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Introduction and overview

What are inverse problems?



Inverse problems

An inverse problem consists of recovering an unknown u ∈ U from an observation
y ∈ Y . Usually we have in hand an idealised forward operator G : U → Y and we
think that y ≈ G(u).
Given y ∈ Y , the problem of finding u ∈ U such that y = G(u) is often ill-posed:

there may be no such u (because y /∈ G(U )); or
there may be multiple such u (because G is not injective); or
there may be a unique solution u, but it may depend sensitively on y (because G has a
discontinuous inverse).

These issues become even more prominent when we accept that there are inevitable
observational errors, so we are more likely to see e.g.

y = G(u) + ε,

with ε random, perhaps with known distribution.



Examples of inverse problems

In numerical weather prediction we are given noisy observations y of today’s
weather state u = (air temperature, pressure, velocity, …) at various sites around the
world, and must reconstruct the complete current state u and use it to predict
tomorrow’s state… and do all this within six hours!
In X-ray tomography we aim to recover a compactly supported function u : Rd → R

from a noisy and partial observation of its Radon transform

Gu : Sd−1 ×R→ R (Gu)(n̂, s) :=
∫
{x∈Rd|x·n̂=s}

u(x)dx.

In an elliptic inverse problem we are given noisy observations y of (p(xj))Jj=1 at
x1, . . . , xJ ∈ D ⊂ Rd, and f : D→ R, and seek a = exp(u) : D→ Rd×d such that

−∇ · (a∇p) = f, p|∂D = 0.

A variation on this problem — with applied currents and voltage observations at the
boundary — underlies electrical impedance tomography (Somersalo et al., 1992;
Dunlop and Stuart, 2016).



Variational approaches to inverse problems

The variational approach to the inverse problem is to seek u⋆ ∈ U that approximately
solves the “impossible” equation y = G(u) by minimising a weighted misfit:

u⋆ ∈ argmin
u∈U

Φ(u; y).

In the case ε ∼ N (0, Γ) on Y = RJ, we take

Φ(u; y) = 1
2∥y−G(u)∥2Γ = 1

2∥Γ
−1/2(y−G(u))∥2;

when G is a linear operator, the Gauss–Markov theorem from basic statistics tells us
that this choice yields an unbiased estimate u⋆ with minimal error and variance.
Furthermore, we often have a prior belief that u “should” be close to some known
value, or have desired properties such as sparsity, or smoothness, or having some
jumps but not too many, so we seek a regularised solution

u⋆ ∈ argmin
u∈U

Φ(u; y) + R(u),

where e.g. R(u) = 1
2∥u∥22, ∥u∥1, ∥u∥TV, …



Bayesian approach to inverse problems

A Bayesian probabilist/statistician gets around all of these problems by regarding u,
y, and ε as random variables.
The equation “y = G(u) + ε” is treated as defining the conditional distribution of y|u.
The Bayesian also has a prior belief about u before seeing the data, u ∼ µ.
The Bayesian solution to the inverse problem is the posterior distribution of u|y = y.

Bayes’ rule for finite sets U , Y
The prior probability mass function pu : U → [0, 1] of u, the mass function py|u( · |u) of
y|u = u, and the posterior mass function pu|y( · |y) of u|y = y satisfy

pu|y(u|y) =
py|u(y|u)pu(u)

Z(y) , Z(y) = ∑
u′∈U

py|u(y|u′)pu(u′).

Formally, the variational approach amounts to setting R(u) = − log pu(u) and finding a
point of maximum Bayesian posterior probability… see the lectures of Tapio Helin!
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∫
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Bayesian conditioning

Prior density ρu on U :

Observation density ρy|u(y|u) on {u} × Y
=⇒ joint density ρ(u,y)(u, y) = ρu(u)ρy|u(y|u) on U × Y :

↑
Y
↓

← U →

y

Posterior density ρu|y(u|y) ∝ ρy|u(y|u)ρu(u) on U :



Why probability on function spaces is hard…

Problem: on spaces of functions, fields etc., there is nothing like a Lebesgue measure with
respect to which we could form probability density functions!

Theorem 1 (e.g. Yamasaki, 1985, Part B, Section 5)
Let U be a normed vector space over R and B(U ) its Borel σ-algebra. If dimU < ∞, then there
is a Lebesgue measure µ on (U ,B(U )) that is simultaneously

strictly positive, i.e. for all x ∈ U and r > 0, µ(B(x, r)) > 0;
locally finite, i.e. for all x ∈ U and small enough r > 0, µ(B(x, r)) < ∞;
translation invariant, i.e. for all x ∈ U and A ∈ B(U ), µ(A) = µ(x+A);

and it is unique up to multiplication by a constant. If dimU = ∞, then no such µ exists.

Indeed, on an infinite-dimensional normed space U , the zero measure µ ≡ 0 is the only σ-finite
measure µ on (U ,B(U )) for which being µ-measure zero is preserved by all translations.



Why probability on function spaces should be taken seriously…

Suppose that we wish to reconstruct a “blocky” image u : [0, 1]→ R from a noisy,
J-dimensional linear observation: y = Au+ ε, ε ∼ N (0, Γ), Γ ∈ R

J×J
++.

We discretise using (N+ 1) ∈N pixels, represent u by the piecewise linear
interpolation of u(N) := (un)Nn=0, un := u( n

N ), and examine the naïve “posterior
distribution” on RN+1

ρu(N)|y(u(N)|y) ∝ exp
(
− 1

2∥Γ
−1/2(y−Au(N))∥2 + αN∥u(N)∥TV

)
= exp

(
−1

2

J

∑
j=1
|(Γ−1/2(y−Au(N)))j|2 + αN

N
∑
n=1
|un − un−1|

)

Theorem 2 (Lassas and Siltanen, 2004)
There is no choice of (αN)N∈N such that the prior ρu ∝ exp(−αN∥·∥TV) and the posterior
ρu(N)|y( · |y) both have “sensible” limits as N→ ∞.



The mission of these lectures

A mathematical problem is called well-posed if, given the problem data, there exists
a solution, the solution is unique, and the solution depends continuously on the data.
Interpreted naïvely, inverse problems are typically ill-posed.
These lectures show how Bayesian inverse problems are well-posed: the posterior
distribution is uniquely determined and depends continuously on the problem setup
with respect to a suitable statistical distance, namely the Hellinger metric.
We focus on the mathematical structure from the function space viewpoint1, and
hence on theory and algorithms that are general enough to consider big data, and big
unknowns — assuming that infinite-dimensional is big enough for you?

1The function-space-down viewpoint complements the “Finnish school” of finite-dimensions-up grid
independence (Lehtinen, 1999) or discretisation invariance (Lassas and Siltanen, 2004; Lassas et al., 2009).
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Introduction and overview

Notation



Notation i

U , V , … will be separable Banach or Hilbert spaces,2 almost always over R.
Here, U ′ denotes the dual space of U , the space of continuous linear maps from U to
R; we write ⟨ℓ|u⟩ for the scalar value of ℓ ∈ U ′ acting on u ∈ U .
IfH is a Hilbert space and Γ : H → H is a symmetric, positive-definite, linear
operator, then we define the Γ-weighted inner product and norm by

⟨u, v⟩Γ := ⟨Γ−1/2u, Γ−1/2v⟩H ∥u∥Γ := ⟨u,u⟩1/2
Γ = ∥Γ−1/2u∥H.

M(U ) denotes the set of all (non-negative, σ-additive, σ-finite, Borel) measures on U .
P(U ) ⊂M(U ) denotes the set of probability measures on U .

2Because all our spaces U will be separable and completely metrisable, we gain two technical advantages:
(1) the Borel σ-algebra B(U ) generated by the open balls coincides with the cylindrical σ-algebra
E(U ) := σ({ℓ−1(E) | ℓ ∈ U ′,E ∈ B(R)}) generated by U ′, and (2) all probability measures on U are inner
regular a.k.a. Radon.



Notation ii

Notation for the Lebesgue integral / expected value of f : U → R with respect to
µ ∈ M(U ): ∫

U
fdµ ≡

∫
U
f(u)dµ(u) ≡

∫
U
f(u) µ(du) ≡ Eµ[f].

Lp(U , µ;V) := {f : U → V | ∥f∥Lp(µ) := (
∫
U ∥f(u)∥

p
V dµ(u))1/p < ∞}, modulo equality

µ-a.e., are the Lebesgue or Lebesgue–Bochner spaces.
When µ, ν ∈ M(U ) and ν(E) = 0 =⇒ µ(E) = 0, we say that µ is absolutely
continuous with respect to ν and write µ≪ ν. In this case, the Radon–Nikodym
theorem ensures the existence of a ν-a.e. unique density function or
Radon–Nikodym derivative dµ

dν : U → R such that∫
U
fdµ =

∫
U
f · dµ

dν
dν for all f ∈ L1(µ).



Notation iii

For µ ∈ M(U ) and ν ∈ M(V), µ⊗ ν ∈ M(U × V) denotes their product measure,
completely determined by its values on rectangles:

(µ⊗ ν)(A× B) := µ(A)ν(B) for A ∈ B(U ), B ∈ B(V).

The push-forward or image measure of µ ∈ M(U ) under f : U → V is f♯µ ∈ M(V),

(f♯µ)(B) := µ(f−1(B)) = µ({u ∈ U | f(u) ∈ B}) for B ∈ B(V),

with the resulting change-of-variables formula for integration:∫
V
g(v) (f♯µ)(dv) =

∫
U
g(f(u)) µ(du) for g ∈ L1(V , f♯µ; R).

The law or distribution µu ∈ P(U ) of a random variable u : Ω→ U defined on a
probability space (Ω,F , P) is the push-forward measure µu := u♯P, i.e.

µu(A) = P({ω ∈ Ω | u(ω) ∈ A}) = P[u ∈ A] for A ∈ B(U ),

and random variables u, y are independent exactly when µ(u,y) = µu ⊗ µv.



Probability on function spaces



Probability on function spaces

Three main ways to reason about random elements of infinite-dimensional spaces, such
as spaces of functions:

series expansions with respect to a given basis, with random coefficients;
work in a coordinate-free way — easiest if there is some nice structure, e.g. Gaussian;
(only briefly discussed here) for Gaussian random functions u : D→ R, express
everything in terms of a mean function m : D→ R and a covariance kernel
c : D×D→ R, c(x, x′) = Cov(u(x),u(x′)).

In this section we also discuss how to condition random variables that take values in such
spaces.



Probability on function spaces

Random series



Random series

The first, easiest, way to build probability measures on an infinite-dimensional space
U is to fix a basis (ψn)n∈N of U and to form random series expansions in this basis:

u := ∑
n∈N

ξnψn

where the real-valued random variables (ξn)n∈N are chosen appropriately.
For example, take (ψn)n∈N to be a Fourier or wavelet basis of U = L2([0, 1],dx; R).
Once the finite-dimensional distributions of ξ := (ξn)n∈N are determined, the
Daniell–Kolmogorov extension theorem implies that ξ is a RN-valued random
variable3 and its law µξ ∈ P(RN).
Question: what conditions do we need to impose on U , (ψn)n∈N, and ξ to ensure that
u is a well-defined U -valued random variable, i.e. that µu ∈ P(U )?

3Again, countability/separability is helpful: Daniell–Kolmogorov would only say that ξ is measurable w.r.t.
the product σ-algebra on RN, but fortunately the product σ-algebra of a countable product of separable
metric spaces is the Borel σ-algebra of the product.



Uniform random coefficients

Example 3
Consider the Hilbert space

ℓ2 =

{
v = (vn)n∈N

∣∣∣∣∣ ∥v∥2ℓ2 := ∑
n∈N

|vn|2 < ∞

}

and a random sequence ξ := (ξn)n∈N with independent components ξn ∼ Unif(− 1
n , 1

n ).
Then the random sequence ξ ∈ ℓ2 a.s., since we have the upper bound

∥ξ∥2ℓ2 = ∑
n∈N

|ξn|2 ≤ ∑
n∈N

1
n2 =

π2

6 < ∞.

If nowH is a separable Hilbert space with complete orthonormal basis (ψn)n∈N, and
u := ∑n∈N ξnψn, then Parseval’s identity says that ∥u∥H = ∥ξ∥ℓ2 , so u ∈ H a.s.



Uniform random coefficients — Sobolev spaces

Example 4
One way to characterise the Sobolev space Hs(−π, π), s ∈N∪ {0}, is via the decay of
Fourier modes (indexed by n ∈ Z rather than n ∈N):

u = ∑
n∈Z

unψn ∈ Hs ⇐⇒ ∑
n∈Z

(1+ |n|2)s|un|2 < ∞,

ψn(x) := (2π)−1/2einx.

Thus, if we take u := ∑n∈Z ξnψn with independent coefficients ξn ∼ Unif
(
− 1

1+|n| ,
1

1+|n|
)
,

then u ∈ H0 = L2 a.s.

If we take u := ∑n∈Z ξnψn with independent coefficients ξn ∼ Unif
(
− 1

(1+|n|)2 , 1
(1+|n|)2

)
,

then u ∈ H1 a.s. Furthermore, by the Sobolev embedding theorem, H1 embeds into C0 in
one space dimension, so u is a.s. a continuous function.



Kolmogorov’s two–series theorems

Theorem 5 (Kolmogorov’s two-series theorem)
Let (xn)n∈N be a sequence of independent R-valued random variables. If ∑n∈N E[xn] converges
absolutely and ∑n∈N E[x2n] converges, then ∑n∈N xn converges almost surely.

Exercise 6
LetH be a separable Hilbert space with complete orthonormal basis (ψn)n∈N. Let
u := ∑n∈N σnηnψn, where the ηn ∼ N (0, 1) are i.i.d. Use Kolmogorov’s two-series
theorem to show that, if (σn)n∈N ∈ ℓ2, then u ∈ H a.s.

Hence construct Gaussian random functions that a.s. lie in the Sobolev spaces Hs.

Harder: show that (σnηn)n∈N is a.s. bounded if and only if ∑n∈N exp(−ε/2σ2
n) is finite

for some ε > 0, and a.s. tends to 0 if and only if this series is finite for all ε > 0.

Similar methods, with Γ-distributed coefficients and wavelets ψn, can be used to define
random functions in the Besov spaces (Lassas et al., 2009; Dashti et al., 2012).



Kolmogorov’s three-series theorem

To handle coefficients whose tails are much heavier than Gaussians, we need
Theorem 7 (Kolmogorov’s three-series theorem)
Let (xn)n∈N be a sequence of independent R-valued random variables. Then ∑n∈N xn converges
almost surely if and only if there exists A ∈ [0, ∞] such that

∑n∈N P[|xn| ≥ A] converges; and
∑n∈N E[xn1|xn|<A] converges absolutely; and
∑n∈N E[x2n1|xn|<A] converges.

Examples of such heavy-tailed coefficients include the α-stable distributions, e.g. the
α = 1 Cauchy distribution C(δ, γ) with location δ ∈ R and scale γ > 0,

dC(δ, γ)

dx (x) = 1
γπ

1
1+ ((x− δ)/γ)2

.



Cauchy random vectors in Banach spaces

Suppose that the basis (ψn)n∈N and q > 0 are such that v := (vn)n∈N 7→ ∑n∈N vnψn is a
continuous embedding of the sequence space ℓq of coefficients into U , i.e.∥∥∥∥∥ ∑

n∈N

vnψn

∥∥∥∥∥
U
≤ C∥v∥ℓq , ∥v∥qℓq := ∑

n∈N

|vn|q.

For an orthonormal basis or a Riesz basis of a Hilbert space, we can take q = 2; in general,
we might be forced to take q = 1 — or smaller, in quasi-normed spaces.

Theorem 8 (Well-definedness of U -valued Cauchy random variables; Sullivan, 2017)
The random series u := ∑n∈N ξnψn with ξn ∼ C(δn, γn) converges a.s. if γ ∈ ℓ1, δ ∈ ℓq, and

[γ]ℓ log ℓ := ∑
n∈N

∣∣γn log |γn|
∣∣ < ∞, if q = 1.



Sketch proof of Theorem 8

Write ξn = δn + γnηn with ηn ∼ C(0, 1). For q = 1, the key estimates are, for any A > 0,

P
[
|γηn| ≥ A

]
= 1− 2

π
arctan

A
γn

,

E
[
|γnηn|1|γnηn|<A

]
=

γn
π

log
(
1+ A2

γ2
n

)
,

E
[
|γnηn|21|γnηn|<A

]
=

2Aγn
π

+
2γ2

n
π

arctan
A
γn

.

These quantities are summable over n ∈N under the above assumptions on γ. Thus,
Kolmogorov’s three-series theorem gives us P-a.s. convergence of ∑n∈N ξnψn with respect
to the norm on U , so u ∈ U P-a.s.

Note that the assumption that [γ]ℓ log ℓ < ∞ is slightly stronger than ∥γ∥ℓ1 < ∞; without
it, we lose summability of the first truncated moments.
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Gaussian measures on Rn

Definition 9
The Gaussian measure or normal distribution N (m, σ2) on R with mean m ∈ R and
variance σ2 > 0 is the measure with Lebesgue density

dN (m, σ2)

dx (x) = 1√
2πσ2

exp
(
− (x−m)2

2σ2

)
.

We sometimes think of the Dirac measure / point mass centred at m as a degenerate
Gaussian measure, one with zero variance.

Definition 10
The Gaussian measure or normal distribution N (m,C) on Rn with mean m ∈ Rn and
symmetric, positive-definite covariance matrix C ∈ Rn×n has Lebesgue density

dN (m,C)
dx (x) = 1√

det(2πC)
exp

(
− 1

2∥C
−1/2(x−m)∥2

)
.



Characterisitic functions

Definition 11
The characteristic function or Fourier transform µ̂ : U ′ → C of µ ∈ P(U ) is

µ̂(ℓ) :=
∫
U
exp(i⟨ℓ|x⟩) µ(dx).

The characteristic function of µ completely characterises it, i.e.

µ = ν ∈ P(U ) ⇐⇒ µ̂ = ν̂ : U ′ → C.

For any continuous linear map T : U → V ,

T̂♯µ(ℓ) = µ̂(T∗ℓ) for all ℓ ∈ V ′,

where T∗ : V ′ → U ′ is the adjoint operator to T, i.e. ⟨T∗ℓ|u⟩ := ⟨ℓ|Tu⟩.
In the finite-dimensional Gaussian case, for µ ∈ P(Rn),

µ = N (m,C) ⇐⇒ µ̂(ℓ) = exp
(
iℓ ·m− 1

2ℓ · Cℓ
)
.

(We can use this formula to define Gaussians with indefinite covariance C.)



Gaussian measures in general

Theorem 12 (e.g. Bogachev, 1998, Theorem 2.2.4)
Let U be a separable Banach space. The following are equivalent and, if one (and hence any)
holds, then µ ∈ P(U ) is called a Gaussian measure:

for every ℓ ∈ U ′, ℓ♯µ ∈ P(R) is Gaussian;
for every continuous linear map T : U → Rn with n ∈N, T♯µ ∈ P(Rn) is Gaussian;
the characteristic function µ̂ : U ′ → C of µ is

µ̂(ℓ) = exp
(
i⟨ℓ|m⟩ − 1

2Q(ℓ)
)

for some m ∈ U and some non-negative quadratic form Q on U ′.

A random variable u : Ω→ U is Gaussian if its law µu ∈ P(U ) is a Gaussian measure.

Example 13
The series with Gaussian random coefficients from earlier are Gaussian in the new sense.



Means and covariance operators

Definition 14
The mean of µ ∈ P(U ) is mµ ∈ U if

⟨ℓ|mµ⟩ =
∫
U
⟨ℓ|x⟩ µ(dx) for all ℓ ∈ U ′.

If mµ = 0, then µ is said to be centred.

The covariance operator of µ is the linear operator Cµ : U ′ → U ′′,

⟨Cµk|ℓ⟩ :=
∫
U
⟨k|x−mµ⟩⟨ℓ|x−mµ⟩ µ(dx) for k, ℓ ∈ U ′.

We also often think of Cµ as a bilinear form on U ′, or, when U is Hilbert, Cµ : U → U ,
with

⟨Cµu, v⟩ =
∫
U
⟨u, x−m⟩⟨v, x−m⟩ µ(dx).

The inverse covariance operator Pµ := C−1
µ is called the precision operator.



Gaussian means, covariances, and integrability

A Gaussian measure always has a mean and a covariance operator, and in fact it is
characterised by these two objects: its characteristic function is

N̂ (m,C)(ℓ) = exp
(
i⟨ℓ|m⟩ − 1

2 ⟨Cℓ|ℓ⟩
)
.

Exercise 15
Show that if T : U → V is a continuous linear map and x ∼ N (m,C) ∈ P(U ) and
y ∼ N (n,D) ∈ P(V) are independent, then Tx+ y ∼ N (Tm+ n,TCT∗ +D).

Theorem 16 (Fernique, 1970; cf. Ledoux, 1996, Theorem 4.1)
Let µ = N (m,C) on a separable Banach space U . Then, for some α > 0,∫

U
exp(α∥x−m∥2) µ(dx) < +∞.

Hence, for all k ≥ 0,
∫
U ∥x∥k µ(dx) < ∞, and C is a bounded linear operator withR(C) ⊆ U

in the sense of the usual embedding U ↪→ U ′′. (Indeed, any α < (2∥C∥)−1 will work.)



Sazonov’s theorem

Covariance operators are the infinite-dimensional versions of symmetric positive-definite
matrices, and for finite-variance measures they always have finite trace:

tr(K) := ∑
n∈N

⟨Kψn, ψn⟩

for any orthonormal basis (ψn)n∈N ofH, and (by Lidskiĭ’s theorem) this equals the sum
of the eigenvalues of K, counted with multiplicity.
Theorem 17 (Sazonov, 1958)
On a separable Hilbert spaceH, let µ = N (m,C) ∈ P(H). Then C : H → H is symmetric,
positive semi-definite, and of trace class (a.k.a. nuclear, and in particular compact) with

tr(C) =
∫
H
∥x−m∥2 µ(dx) < ∞.

Conversely, if K : H → H is positive semi-definite, symmetric, and of trace class, then there is a
Gaussian measure µ ∈ P(H) such that Cµ = K.



Proof of Theorem 17 i

For symmetry, let u, v ∈ H. Then

⟨Cu, v⟩ =
∫
H
⟨u, x−m⟩⟨v, x−m⟩ µ(dx)

=
∫
H
⟨v, x−m⟩⟨u, x−m⟩ µ(dx)

= ⟨Cv,u⟩
= ⟨u,Cv⟩.

For non-negativity, let u ∈ H:

⟨Cu,u⟩ =
∫
H
|⟨u, x−m⟩|2 µ(dx) ≥ 0.

Incidentally, ⟨Cu,u⟩ = 0 ⇐⇒ u ⊥ (x−m) for µ-a.a. x ∈ H.



Proof of Theorem 17 ii

Finally, let (ψn)n∈N be a complete orthonormal basis ofH. Then

tr(C) = ∑
n∈N

⟨Cψn, ψn⟩

= ∑
n∈N

∫
H
|⟨ψn, x−m⟩|2 µ(dx)

=
∫
H

∑
n∈N

|⟨ψn, x−m⟩|2 µ(dx) (Fubini)

=
∫
H
∥x−m∥2 µ(dx) (Parseval)

≤ 2∥m∥2 + 2
∫
H
∥x∥2 dµ(x) < ∞. (Fernique)

The converse is an exercise. Hint: choose a complete orthonormal system of eigenvectors
of K and define a Gaussian measure onH by a random series in this basis.



Translating Gaussian measures i

Recall that the Lebesgue measure µ ∈ M(Rn) is translation invariant:

µ(A) = µ(v+A) for all v ∈ Rn, A ∈ B(Rn).

In terms of the translation map Tv : Rn → Rn, Tv(x) := v+ x, (Tv)♯µ = µ.
We do not expect (Tv)♯µ = µ for a Gaussian measure µ = N (m,C), which obviously
has more mass near m than far away from m.
What is true is that (Tv)♯N (m,C) = N (m+ v,C) is equivalent to N (m,C) (i.e. each
has a density with respect to the other):

Exercise 18
Let µ = N (m,C) ∈ P(Rn). Show that

d(Tv)♯µ

dµ
(x) = exp

(
⟨v, x−m⟩C −

∥v∥2C
2

)
.



Translating Gaussian measures ii

There are two important Hilbert spaces associated to a Gaussian measure µ:
Definition 19
The reproducing kernel Hilbert space of µ = N (m,C) is the Hilbert space

U ′µ := {ℓ− ⟨ℓ|m⟩ | ℓ ∈ U ′} w.r.t. ⟨ · , · ⟩L2(µ),

and we extend Cµ : U ′ → U ′′ to Cµ : U ′µ → U ′′ by

⟨Cµξ|ℓ⟩ :=
∫
U

ξ(x)⟨ℓ|x−m⟩ µ(dx).

The Cameron–Martin space of µ is the Hilbert (!) space

Hµ := {h ∈ U | ∥h∥Hµ
< ∞}, ∥h∥Hµ

:= sup{⟨ℓ|h⟩ | ℓ ∈ U ′, ⟨Cµℓ|ℓ⟩ ≤ 1}.

N.B. Each ξ ∈ U ′µ is a R-valued Gaussian, ξ ∼ N (0, ∥ξ∥2L2(µ)).



Translating Gaussian measures iii

The translation formula for finite-dimensional Gaussian measures holds in general, but
only for some translation vectors v, by the Cameron–Martin theorem:

Theorem 20 (e.g. Bogachev, 1998, Sections 2.3 and 2.4)
Let µ = N (m,C) on a separable Banach space U .

Hµ = R(C : U ′µ → U ) = R(C : U ′ → U ) with respect to ⟨Ck,Cℓ⟩µ := ⟨k, ℓ⟩L2(µ).

If U is Hilbert, thenHµ = R(C1/2 : U → U ) w.r.t. ⟨h, k⟩C := ⟨C−1/2h,C−1/2k⟩U .
Hµ = {v ∈ U | (Tv)∗µ := N (m+ v,C) is equivalent to µ}, with

d(Tv)♯µ

dµ
(x) = exp

(
⟨C−1v|x−m⟩ − ⟨C

−1v|v⟩
2

)
= exp

(
⟨v, x−m⟩C −

∥v∥2C
2

)
.

For m = 0,Hµ is the intersection of all linear subspaces of U that have full µ-measure.
However, if dimU ′µ = ∞, then µ(Hµ) = 0.



Support of Gaussian measures

As with the series examples earlier, it is usual relatively easy to show that µ(E) = 1 for the
right set E ⊆ U . It is often harder to find the “smallest” such E, the support of µ,

supp(µ) :=
∩

E⊆U closed
µ(E)=1

E = {x ∈ U | for all r > 0, µ(B(x, r)) > 0}.

Fortunately, for Gaussian measures, the support is easy to describe:

Theorem 21 (e.g. Bogachev, 1998, Theorems 3.2.3 and 3.6.1)
Let µ = N (mµ,Cµ) on a separable Banach space U . ThenR(Cµ : U ′µ → U ′′) ⊆ U in the sense
of the usual embedding U ↪→ U ′′ and

supp(µ) = mµ +Hµ = mµ +R(Cµ),

where the closure is taken in the norm of U , not the norm ofHµ.



Equivalence and singularity of Gaussian measures

Recall that µ, ν ∈ P(U ) are equivalent if each has a density with respect to the other, and
are mutually singular if there is a set E with µ(E) = 0 but ν(E) = 1.

Theorem 22 (Feldman, 1958; Hájek, 1958)
Let µ, ν ∈ P(U ) be Gaussian measures on a normed space U . Then either µ and ν are
equivalent, or they are mutually singular.

Example 23

Translating a Gaussian measure µ by a vector not in its Cameron–Martin spaceHµ

induces mutual singularity.
Dilating a Gaussian measure µ by any non-unit constant induces mutual singularity.
Non-uniform dilations, e.g. when (C−1/2

µ C1/2
ν )(C−1/2

µ C1/2
ν )∗ − I is a Hilbert–Schmidt

operator, can preserve equivalence. (Similar properties hold for Cauchy measures;
Lie and Sullivan, 2018.)



Probability on function spaces

Gaussian processes



Gaussian processes

Definition 24
A family ξ = (ξt)t∈T of random variables is a Gaussian process on an index set T if
every finite linear combination of the components ξt is Gaussian on R. Set

m(t) := E[ξt], c(s, t) := E
[
(ξs −E[ξs])(ξt −E[ξt])

]
.

Theorem 25 (e.g. Bogachev, 1998, Prop. 2.3.9)
The law µξ of a Gaussian process ξ = (ξt)t∈T is a Gaussian measure on U = RT with the
topology of pointwise convergence, with some mean m ∈ U and Cµ(U ′µ) ⊂ U . Thought of as a
bilinear form on U ′, its covariance operator is determined by

Cµ(δs, δt) = c(s, t),

where ⟨δs|u⟩ := u(s). A choice of c : T2 → R generates a centred Gaussian process / measure if
and only if (c(si, tj))ni,j=1 ∈ Rn×n is non-negative for all s1, . . . , sn, t1, . . . , tn ∈ T.



Examples of Gaussian processes

Example 26
Gaussian white noise on T corresponds to c(s, t) = 1s=t

Example 27 (e.g. Bogachev, 1998, Example 2.3.11 and Remark 2.3.13)
The Wiener process or Brownian motion on T = [0, 1] corresponds to c(s, t) = min(s, t).
This Gaussian measure is supported on C0([0, 1]; R) and has H1([0, 1]; R) as its
Cameron–Martin space. This measure is also the law of

u(t) := ∑
n∈N

ηn

∫ t

0
ψn(s)ds,

with (ψn)n∈N any orthonormal basis of L2([0,T]; R), and ηn ∼ N (0, 1) i.i.d.

See the lectures of Matt Dunlop for many more examples and applications of Gaussian
processes, especially compositions of such objects.



Probability on function spaces

Conditional probability



Conditional expectation

Fix a probability space (Ω,F , P). How do we condition (update) one random variable
x : Ω→ X given knowledge of another (hopefully related) one y : Ω→ Y?

Let µx := x♯P ∈ P(X ) (resp. µy ∈ P(Y)) be the law of x (resp. y).
Let σ(y) ⊆ F denote the σ-algebra generated by y, i.e. the coarsest σ-algebra on Ω so
that y is (σ(y),B(Y))-measurable:

σ(y) := {y−1(E) | E ∈ B(Y)}.
Definition 28
For two random variables x and y with E[∥x∥] < ∞, the conditional expectation of x
given y is a (P-a.s. unique) random variable E[x|y] : Ω→ X such that

E[x|y] is σ(y)-measurable; and
for all E ∈ σ(y), ∫

E
x(ω)P(dω) =

∫
E

E[x|y](ω)P(dω).



Conditional expectation and probability

Exercise 29 (A discrete example)
A fair cubical die has sides 1, 2, and 3 coloured red, 4 and 5 coloured green, and 6
coloured blue. Let x be the numerical outcome of the die roll, and y the colour outcome.

Ω x(ω) y(ω) E[x|y](ω)

{ω ∈ Ω | x(ω) = 1} 1 r ???
{ω ∈ Ω | x(ω) = 2} 2 r ???
{ω ∈ Ω | x(ω) = 2} 3 r ???
{ω ∈ Ω | x(ω) = 3} 4 g ???
{ω ∈ Ω | x(ω) = 4} 5 g ???
{ω ∈ Ω | x(ω) = 5} 6 b ???

Complete the last column. Hint: you only need to consider E = y−1(r), y−1(g), y−1(b);
σ(y)-measurability means that E[x|y] must be constant on each of these three sets, and
the corresponding constant value must be…



Conditional probability

Definition 30
For two random variables x and y with E[∥x∥] < ∞, the conditional probability
P[x ∈ A|y] : Ω→ [0, 1] that x lies in A ∈ B(X ) given y is the random variable

P[x ∈ A|y] := E[1x∈A|y]

By the Doob–Dynkin lemma (e.g. Kallenberg (1997, Lemma 1.13)), there is a measurable
function ψ = ψx,y : Y → X such that ψ(y) = E[x|y] P-a.s. We consider

E[x|y = y] := ψ(y)

to be the conditional expectation of x given the (possibly probability
zero) event y = y. Similarly, we consider

P[x ∈ A|y = y] := E[1x∈A|y = y].

to be the conditional probability that x ∈ A given y = y.

Ω x //

y

��

E[x|y]

��
22

22
22

22
22

22
2 X

Y
ψ

// X



Regular conditional probabilities i

Definition 31
For two random variables x and y, a regular conditional distribution of x given y is a
function µx|y : Y × B(X )→ [0, 1] such that

for all y ∈ Y , µx|y(y, ·) ∈ P(X );
for all A ∈ B(X ), µx|y( · ,A) : Y → [0, 1] is measurable;
for all A ∈ B(X ), as random variables Ω→ [0, 1],

µx|y(y,A) = P[x ∈ A|y] P-a.s..

A closely related concept is the disintegration of ν ∈ P(Z) with respect to π : Z → Y ,
which amounts to conditioning ν onto the fibres π−1(y) — we happen to only care about
horizontal slices of the form X × {y} in Z = X ×Y (Chang and Pollard, 1997).



Regular conditional probabilities ii

Example 32
Take X = Y = [0, 1] and let (x,y) be uniformly distributed in the square X ×Y .

One regular conditional distribution for x|y is the obvious one:

µx|y(y, ·) := Unif(X ) for all y ∈ Y .

This is common sense: regardless of the value of y, x should be uniformly distributed.
However, the following is also a regular conditional distribution for x|y:

νx|y(y, ·) :=

Unif(X ) for all y ∈ Y , y ̸= 1
2 ,

Unif([ 14 , 1
2 ]) for all y = 1

2 .

This looks rather strange: x is no longer uniform on X if y happens to take the value
y = 1

2 . But this is fine: the exceptional set of y’s has µy-measure zero.



Regular conditional probabilities iii

Thus, a regular conditional distribution for x|y is a measurable family of probability
measures µx|y(y, ·) ∈ P(X ), parametrised by y ∈ Y , satisfying

µx|y(y,A) = P[x ∈ A|y] P-a.s.
i.e. µx|y(y,A) = E[1x∈A|y] P-a.s.

In practice, the condition that we check is an integral formulation of the above: that, for
all E ∈ σ(y) ⊆ F of the form E = y−1(B), B ∈ B(Y),∫

E
µx|y(y(ω),A)P(dω) =

∫
E

E[1x∈A|y](ω)P(dω)

i.e.
∫
B

µx|y(y,A) µy(dy) =
∫
y−1(B)

1x∈A(ω)P(dω).

Here the LHS is rewritten using the change-of-variables formula for integration, and the
RHS is rewritten using the defining relation for conditional expectation.



Regular conditional probabilities iv

The existence and essential uniqueness of regular conditional probabilities /
disintegrations is very technical to show but holds under general conditions that are
certainly enough for our purposes:

Theorem 33 (e.g. Kallenberg, 1997, Theorem 5.3)
When X and Y are separable Banach spaces — or even just separable and completely metrisable
spaces — a regular conditional distribution µx|y always exists.

Furthermore, µx|y is essentially unique in the sense that if νx|y also satisfies the requirements to
be a regular conditional distribution for x|y, then

µx|y(y, ·) = νx|y(y, ·) P-a.s.,
i.e. µx|y(y, ·) = νx|y(y, ·) for µy-a.e. y ∈ Y .



RCP Bayes’ formula

The language of regular conditional probability can be used to give a rigorous meaning to
Bayes’ formula, without needing density functions. Here we consider the usual
introductory case of a nonlinear forward operator corrupted by centred, additive,
finite-dimensional Gaussian noise:
Theorem 34 (RCP Bayes’ formula)
Let X and Y be separable Banach spaces with dimY < ∞. For x ∼ µx ∈ P(X ) and
y = G(x) + ε with ε ∼ N (0, Γ) independently of x, the distribution

µx|y(y,dx) :=
exp(− 1

2∥y−G(x)∥2Γ)
Z(y) µx(dx),

Z(y) :=
∫
X
exp(− 1

2∥y−G(x)∥2Γ) µx(dx)

is a regular conditional distribution of x given y.



Proof of the RCP Bayes’ formula i

Since ε ∼ N (0, Γ), the conditional distribution of y given x = x is absolutely continuous
with respect to Lebesgue measure dy on Y with the following form:

µy|x=x(dy) =
exp(− 1

2∥y−G(x)∥2Γ)√
det(2πΓ)

dy

Thus, the joint distribution µ(x,y) ∈ P(X ×Y) of (x,y) is determined by its values on
rectangles A× B, A ∈ B(X ), B ∈ B(Y), as

P[x ∈ A,y ∈ B] = µ(x,y)(A× B) =
∫
A

∫
B

exp(− 1
2∥y−G(x)∥2Γ)√
det(2πΓ)

dy µx(dx).

In particular, taking A = U , we obtain the marginal distribution µy of y:

P[y ∈ B] = µy(B) =
∫
B

Z(y)√
det(2πΓ)

dy.



Proof of the RCP Bayes’ formula ii

As an exercise, check that Z(y) > 0 for all y ∈ Y . (Hint: you can even prove a positive
lower bound that depends only on ∥y∥, Γ, G, and µx.)

Hence, for each y ∈ Y , µx|y(y, ·) is a well-defined probability measure on X , as it is a
re-weighting of µx ∈ P(X ) by a non-negative, integrable function with unit integral
against µx.

The measurability of y 7→ µx|y(y,A) for all A ∈ B(X ) is rather techical and not the main
point of the proof, so we omit it.

It remains to show that, for all A ∈ B(X ), µx|y(y,A) = P[x ∈ A|y] P-a.s.; as discussed
earlier, it is enough to show that, for all B ∈ B(Y),∫

B
µx|y(y,A) µy(dy) =

∫
y−1(B)

1x∈A(ω)P(dω)



Proof of the RCP Bayes’ formula iii

Again writing µ(x,y) for the joint distribution of (x,y),∫
y−1(B)

1x∈A(ω)P(dω) = P[x ∈ A,y ∈ B] = µ(x,y)(A× B)

=
∫
A

(∫
B

exp(− 1
2∥y−G(x)∥2Γ)√
det(2πΓ)

dy
)

µx(dx)

=
∫
B

(∫
A

exp(− 1
2∥y−G(x)∥2Γ)√
det(2πΓ)

µx(dx)
)

dy (Fubini)

=
∫
B

(∫
A

µx|y(y,dx)
)

Z(y)√
det(2πΓ)

dy (definition of Z(y))

=
∫
B

µx|y(y,A) µy(dy), (formula for µy)

as required.



RCP Bayes’ formula

Theorem 34 (RCP Bayes’ formula)
Let X and Y be separable Banach spaces with dimY < ∞. For x ∼ µx ∈ P(X ) and
y = G(x) + ε with ε ∼ N (0, Γ) independently of x, the distribution

µx|y(y,dx) :=
exp(− 1

2∥y−G(x)∥2Γ)
Z(y) µx(dx), Z(y) :=

∫
X
exp(− 1

2∥y−G(x)∥2Γ) µx(dx)

is a regular conditional distribution of x given y.

A Bayesian’s solution to an inverse problem is a “posterior distribution”; evaluating the
RCP Bayes’ rule at the observed data y gives rigorous meaning to this “posterior”:

Definition 35
When µ = µx is the prior distribution of x, we define µy := µx|y(y, ·) to be the Bayesian
posterior distribution for x given the observation y = y.



Expressions for Bayes’ formula

The above expression for the posterior distribution,

µy(dx) :=
exp(− 1

2∥y−G(x)∥2Γ)
Z(y) µ(dx),

Z(y) :=
∫
X
exp(− 1

2∥y−G(x)∥2Γ) µ(dx)

can be rearranged to give the density of µy with respect to the prior µ:
dµy

dµ
(x) =

exp(− 1
2∥y−G(x)∥2Γ)
Z(y) .

In the case that dimX < ∞ and µ(dx) = ρ(x)dx, we get the familiar Bayesian formula for
the posterior density ρy:

dµy

dµ
(x) = dµy

dx (x)
/

dµ

dx (x) =
exp(− 1

2∥y−G(x)∥2Γ)
Z(y)

i.e. ρy(x) =
exp(− 1

2∥y−G(x)∥2Γ)
Z(y) ρ(x).



Explicit conditioning of Gaussian measures

Theorem 36 (Anderson and Trapp, 1975)
Let x = (x1, x2) ∼ N (m,C) on a direct sumH = H1 ⊕H2 of separable Hilbert spaces, with
mean m = (m1,m2) and positive-definite covariance operator C. For i, j = 1, 2, let

Cij : Hj → Hi, ⟨Cijkj, ℓi⟩Hi := E
[
⟨kj, xj −mj⟩Hj⟨ℓi, xi −mi⟩Hi

]
for all ki, ℓi ∈ Hi, kj, ℓj ∈ Hj, so that C : H → H is decomposed in block form as

C =

[
C11 C12
C21 C22

]
;

in particular, xi ∼ N (mi,Cii), and C21 = C∗12. Then C22 is invertible and, for each x2 ∈ H2,

(x1|x2 = x2) ∼ N
(
m1 + C12C−1

22 (x2 −m2),C11 − C12C−1
22 C21︸ ︷︷ ︸

shorted operator /
Schur complement

)
.



Linear Gaussian inverse problems

Let G be a continuous linear operator, u ∼ µ = N (m0,C0), and suppose that we observe
y = Gu+ ε with ε ∼ N (0, Γ) independent of u. Thus,[

u
y

]
∼ N

([
m0
Gm0

]
,

[
C0 C0G∗
GC0 Γ +GC0G∗

])
.

The Gaussian conditioning theorem implies that (u|y = y) ∼ N (m1,C1), where

m1 = m0 + C0G∗(Γ +GC0G∗)−1(y−Gm0) = m0 + C1G∗Γ−1(y−Gm0),

C1 = C0 − C0G∗(Γ +GC0G∗)−1GC0.

The repeated sequential application of this formula (with the prior µ being the evolution
of a previous state estimate under some dynamical system) underlies data assimilation
techniques like the Kálmán filter (Law et al., 2015; Reich and Cotter, 2015)… see also the
lectures of Simo Särkkä.



Well-posedness of BIPs



Well-posedness of BIPs

In this section we

quantify the distance between probability measures using the Hellinger metric;
study the stability of Bayesian inverse problems (BIPs) with forward equation

y = G(u) + ε

with ε finite-dimensional and Gaussian;
discuss how to extend the analysis to more general additive problems.



Well-posedness of BIPs

Quantifying posterior stability



The Hellinger distance

Definition 37
The Hellinger distance between µ, ν ∈ P(U ), both absolutely continuous with respect
to π ∈ M(U ), is

dH(µ, ν)2 :=
1
2

∫
U

∣∣∣∣∣
√

dµ

dπ
−
√

dν

dπ

∣∣∣∣∣
2

dπ =
1
2

∥∥∥∥∥
√

dµ

dπ
−
√

dν

dπ

∥∥∥∥∥
2

L2(π)

.

Exercise 38
Show that dH defines a metric on P(U ) that is independent of the choice of π, and that

dH(µ, ν)2 = 1−
∫
U

√
dµ

dπ

dν

dπ
dπ = 1−Eν

[√
dµ

dν

]
whenever the relevant densities exist.



Kraft’s inequality

Lemma 39 (Kraft, 1955)
The Hellinger and total variation distances are topologically equivalent:

dH(µ, ν)2 ≤ dTV(µ, ν) ≤
√
2 dH(µ, ν),

where
dTV(µ, ν) := sup

E∈B(U )
|µ(E)− ν(E)| = 1

2

∫
U

∣∣∣∣dµ

dπ
− dν

dπ

∣∣∣∣dπ.

One can also show by Pinsker’s inequality that convergence in dH or dTV is implied by, but
is generally strictly weaker than, convergence with respect to the Kullback–Leibler
divergence (relative entropy)

DKL(µ∥ν) :=
∫
U

(
log dµ

dν

)
dµ.



Proof of Kraft’s inequality

For a, b ≥ 0,
|a− b|2 = |a− b||a− b| ≤ |a− b||a+ b| = |a2 − b2|.

Hence,

dH(µ, ν)2 :=
1
2

∫
U

∣∣∣∣∣
√

dµ

dπ
−
√

dν

dπ

∣∣∣∣∣
2

dπ ≤ 1
2

∫
U

∣∣∣∣dµ

dπ
− dν

dπ

∣∣∣∣dπ =: dTV(µ, ν).

In the other direction, since a2 − b2 = (a+ b)(a− b),

dTV(µ, ν) =
1
2

∫
U

∣∣∣∣∣
√

dµ

dπ
+

√
dν

dπ

∣∣∣∣∣
∣∣∣∣∣
√

dµ

dπ
−
√

dν

dπ

∣∣∣∣∣dπ

≤ 1
2

√√√√∫
U

∣∣∣∣∣
√

dµ

dπ
+

√
dν

dπ

∣∣∣∣∣
2

dπ

√√√√∫
U

∣∣∣∣∣
√

dµ

dπ
−
√

dν

dπ

∣∣∣∣∣
2

dπ

≤ 1
2 ·
√
4 ·
√

2dH(µ, ν)2



More properties of the Hellinger metric

Exercise 40
Show that, for f ∈ L2(U , µ) ∩ L2(U , ν),∣∣Eµ[f]−Eν[f]

∣∣ ≤ 2
√

Eµ[f2] + Eν[f2] dH(µ, ν).

Exercise 41
Show that the Hellinger distance between non-degenerate Gaussian measures
µ0 = N (m0,C0) and µ1 = N (m1,C1) on Rn is

dH(µ0, µ1)
2 = 1− detC1/4

0 detC1/4
1

detC1/2
1/2

exp
(
−1

8∥m0 −m1∥2C1/2

)
,

where C1/2 := 1
2 (C0 + C1).

Harder: try the case of two Gaussians on a separable Hilbert spaceH.



Hellinger stability lemma

The following crucial lemma tells us how close two re-weightings µ1 and µ2 of a common
reference probability measure ν by two potentials Φ1 and Φ2 are in the Hellinger sense:

Lemma 42
Let ν ∈ P(U ) and Φi ∈ L2(U , ν; [0, ∞)) for i = 1, 2. Define µi ∈ P(U ) by

µi(du) :=
1
Zi

exp(−Φi(u)) ν(du), Zi :=
∫
U
exp(−Φi(u)) ν(du).

Then

|Z1 − Z2| ≤ ∥Φ1 −Φ2∥L2(ν),

dH(µ1, µ2) ≤
1√

2min(Z1,Z2)
∥Φ1 −Φ2∥L2(ν).



Proof of Lemma 42 i

From the definitions of µ1, µ2, and dH, we have

dH(µ1, µ2)
2 =

1
2

∫
U

∣∣∣∣∣ e−Φ1/2

Z1/2
1
− e−Φ2/2

Z1/2
2

∣∣∣∣∣
2

dν

≤
∫
U

∣∣∣∣∣ e−Φ1/2

Z1/2
1
− e−Φ2/2

Z1/2
1

∣∣∣∣∣
2

+

∣∣∣∣∣ e−Φ2/2

Z1/2
1
− e−Φ2/2

Z1/2
2

∣∣∣∣∣
2

dν

= I1 + I2,

where the inequality follows from (a− c)2 ≤ 2(a− b)2 + 2(b− c)2, and

I1 :=
1
Z1

∫
U

∣∣∣e−Φ1/2 − e−Φ2/2
∣∣∣2 dν,

I2 := Z2
∣∣∣Z−1/2

1 − Z−1/2
2

∣∣∣2 = 1
Z1

∣∣∣Z1/2
2 − Z1/2

1

∣∣∣2.



Proof of Lemma 42 ii

We now bound I1, I2, and |Z1 − Z2|.

Since, for a, b ≥ 0, |e−a − e−b| ≤ |a− b|,

I1 :=
1
Z1

∫
U

∣∣∣e−Φ1/2 − e−Φ2/2
∣∣∣2 dν ≤ 1

Z1

∫
U

|Φ1 −Φ2|2
4 dν =

1
4Z1
∥Φ1 −Φ2∥2L2(ν).

Since, for a, b ≥ 0, |a1/2 − b1/2| ≤ 1
2 min(a, b)−1/2|a− b|,

I2 :=
1
Z1

∣∣∣Z1/2
2 − Z1/2

1

∣∣∣2 ≤ 1
Z1 · 22 ·min(Z1,Z2)

|Z1 − Z2|2.

We bound the difference of normalising constants using Jensen’s inequality:

|Z1 − Z2|2 ≤
∫
U
|e−Φ1 − e−Φ2 |2 dν ≤

∫
U
|Φ1 −Φ2|2 dν = ∥Φ1 −Φ2∥2L2(ν).



Proof of Lemma 42 iii

Now observe that, for i = 1, 2, since the potentials are non-negative,

Zi :=
∫
U
e−Φi dν ≤

∫
U
1dν = 1,

and so
min(Z1,Z2)

2 ≤ Z2
i ≤ Zi.

Hence, we have dH(µ1, µ2)2 ≤ C∥Φ1 −Φ2∥2L2(ν) with

C =
1

4Z1
+

1
4Z1 min(Z1,Z2)

≤ 1
4min(Z1,Z2)2

+
1

4min(Z1,Z2)2
=

1
2min(Z1,Z2)2

and taking square roots completes the proof.



Well-posedness of BIPs

Finite-dim. additive Gaussian noise



Standing assumptions for this section

y = G(u) + ε with G : U → Y , with dimY < ∞.
The noise ε ∼ N (0, Γ) is independent of the prior µ on u, and Γ is invertible.
The potential Φ is the weighted misfit

Φ(u; y) = 1
2∥y−G(u)∥2Γ =

1
2∥Γ

−1/2(y−G(u))∥2.

G is Lipschitz and in L4(U , µ;Y).
The posterior of interest is µy ∈ P(U ),

µy(du) :=
exp(− 1

2∥y−G(u)∥2Γ)
Z µ(du), Z :=

∫
U
exp

(
− 1

2∥y−G(u)∥2Γ
)

µ(du).

The Lipschitz assumption on G ensures that the forward problem is well posed; the L4

assumption comes from the quadratic misfit × the L2 nature of Lemma 42.



Stability with respect to data

The first stability result shows that the normalising constant and the posterior are locally
Lipschitz functions of the observed data y:

Theorem 43
Under the usual assumptions, for every r > 0, there is a constant K = Kr,G,Γ,µ such that,
whenever ∥y∥, ∥ỹ∥ ≤ r,

|Z− Z̃| ≤ K∥y− ỹ∥,
dH(µy, µỹ) ≤ K∥y− ỹ∥,

where

µỹ(du) :=
exp(− 1

2∥ỹ−G(u)∥2Γ)
Z̃

µ(du), Z̃ :=
∫
U
exp

(
− 1

2∥ỹ−G(u)∥2Γ
)

µ(du).



Proof of Theorem 43 i

We apply the Hellinger stability lemma with ν = µ, Φ1(u) := 1
2∥y−G(u)∥2Γ, and

Φ2(u) := 1
2∥ỹ−G(u)∥2Γ. The square-integrability assumption on Φ1 is satisfied, since

∥Φ1∥2L2(µ) =
∫
U

(
1
2∥y−G(u)∥2Γ

)2
µ(du)

≤
∫
U

(
∥y∥2Γ + ∥G(u)∥2Γ

)2
µ(du)

≤ 2
∫
U

(
∥y∥4Γ + ∥G(u)∥4Γ

)
µ(du)

≤ 2∥Γ−1∥2
(
r4 + ∥G∥4L4(µ)

)
< ∞,

and similarly for Φ2. Hence, by the Hellinger stability lemma,

dH(µy, µỹ) ≤ 1√
2min(Z, Z̃)

∥Φ1 −Φ2∥L2(µ).



Proof of Theorem 43 ii

For the quadratic form Q(v) := 1
2∥v∥2Γ = 1

2 ⟨v, Γ−1v⟩, a quick calculation using its gradient
∇Q(v) = Γ−1v and Hessian ∇2Q(v) = Γ−1 yields

|Q(v)−Q(w)| ≤ 2∥Γ−1∥max(∥v∥, ∥w∥)∥v−w∥.

Hence, the potential is locally Lipschitz with respect to y:

|Φ1(u)−Φ2(u)| = |Q(y−G(u))−Q(ỹ−G(u))| ≤ 2∥Γ−1∥(r+ ∥G(u)∥)∥y− ỹ∥;

hence,
∥Φ1 −Φ2∥L2(µ) ≤ 2∥Γ−1∥(2r2 + 2∥G∥2L2(µ))

1/2∥y− ỹ∥.

So, by the Hellinger stability lemma, |Z− Z̃| ≤ ∥Φ1 −Φ2∥L2(µ) ≤ Kr,G,Γ,µ∥y− ỹ∥.



Proof of Theorem 43 iii

Let R > 0 be large enough that the ball B(0,R) ⊂ U has strictly positive µ-mass. Since
1
2∥y−G(u)∥2Γ ≤ ∥Γ−1∥(r2 + ∥G(u)∥2), and since ∥G( ·)∥ ≤ ∥G(0)∥+ RLip(G) on B(0,R),

Z =
∫
U
exp

(
− 1

2∥y−G(u)∥2Γ
)

µ(du)

≥
∫
B(0,R)

exp
(
− 1

2∥y−G(u)∥2Γ
)

µ(du)

≥ exp
(
−∥Γ−1∥2(r2 + (∥G(0)∥+ RLip(G))2

)
µ(B(0,R))

=: Zmin(r,G, Γ, µ) > 0,

and similarly for Z̃. In summary, we obtain

dH(µy, µỹ) ≤ 1√
2Zmin

2∥Γ−1∥(2r2 + 2∥G∥2L2(µ))
1/2∥y− ỹ∥ = Kr,G,Γ,µ∥y− ỹ∥,

as claimed.



Stability with respect to forward operator

Theorem 44
Under the usual assumptions, for all r > 0, there exists K = Kr,y,µ such that, whenever
∥G∥L4(µ), ∥G̃∥L4(µ) ≤ r, and with

µ̃y(du) :=
exp(− 1

2∥y− G̃(u)∥2Γ)
Z̃

µ(du), Z̃ :=
∫
U
exp

(
− 1

2∥y− G̃(u)∥2Γ
)

µ(du),

we have

|Z− Z̃| ≤ Kr,y,µ∥G− G̃∥L4(µ),

dH(µy, µ̃y) ≤
Kr,y,µ

min(Z, Z̃)
∥G− G̃∥L4(µ).



Stability with respect to forward operator

Corollary 45
Under the usual assumptions, suppose that GN : U → Y , for N ∈N, are such that

∥G(u)−GN(u)∥ ≤ M1(u)ψ(N),

max(∥G(u)∥, ∥GN(u)∥) ≤ M2(u),

for all N ∈N and µ-a.a. u ∈ U , where ψ : N→ R is measurable, and M1,M2 ∈ L2(U , µ; R)

have M1M2 ∈ L2(U , µ; R). Then, for

µy,N(du) :=
exp(− 1

2∥y−GN(u)∥2Γ)
Zh µ(du) ZN :=

∫
U
exp

(
− 1

2∥y−GN(u)∥2Γ
)

µ(du),

we have the same rate of convergence for the BIP as the forward problem:

dH(µy, µy,N) ≤ Ky,M1,M2,µψ(N).



Finite-dimensional approximation — a subtlety

In practice, we usually compute on a finite-dimensional subspace UN ⊂ U : the
approximate forward model is GN : UN → Y and the approximate prior and posterior
are in P(UN) ⊂ P(U ).
We do not assert that these approximate prior/posterior measures are close to the
idealised ones! In fact they are generally Hellinger distance 1 apart, for all N!
What is true, under suitable assumptions, is that product of the “posterior” on UN
with the prior on U⊥N , is close to the ideal posterior.

Corollary 46
Suppose that UN is complemented, i.e. there is a closed subspace U⊥N ⊂ U such that
U = UN ⊕U⊥N , that GN : U → Y is independent of the U⊥N -component of its input, and that the
prior µ factors as µ = µN ⊗ µ⊥N with µN ∈ P(UN), µ⊥N ∈ P(U⊥N ). Then the posterior µy,N

factors as µy,N = µ̃
y
N ⊗ µ⊥N and converges to µy under the assumptions of Corollary 45.



Proof of Corollary 46

ZN =
∫
U
exp

(
− 1

2∥y−GN(u)∥2Γ
)

µ(du)

=
∫
UN

∫
U⊥N

exp
(
− 1

2∥y−GN(uN + u⊥N)∥2Γ
)

µ⊥N(du⊥N)µN(duN)

=
∫
UN

∫
U⊥N

exp
(
− 1

2∥y−GN(uN)∥2Γ
)

µ⊥N(du⊥N)µN(duN)

=
∫
UN

exp
(
− 1

2∥y−GN(uN)∥2Γ
)

µN(duN).

and

µy,N(du) = (ZN)−1 exp
(
− 1

2∥y−GN(u)∥2Γ
)

µ(du)

= (Zy
N)
−1 exp

(
− 1

2∥y−GN(uN)∥2Γ
)

µN(duN)µ⊥N(du⊥N).

The rest follows from Corollary 45.



Stability with respect to prior

Theorem 47
Under the usual assumptions, let µ̃ ∈ P(U ) be another prior measure and set

µ̃y(du) :=
exp(− 1

2∥y−G(u)∥2Γ)
Z̃

µ̃(du), Z̃ :=
∫
U
exp

(
− 1

2∥y−G(u)∥2Γ
)

µ̃(du).

Then

|Z− Z̃| ≤ dH(µ, µ̃),

dH(µy, µ̃y) ≤ 2
min(Z, Z̃)

dH(µ, µ̃).

Exercise 48
Prove Theorem 44, Corollary 45, and Theorem 47, in each case using a similar strategy
to Theorem 43.



Stability — summary and warning

The above results indicate that BIPs are well-posed in the sense that the posterior µy is a
locally Lipschitz function of the prior µ, the forward model G, and the data y.
Warning!
The Lipschitz constants in the above stability results scale like Z−1, which blows up as
the data becomes very precise, e.g. ε ∼ N (0, Γ/β), β > 0:

Z :=
∫
U
exp

(
− 1

2∥y−G(u)∥2Γ/β

)
µ(du)

=
∫
U

(
exp

(
− 1

2∥y−G(u)∥2Γ
))β

µ(du) −−−→
β→∞

µ[G = y] = 0, typically.

Similar blow-up occurs for fixed Γ, but a growing number of i.i.d. observations. Thus,
the above Hellinger well-posedness results are not uniform and become ineffective in
the limit of small observational noise or large data.

Using moment-based arguments, Owhadi et al. (2015) construct examples of priors
µ, µ̃ ∈ P(U ) with dH(µ, µ̃) ≈ 0 but dH(µy, µ̃y) ≈ 1 for precise enough y.



Well-posedness of BIPs

General additive noise



General additive noise

We now sketch out how to extend the above theory to models of the form

y = G(u) + ε,

where ε can be non-Gaussian and Y can be infinite-dimensional.

Example 49
On a “nice” domain D ⊆ Rd, recover the initial condition u0 ∈ L2(D; R) of the heat
equation ∂tut = ∆ut from a noisy observation of u1. Here, G = e−∆, which is so strongly
smoothing that the (naïve) inverse problem is highly ill-conditioned.

Obviously we can no longer rely on Lebesgue densities for µε, µy|u=u, or µy.
More importantly, the potential Φ : U × Y → R must be allowed to take negative
values and even to be unbounded below. Thus, in general, “potential” ̸= “misfit”.
See Stuart (2010, Remark 3.8) and Kasanický and Mandel (2017).



Potentials for infinite-dimensional data

As usual, (u,y) is assumed to be a well-defined U × Y-valued random variable.
The marginal distribution of u is the Bayesian prior µ ∈ P(U ).
The noise ε is distributed according to ν0 ∈ P(Y), independently of u.
So y|u = u is distributed according to νu, the translate of ν0 by G(u), which is
assumed to be absolutely continuous with respect to ν0, with

dνu

dν0 (y) = exp(−Φ(u; y)).

Φ : U × Y → R is the negative log-likelihood or simply potential.
Thus (u,y) ∼ µ(du)νu(dy), and a similar argument to before gives us the regular
conditional distribution / posterior distribution

µy(du) := µu|y(y,du) = exp(−Φ(u; y))
Z(y) µ(du),

Z(y) :=
∫
U
exp(−Φ(u; y)) µ(du).



Cameron–Martin revisited

For the purposes of integrating over u, it is permitted to change Φ by adding any
ν0-a.s. finite g(y) independent of u and renormalising, absorbing the change into the
normalising constant Z(y).
If ε ∼ ν0 = N (0, Γ) on a Banach space Y , then the Cameron–Martin theorem gives

dνu

dν0 (y) = exp
(
⟨G(u), y⟩Γ − 1

2∥G(u)∥
2
Γ
)
,

and so Φ(u; y) = 1
2∥G(u)∥

2
Γ − ⟨G(u), y⟩Γ.

When dimY < ∞ we tend to work with the familiar misfit

Ψ(u; y) := Φ(u; y) + 1
2∥y∥

2
Γ = 1

2∥y−G(u)∥2Γ.

This Ψ is not an admissible potential when dimY = ∞, because 1
2∥y∥2Γ = ∞ ν0-a.s.

(Recall that the Cameron–Martin space of an infinite-dimensional Gaussian measure
has measure zero.)



Further modifications to the theory

Since Φ can be unbounded below, one has to introduce a lower bound on Φ such as
Φ(u; y) ≥ L(r) when ∥u∥, ∥y∥ ≤ r. This lower bound will need to be exponentially
integrable with respect to the prior µ, and its integral will appear as a constant in
bounds on |Z− Z̃|, dH(µy, µ̃y) etc.
Remember while quadratic functions are exponentially integrable with respect ot
Gaussian priors, this is definitely not the case for all functions and all priors. In
particular, for heavy-tailed priors, the class of potentials for which one can get
well-posedness is more restricted than in the Gaussian case.



Markov chain Monte Carlo



The challenge: sampling the posterior

Except in very special cases (e.g. Gaussian prior, linear G, additive Gaussian ε) we do
not have a closed-form expression for the posterior distribution µy. Nevertheless, we
need to access µy, and to integrate quantities of interest f : U → R against it.
Monte Carlo methods aim to draw a sequence (xj)j∈N of i.i.d. samples from µy and to
approximate integrals by sample averages:

∫
U
f(x) µy(dx) ≈ 1

J
J

∑
j=1

f(xj).

Markov chain Monte Carlo (MCMC) methods generate samples that asymptotically
satisfy these requirements via a Markov chain with limiting invariant distribution µy.
Since there is nothing especially Bayesian about this procedure, we just write µ

instead of µy for this target measure.
We especially seek algorithms that work well independently of dimU .



Markov chain Monte Carlo

Invariance, reversibility, convergence



Markov chains

Definition 50
A Markov chain on a state space X is a sequence (xj)j∈N of X -valued random variables
such that, for each j, “xj+1 only depends on xj”. More precisely,

xj+1|xj, xj−1, . . . , x1 and xj+1|xj are equal in distribution.

For simplicity, we will assume that this distribution does not depend on j — the
time-homogeneous case. Such a time-homogeneous Markov chain is specified by its
transition kernel κ : X ×B(X )→ [0, 1],

κ(x,A) := P[xj+1 ∈ A|xj = x],
κm(x,A) := P[xj+m ∈ A|xj = x].

Simply put, our aim is to construct a Markov chain for which κm(x, ·)→ µ as m→ ∞.



Invariance and reversibility

Definition 51
A Markov chain (xj)j∈N with transition kernel κ : X ×B(X )→ [0, 1] has µ ∈ P(X ) as
an invariant measure if κµ = µ, i.e.

(κµ)(A) :=
∫
X

κ(x,A) µ(dx) = µ(A) for all A ∈ B(X ).

Further, κ is reversible (a.k.a. satisfies detailed balance) with respect to µ if
ρ+ = ρ− ∈ P(X ×X ), where

ρ+(dx,dx′) := κ(x,dx′)µ(dx),
ρ−(dx,dx′) := ρ+(dx′,dx) = κ(x′,dx)µ(dx′).

Theorem 52
If κ is µ-reversible, then µ is invariant under κ.



Proof of Theorem 52

Suppose that κ is µ-reversible, and let A ∈ B(X ) be arbitrary. Then

(κµ)(A) :=
∫
X

κ(x,A) µ(dx) =
∫
X

∫
A

κ(x,dx′) µ(dx)

=
∫
X

∫
A

κ(x′,dx) µ(dx′) (reversibility)

=
∫
A

∫
X

κ(x′,dx) µ(dx′) (Fubini)

=
∫
A

κ(x′,X ) µ(dx′)

=
∫
A
1 µ(dx′) = µ(A).

Thus, as claimed, µ is κ-invariant.



Markov chain Monte Carlo

Metropolis–Hastings on Rn



The idea of Metropolis–Hastings

Directly positing a kernel κ that is µ-reversible is rather tricky. Even if we had one, it
might be quite complicated, so sampling from κ(xj, ·) to generate xj+1 could be as
hard as sampling from µ in the first place.
The idea of the Metropolis–Hastings procedure is to

propose x′j+1 according to a (simple) proposal kernel Q : X ×B(X )→ [0, 1],
accept or reject this proposal and set xj+1 := x′j+1 or xj+1 := xj respectively according to
some acceptance probability α,
in such as way as Q and α together define a µ-reversible transition kernel.

For simplicity, we first work on Rn and assume that µ has density ρ and Q has
density q.



The Metropolis–Hastings algorithm

Algorithm 53 (Metropolis–Hastings on Rn)
Given a target density ρ : Rn → [0, ∞), a proposal density q : Rn ×Rn → [0, ∞), and an
initial density ρ0 : Rn → [0, ∞), we output (xj)j∈N as follows:

1. Draw x1 ∼ ρ0.
2. For j ∈N:

2.1 Draw a proposal x′j+1 ∼ q(xj, ·).
2.2 Independently of the other random variables, draw zj+1 ∼ Unif([0, 1]), and set

xj+1 :=

x′j+1 (“accept”) if zj+1 ≤ α(xj, x′j+1),
xj (“reject”) otherwise,

where α is the acceptance probability

α(x, x′) := min
(
1,

ρ(x′)q(x′, x)
ρ(x)q(x, x′)

)
.



Gaussian random walk proposal

Example 54
The (centred, isotropic) Gaussian random walk proposal on Rn is the proposal density

q(x, x′) ∝ exp
(
−∥x− x′∥2

2s2
)

,

i.e. the proposal distribution Q(x, ·) = N (x, s2I), i.e.

x′j+1 := xj + sξj+1, ξj+1 ∼ N (0, I),

where s > 0 is a step size parameter that can be tuned according to various criteria.

The basic dilemma is that making s smaller promotes higher α but makes the chain
immobile with high autocorrelation; choosing a large s means proposing
longer-range moves, but at the cost of lower acceptance probability.
For product measure targets µ, s should be scaled to achieve average acceptance
probability ≈ 0.234 (Roberts et al., 1997).



Convergence of Metropolis–Hastings on Rn

Theorem 55
The Metropolis–Hastings transition kernel

κ(x,dx′) = α(x, x′)Q(x,dx′) +
(
1−

∫
Rn

α(x, x′′)Q(x,dx′′)
)

δx(dx′)

is µ-reversible, and hence µ-invariant. If ρ and q satisfy the positivity condition

ρ(x′) > 0 =⇒ (for all x ∈ Rn, q(x, x′) > 0),

then

for all x ∈ Rn, lim
m→∞

dTV(κm(x, ·), µ) = 0 and,

for all ν0 ∈ P(Rn), f ∈ L1(µ), lim
J→∞

1
J

J

∑
j=1

f(xj) =
∫
X
f(x) µ(dx) P-a.s.



Markov chain Monte Carlo

Metropolis–Hastings onH



The Metropolis–Hastings algorithm

Algorithm 56 (Metropolis–Hastings on a Hilbert spaceH)
Given a target measure µ ∈ P(H), a proposal kernel Q : H×B(H)→ [0, 1], and an
initial distribution ν0 ∈ P(H), we output (xj)j∈N as follows:

1. Draw x1 ∼ ν0.
2. For j ∈N:

2.1 Draw a proposal x′j+1 ∼ Q(xj, ·).
2.2 Independently of the other random variables, draw zj+1 ∼ Unif([0, 1]), and set

xj+1 :=

x′j+1 (“accept”) if zj+1 ≤ α(xj, x′j+1),
xj (“reject”) otherwise,

α(x, x′) := min
(
1,

dρ−

dρ+
(x, x′)

)
,

ρ+(dx,dx′) := Q(x,dx′)µ(dx),
ρ−(dx,dx′) := ρ+(dx′,dx) = Q(x′,dx)µ(dx′).



The acceptance probability

The acceptance probability is defined through

α(x, x′) := min
(
1,

dρ−

dρ+
(x, x′)

)
,

ρ+(dx,dx′) := Q(x,dx′)µ(dx),
ρ−(dx,dx′) := ρ+(dx′,dx) = Q(x′,dx)µ(dx′).

In the familiar case ofH = Rn with densities this reduces to the usual formula:

ρ+(dx,dx′) = Q(x,dx′)µ(dx) = q(x, x′)ρ(x)dx′dx,

ρ−(dx,dx′) = Q(x′,dx)µ(dx′) = q(x′, x)ρ(x′)dxdx′,
dρ−

dρ+
(x, x′) = q(x′, x)ρ(x′)

q(x, x′)ρ(x) .



Reversibility and invariance

Theorem 57 (Cotter et al., 2013; Tierney, 1998)
If the Radon–Nikodym derivative dρ−

dρ+ exists and we take α(x, x′) := min
(
1, dρ−

dρ+ (x, x′)
)
, then

the Metropolis–Hastings transition kernel

κ(x,dx′) = α(x, x′)Q(x,dx′) +
(
1−

∫
H

α(x, x′′)Q(x,dx′′)
)

δx(dx′)

is µ-reversible, and hence µ-invariant.

The problem is that, when dimH = ∞, it can be tricky to construct Q so that dρ−

dρ+ exists
(recall the Feldman–Hájek dichotomy). In particular, dρ−

dρ+ does not exist for the Gaussian
random walk proposal, though a simple modification can resolve this problem.



The preconditioned Crank–Nicolson proposal

Theorem 58 (Cotter et al., 2013; Hairer et al., 2014)
Suppose that dµ ∝ e−Φ dµ0, where µ0 = N (0,C0). For any step size 0 < s < 1, the
preconditioned Crank–Nicolson proposal kernel Q(x, ·) := N

(√
1− s2x, s2C0

)
, i.e.

x′j+1 :=
√

1− s2xj + sξj+1, ξj+1 ∼ N (0,C0)

has acceptance probability

α(x, x′) = min
(
1, exp(Φ(x)−Φ(x′))

)
and defines a µ-reversible Markov chain onH, and κm(x, ·)→ µ as m→ ∞.

The convergence rate κm(x, ·)→ µ depends on a quantity called the spectral gap; Hairer
et al. (2014) showed that pCN has a positive spectral gap onH. As a result, although in
practice we run MCMC on an n-dimensional subspace ofH, n-dimensional pCN inherits
∞-dimensional pCN’s convergence rates etc. in an n-independent way.
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Example 59
Consider the Gaussian prior µ0 =

⊗
n∈NN (0,n−1) ∈ P(ℓ2) and a simple double-well

potential in the first coordinate only:

Φ
(
(xn)n∈N

)
:= 4(x21 − 1)2.

We run GRW and pCN Metropolis–Hastings on the first d ∈N components of ℓ2 for
dimension 1 ≤ d ≤ 1000 and step size 0 < s < 1. Each run has 106 iterations and the
same initial random seed.

To give GRW a fighting chance, we use the prior-adapted Gaussian proposal
Q(x, ·) = N (x, s2C0) — the performance is even worse for the isotropic proposal
Q(x, ·) = N (x, s2I).
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a-bar(GRW)=0.79620, TV-bar(GRW)=0.08628; a-bar(pCN)=0.84320, TV-bar(pCN)=0.09092

The first 40,000 iterations of GRW and pCN with step size s = 0.1 in dimension d = 10.
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The first 40,000 iterations of GRW and pCN with step size s = 0.1 in dimension d = 100.
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The first 40,000 iterations of GRW and pCN with step size s = 0.2 in dimension d = 100.
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The first 40,000 iterations of GRW and pCN with step size s = 0.5 in dimension d = 100.



Comparing GRW to pCN ii

0 40000
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0 40000
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0 40000
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0 40000
−1.0

−0.5

0.0

0.5

1.0

1.5

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

co
u
n
t

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

co
u
n
t

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

co
u
n
t

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

co
u
n
t

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
x[0]

0

1000

2000

3000

4000

5000

6000

co
u
n
t

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
x[1]

0

1000

2000

3000

4000

5000

6000

7000

co
u
n
t

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
x[2]

0

1000

2000

3000

4000

5000

6000

7000

co
u
n
t

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
x[3]

0

1000

2000

3000

4000

5000

6000

7000

co
u
n
t
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The first 40,000 iterations of GRW and pCN with step size s = 0.9 in dimension d = 100.
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Exercise 60
Let dµ ∝ e−Φdµ0, µ0 = N (0,C0), onH = Rn.

Let q be any symmetric proposal density, i.e. q(x, x′) = q(x′, x). Show that the
Hastings ratio reduces to

q(x′, x)ρ(x′)
q(x, x′)ρ(x) = exp

(
Φ(x)−Φ(x′) + 1

2∥x∥
2
C0 −

1
2∥x

′∥2C0

)
.

On a hand-wavy level, what happens to the “− 1
2∥x′∥2C0

” term, and hence to the
acceptance probability, when dimH = ∞? (Hint: Cameron–Martin.)
Consider the pCN proposal onH = Rn. Show that the Hastings ratio reduces to

q(x′, x)ρ(x′)
q(x, x′)ρ(x) = exp(Φ(x)−Φ(x′)).
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