probability — in the case of a Bayesian posterior, a MAP estimator.
Without a reference uniform measure, modes must be defined intrinsically.

A strong mode (Dashti et al., 2013):

u⋆ is a strong mode of µ ⇐⇒ lim
r→0

supu∈U µ(B(u, r))
µ(B(u⋆, r))

≤ 1.

A weak mode (Helin and Burger, 2015) with respect to a subspace E ⊂ U :

u⋆ is an E-weak mode of µ ⇐⇒ lim
r→0

supv∈E µ(B(u⋆ + v, r))
µ(B(u⋆, r))

≤ 1.

All strong modes are weak modes, but are all weak modes strong modes?
Lie and Sullivan (2017) replace the norm ball B by any open, bounded
neighbourhood K of 0 in a topological vector space U .

http://arxiv.org/abs/1708.02516
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http://arxiv.org/abs/1708.02516
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Strong and weak modes of measures

The set K is said to have locally inwardly translatable boundary ∂K if, for all z ∈ ∂K, there
exists v ∈ U \ {0} and an open neighbourhood W of z such that, for all 0 < λ < 1,

λv + W ∩ ∂K ⊂ K. (LITB)

The coincident limiting ratios condition holds for x ∈ U and E ⊂ U if

lim
r→0

supv∈E µ(K(x + v, r))
µ(K(x, r))

= lim
r→0

supz∈U µ(K(z, r))
µ(K(x, r))

. (CLR)

Theorem 1 (Lie and Sullivan, 2017)

If K satisfies (LITB), and if E is topologically dense in U , then (CLR) holds for all x ∈ U .

Let E contain the origin or be topologically dense in a neighbourhood of the origin, and let u⋆ be
an E-weak mode. Then u⋆ is a strong mode if and only if u⋆ and E satisfy (CLR).

Hence, if E is topologically dense in U and K satisfies (LITB), then u⋆ is a strong mode if and
only if it is an E-weak mode.
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Random integrators for ODEs

Lie, Stuart, and Sullivan (2017a) arXiv:1703.03680

Aim: provide a randomised numerical solution to an ODE, where the stochasticity in
the solution represents the accumulated impact of truncation error along the flow.
Numerical analysis objective: quantify the convergence rate of such methods.

For a randomised numerical solution (Uk)
T/h
k=0 with time step h > 0, we seek a result

of the form

E

[
sup

0≤k≤T/h
|Uk − u(kh)|2

]
≤ Chr,

and relate r to the order of deterministic methods.
See the talk of Han Cheng Lie later for further discussion — what kinds of
integrators, what kinds of vector fields / flows, and what technical conditions.

http://arxiv.org/abs/1703.03680
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Fast operations on kernel matrices

Schäfer, Sullivan, and Owhadi (2017) arXiv:1706.02205

The (cubic) cost of inverting a Gram matrix Θ := (G(xi, xj))i,j∈I of a kernel G is a
major computational bottleneck in Gaussian process techniques.

A probabilistic interpretation of Cholesky factorisation yields a simple novel
algorithm for inversion of “nice” dense kernel matrices at near-linear cost.
Simple idea: perform a zero-fill-in incomplete Cholesky factorisation ichol(0) with
respect to some sparsity pattern Sρ ⊂ I × I , ρ > 0 an “interaction radius”.
The clever part: a coarse-to-fine ordering of the xi yielding near-linear sparsity
pattern in near-linear complexity. This can be justified using quite easy heuristics,
and proved using the theory of gamblets (Owhadi and Scovel, 2017).
Setting: Ω ⊂ Rd is a Lipschitz domain; s > d/2 is an integer, L : Hs

0(Ω) → H−s(Ω) is
a linear, local, bounded, invertible, positive and self-adjoint operator and G = L−1 its
Green’s function; {xi}i∈I ⊂ Ω is a “nice” point set.

http://arxiv.org/abs/1706.02205
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Fast operations on kernel matrices

Above: ordering a near-uniform data set from coarse to fine.
Below: a dense kernel matrix in this ordering, and its ichol(0) factor.



Fast operations on kernel matrices

Theorem 2 (Schäfer et al., 2017)
Under mild technical conditions, the ichol(0) factorization of the sparsified kernel matrix
Θρ := Θ1Sρ

has computational complexity O(N log(N)ρd) in space and O(N log2(N)ρ2d) in
time; finding Sρ can also be achieved at this complexity.

Theorem 3 (Schäfer et al., 2017)

Let {xi}i∈I ⊂ Ω be such that

maxx∈Ω mini∈I dist(xi, x)
mini ̸=j∈I

(
dist

(
xi, {xj} ∪ ∂Ω

)) ≤ 1
δ

and define Θi,j := G(xi, xj). Then the ichol(0) factor Lρ of Θρ has approximation error∥∥∥Θ − PLρLT
ρPT
∥∥∥ ≤ Cpoly(N) exp(−γρ).

In particular, an ε-approximation of Θ can be obtained in computational complexity
O(N log(N) logd(N/ε)) in space and O(N log2(N) log2d(N/ε)) in time.
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Randomised Bayesian inverse problems

Lie, Sullivan, and Teckentrup (2017b) arXiv:1712.05717

Bayesian inverse problem à la Stuart (2010)
BIP with prior µ0 on U , data y ∈ Y , and negative log-likelihood Φ : U × Y → R: realise
the posterior µy on U

dµy

dµ0
(u) = exp(−Φ(u; y))

Z(y)
. (1)

How does replacing Φ by a randomised numerical approximation ΦN impact µy?
ΦN could be a kriging/GP surrogate for Φ (Stuart and Teckentrup, 2018);
Y could be high-dimensional and ΦN could result from subsampling;
a deterministic forward model G : U → Y inside Φ could be replaced by a PN forward
model GN in ΦN.

Goal: transfer the (probabilistic) convergence rate ΦN → Φ to a (probabilistic)
convergence rate µ

y
N → µy.

http://arxiv.org/abs/1712.05717


Randomised Bayesian inverse problems

Lie, Sullivan, and Teckentrup (2017b) arXiv:1712.05717

Bayesian inverse problem à la Stuart (2010)
BIP with prior µ0 on U , data y ∈ Y , and negative log-likelihood Φ : U × Y → R: realise
the posterior µy on U

dµy

dµ0
(u) = exp(−Φ(u; y))

Z(y)
. (1)

How does replacing Φ by a randomised numerical approximation ΦN impact µy?
ΦN could be a kriging/GP surrogate for Φ (Stuart and Teckentrup, 2018);
Y could be high-dimensional and ΦN could result from subsampling;
a deterministic forward model G : U → Y inside Φ could be replaced by a PN forward
model GN in ΦN.

Goal: transfer the (probabilistic) convergence rate ΦN → Φ to a (probabilistic)
convergence rate µ

y
N → µy.

http://arxiv.org/abs/1712.05717


Random and deterministic approximate posteriors

Replacing Φ by ΦN in (1), we obtain a random approximation µ
samp
N of µ:

dµ
samp
N

dµ0
(u) :=

exp(−ΦN(u))
Zsamp

N
, (2)

Zsamp
N := Eµ0

[
exp(−ΦN( ·))

]
.

Taking the expectation of the random likelihood gives a deterministic approximation:

dµ
marg
N

dµ0
(u) :=

EνN

[
exp(−ΦN(u))

]
EνN

[
Zsamp

N
] .

An alternative deterministic approximation can be obtained by taking the expected
value of the density (Zsamp

N )−1e−ΦN(u) in (2). However, µ
marg
N provides a clear

interpretation as the posterior obtained by the approximation of the true data
likelihood e−Φ(u) by EνN

[
e−ΦN(u)

]
, and is more amenable to sampling methods such

as pseudo-marginal MCMC (Beaumont, 2003; Andrieu and Roberts, 2009).
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Summary of convergence rates

Theorem 4 (Lie, Sullivan, and Teckentrup, 2017b)
For suitable Hölder exponents p1, p′1, p2, . . . quantifying the integrability of Φ and ΦN, we
obtain deterministic convergence µ

marg
N → µ and mean-square convergence µ

samp
N → µ in the

Hellinger metric:

dH
(
µ, µ

marg
N

)
≤ C

∥∥∥EνN

[
|Φ − ΦN|p

′
2
]1/p′2

∥∥∥
L

2p′1p′3
µ0 (U )

,

EνN

[
dH
(
µ, µ

samp
N

)2
]1/2

≤ D
∥∥∥∥EνN

[
|Φ − ΦN|2q′1

]1/2q′1
∥∥∥∥

L
2q′2
µ0 (U )

.

There are similar results for approximation of G by GN (in a fixed quadratic misfit
potential).
One application: random solution of ODEs as in Han Cheng Lie’s talk.
Another application: random reduction of high-dimensional data…
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Example: Monte Carlo approximation of high-dimensional misfits

We consider a Monte Carlo approximation ΦN of a quadratic potential Φ (Nemirovski
et al., 2008; Shapiro et al., 2009), further applied and analysed in the MAP estimator
context by Le et al. (2017). This approximation is particularly useful for data y ∈ RJ, J ≫ 1.

Φ(u) :=
1
2

∥∥∥Γ− 1
2 (y − G(u))

∥∥∥2

=
1
2
(
Γ− 1

2 (y − G(u))
)T

E[σσT]
(
Γ− 1

2 (y − G(u))
)

where E[σ] = 0 ∈ RJ, E[σσT] = IJ×J

=
1
2E

[∣∣σT(Γ− 1
2 (y − G(u))

)∣∣2]
≈ 1

2N

N

∑
i=1

∣∣σ(i)T(Γ− 1
2 (y − G(u))

)∣∣2 for i.i.d. σ(1), . . . , σ(N) d
= σ

=
1
2

∥∥∥ΣT
N
(
Γ− 1

2 (y − G(u))
∥∥∥2

for ΣN :=
1√
N
[σ(1) · · · σ(N)] ∈ RJ×N

=: ΦN(u).



Example: Monte Carlo approximation of high-dimensional misfits

Le et al. (2017) suggest that a good choice for the RJ-valued random vector σ would be
one with independent and identically distributed (i.i.d.) entries from a sub-Gaussian
probability distribution, e.g.

the Gaussian distribution: σj ∼ N (0, 1), for j = 1, . . . , J; and
the ℓ-sparse distribution: for ℓ ∈ [0, 1), let s := 1

1−ℓ ≥ 1 and set, for j = 1, . . . , J,

σj :=
√

s


1, with probability 1

2s ,
0, with probability ℓ = 1 − 1

s ,
−1, with probability 1

2s .



Example: Monte Carlo approximation of high-dimensional misfits

Le et al. (2017) observe that, for large J and moderate N ≈ 10, the random potential
ΦN and the original potential Φ are very similar, in particular having approximately
the same minimisers and minimum values.
Statistically, these correspond to the maximum likelihood estimators under Φ and
ΦN being very similar; after weighting by a prior, this corresponds to similarity of
maximum a posteriori (MAP) estimators.
Here, we study the BIP instead of the MAP problem, and thus the corresponding
conjecture is that the deterministic posterior dµ(u) ∝ exp(−Φ(u))dµ0(u) is well
approximated by the random posterior dµ

samp
N (u) ∝ exp(−ΦN(u))dµ0(u).



Example: Well-posedness of BIPs with Monte Carlo misfits

Applying the general results to this setting gives the following transfer of the Monte Carlo
convergence rate from the approximation of Φ to the approximation of µ:

Proposition 5

Suppose that the entries of σ are i.i.d. ℓ-sparse, for some ℓ ∈ [0, 1), and that Φ ∈ L2
µ0(U ). Then

there exists a constant C, independent of N, such that(
Eσ

[
dH
(
µ, µ

samp
N

)2])1/2
≤ C√

N
.

For technical reasons to do with the non-compactness of the support and finiteness of
MGFs of maxima, the current proof technique does not work for the Gaussian case.



Summary
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Antoine de Saint-Exupéry,
The Little Prince, 1943

We appear to have swallowed an elephant…
…in the sense that there is a lot of PN activity
going on, the SAMSI WG is just part of it, and
more is coming.
The field is coming into mathematical and
statistical maturity.

Proof-of-concept examples ✓
Rigorous analysis and underpinnings ✓
“Killer apps” ✓/7

Reference implementations 7
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Thank You!
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