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A Probabilistic Treatment of Numerics?

The last 5 years have seen a renewed interest in probabilistic perspectives on
numerical tasks — e.g. quadrature, ODE and PDE solution, optimisation —
continuing a theme with a long heritage: Poincaré (1896); Larkin (1970); Diaconis
(1988); Skilling (1992).
There are many ways to motivate this modelling choice:

To a statistician’s eye, numerical tasks look like inverse problems.
Worst-case errors are often too pessimistic — perhaps we should adopt an average-case
viewpoint (Traub et al., 1988; Ritter, 2000; Trefethen, 2008)?
“Big data” problems often require (random) subsampling.
If discretisation error is not properly accounted for, then biased and over-confident
inferences result (Conrad et al., 2016). However, the necessary numerical analysis in
nonlinear and evolutionary contexts can be hard!
Accounting for the impact of discretisation error in a statistical way allows forward and
Bayesian inverse problems to speak a common statistical language.

To make these ideas precise and to relate them to one another, some concrete
definitions are needed! 1/39



A Probabilistic Treatment of Numerics?

Bayesian inference of three governing parameters in the FitzHugh–Nagumo ODE.

The deterministic-Euler posteriors (left) are equally (over?) confident at all values of the
time step τ = 0.1, 0.05, 0.02, 0.01, 0.005, do not overlap, and are biased. In contrast, the
PN-Euler posteriors (right) for τ = 0.1, 0.05, 0.02, 0.01, 0.005 have τ-dependent confidence
and overlap more, though are still biased. (after Conrad et al., 2016)
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An Inference Perspective on
Numerical Tasks



An Abstract View of Numerical Methods i

An abstract setting for numerical tasks consists of three spaces and two functions:

U , where an unknown/variable object u lives; dimU = ∞
A, where we observe information A(u), via a function A : U → A; dimA < ∞
Q, with a quantity of interest Q : U → Q.

Example (Quadrature)

U = C0([0, 1]; R) A = ([0, 1]× R)m Q = R

A(u) = (ti,u(ti))mi=1 Q(u) =
∫ 1

0
u(t)dt

Conventional numerical methods are cleverly-designed functions b : A → Q: such a
method “believes” that Q(u) ≈ b(A(u)).
N.B. Some methods try to invert A, form an estimate of u, then apply Q, but e.g.
vanilla Monte Carlo — b((ti, yi)ni=1) := 1

n ∑n
i=1 yi — does not! (cf. O’Hagan, 1987)
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An Abstract View of Numerical Methods ii

Question: What makes for a “good” numerical method? (Larkin, 1970)
Answer 1, Gauss: b ◦A = Q on a “large” finite-dimensional subspace of U .
Answer 2, Sard (1949): b ◦A−Q is “small” on U . In what sense?

The worst-case error:
eWC := sup

u∈U
∥b(A(u))−Q(u)∥Q.

The average-case error with respect to a probability measure µ on U :

eAC :=
∫
U
∥b(A(u))−Q(u)∥Q µ(du).

To a Bayesian, seeing the additional structure of µ, there is only one way forward: if
u ∼ µ, then b(A(u)) should be obtained by conditioning µ and then applying Q. But is
this Bayesian solution always well-defined, and what are its error properties?
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Rev. Bayes Does Some Numerics i
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Example (Quadrature)

U = C0([0, 1]; R) A = ([0, 1]× R)m Q = R

A(u) = (ti,u(ti))mi=1 Q(u) =
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0
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A deterministic numerical method uses
only the spaces and data to produce a
point estimate of the integral.

A probabilistic numerical method converts
an additional belief about the integrand
into a belief about the integral.
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Definition (Bayesian PNM)

A PNM B(µ, ·) : A → PQ with prior µ ∈ PU is Bayesian for a QoI Q : U → Q and
information operator A : U → A if the bottom-left A-PU -PQ triangle commutes, i.e. the
output of B is the push-forward of the conditional distribution µa through Q:

B(µ, a) = Q#µa, for A#µ-almost all a ∈ A,

(A♯µ)(E) := µ ◦A−1(E) = µ{u ∈ U | A(u) ∈ E} for E ⊆ A.
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Rev. Bayes Does Some Numerics ii

Definition (Bayesian PNM)

A PNM B with prior µ ∈ PU is Bayesian for a quantity of interest Q and information A
if its output is exactly the image of the conditional distribution µa = µ|[A = a] under Q:

B(µ, a) = Q#µa, for A#µ-almost all a ∈ A.

Example

Under the Gaussian Brownian motion prior on U = C0([0, 1]; R), the posterior mean
/ MAP estimator for the definite integral is the trapezoidal rule, i.e. integration using
linear interpolation (Sul′din, 1959, 1960).
The integrated Brownian motion prior corresponds to integration using cubic spline
interpolation.
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A Rogue’s Gallery of Bayesian and non-Bayesian PNMs
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Generalising Bayes’ Theorem via
Disintegration



Bayes’ Theorem i

Thus, we are expressing PNMs in terms of Bayesian inverse problems for functional
unknowns (Stuart, 2010 + “the Finnish school”).
When describing prior and posterior distributions over infinite-dimensional
quantities u (e.g. integrands, O/PDE solutions) one cannot work in terms of
Lebesgue densities.
At least for finite-dimensional data a with a|u ∼ ρ(a|u)da, the fix is to describe the
posterior µa in terms of its density with respect to the prior:

dµa

dµ
: U → R

dµa

dµ
(u) = ρ(a|u)

Eµ[ρ(a| ·)]
.
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Bayes’ Theorem ii

Even the Stuart-style formulation of Bayes’ rule does not work for PN, because

supp(µa) ⊆ U a := {u ∈ U | A(u) = a},

typically µ(U a) = 0, and — in contrast to typical statistical inverse problems — we
think of the observation process as noiseless.
We cannot take the Stuart-style approach of defining µa via its prior density as

dµa

dµ
(u) ∝ ρ(a|u)

because this density “wants” to be the indicator function 1[u ∈ U a], which typically
vanishes µ-a.e.
E.g. quadrature example from earlier, with A(u) = (ti,u(ti))mi=1.
While linear-algebraic tricks work for linear conditioning of Gaussians, in general we
condition on events of measure zero using disintegration (or regular conditional
probabilities).
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Disintegration i

Write
µ(f) ≡ Eµ[f] ≡

∫
U
f(u) µ(du)

Definition (Disintegration)
A disintegration of µ ∈ PU with respect to a measurable map A : U → A is a map
A → PU , a 7→ µa, such that

µa(U \ U a) = 0 for A#µ-almost all a ∈ A; (support)

and, for each measurable f : U → [0, ∞),

a 7→ µa(f) is measurable; (measurability)
µ(f) = A#µ

(
µa(f)

)
, (conditioning/reconstruction)

i.e.
∫
U
f(u) µ(du) =

∫
A

[∫
U a

f(u) µa(du)
]
(A#µ)(da).
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Disintegration ii

Theorem (Disintegration theorem (Chang and Pollard, 1997, Thm. 1))

Let U be a metric space and let µ ∈ PU be inner regular. If the Borel σ-algebra on U is countably
generated and contains all singletons {a} for a ∈ A, then there is an essentially unique
disintegration {µa}a∈A of µ with respect to A. (If {νa}a∈A is another such disintegration, then
{a ∈ A : µa ̸= νa} is an A#µ-null set.)

Example
For µ ∈ PR2 with continuous Lebesgue density ρ : R2 → [0, ∞), i.e.
dµ(x1, x2) = ρ(x1, x2)d(x1, x2), the disintegration of µ with respect to vertical projection
A(x1, x2) := x1 is just the family of measures µa, where µa has Lebesgue density
ρ(a, ·)/Za on the vertical line {(a, x2) | x2 ∈ R}, and Za :=

∫
R

ρ(a, x2)dx2.

Except for nice situations like this, Gaussian measures, etc. (Owhadi and Scovel, 2015),
disintegrations cannot be computed exactly — we have to work approximately.
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Optimal Information: the Worst,
the Average, and the Bayesian



Measures of Error

Suppose we have a loss function L : Q×Q → R, e.g. L(q, q′) := ∥q− q′∥2Q.

The worst-case loss for a classical numerical method b : A → Q is

eWC(A, b) := sup
u∈U

L
(
b(A(u)),Q(u)

)
.

The average-case loss under a probability measure µ ∈ PU is

eAC(A, b) :=
∫
U
L
(
b(A(u)),Q(u)

)
µ(du),

eAC(A,B) :=
∫
U

[∫
Q
L
(
q,Q(u)

)
B(µ,A(u))(dq)

]
µ(du).

Kadane and Wasilkowski (1985) show that the minimiser B is a deterministic decision
rule b, and the minimiser A is “optimal information” for this task.
A BPNM B has “no choice” but to be Q♯µ

a once A(u) = a is given; optimality of A
means minimising the Bayesian loss

eBPN(A) :=
∫
U

[∫
Q
L(q,Q(u)) (Q♯µ

A(u))(dq)
]

µ(du). 12/39



Optimal Information: AC = BPN?

Theorem (AC = BPN for quadratic loss; Cockayne et al., 2017b)
For a quadratic loss L(q, q′) := ∥q− q′∥2Q on a Hilbert space Q, optimal information for BPNM
and ACE coincide (though the minimal values may differ).

Example (AC = BPN in general?)
Decide whether or not a card drawn fairly at random is ©, incurring unit loss if you
guess wrongly; can choose to be told whether the card is red (A1) or is non-¨ (A2).

U = {¨, ©, ª, «} µ = UnifU Q = {0, 1} ⊂ R

A1 = {0, 1} A1(u) = 1[u ∈ {©, ª}] Q(u) = 1[u = ©]

A2 = {0, 1} A2(u) = 1[u ∈ {©, ª, «}] L(q, q′) = 1[q ̸= q′]

Which information operator, A1 or A2, is better? (Note that eWC(Ai, b) = 1 for all
deterministic b!)
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Optimal Information: AC ̸= BPN!

U = {¨, ©, ª, «} µ = UnifU Q = {0, 1} ⊂ R

A1(u) = ■ vs. ■ Q(u) = 1[u = ©]

A2(u) = ¬¨ vs. ¨ L(q, q′) = 1[q ̸= q′]

u= ¨ © ª «

eAC(A1, b) = 1
4
(

L(b(■), 0) + L(b(■), 1) + L(b(■), 0) + L(b(■), 0)
)
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Numerical Disintegration



Numerical Disintegration i

The exact disintegration “µa(du) ∝ 1[A(u) = a] µ(du)” can be accessed numerically
via relaxation, with approximation guarantees provided a 7→ µa is “nice”, e.g.
A#µ ∈ PA has a smooth Lebesgue density.
Consider relaxed posterior µa

δ(du) ∝ ϕ(∥A(u)− a∥A/δ) µ(du) with 0 < δ ≪ 1.
Essentially any ϕ : [0, ∞) → [0, 1] tending continuously to 1 at 0 and decaying quickly
enough to 0 at ∞ will do.
E.g. ϕ(r) := 1[r < 1] or ϕ(r) := exp(−r2).

Definition
The integral probability metric on PU associated to a normed space F of test functions
f : U → R is

dF (µ, ν) := sup
{
|µ(f)− ν(f)|

∣∣∥f∥F ≤ 1
}
.

F = bounded continuous functions with uniform norm ↔ total variation.
F = bounded Lipschitz continuous functions with Lipschitz norm ↔ Wasserstein.
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Numerical Disintegration ii

“µa(du) ∝ 1[A(u) = a] µ(du)”
µa

δ(du) ∝ ϕ(∥A(u)− a∥A/δ) µ(du)
dF (µ, ν) := sup

{
|µ(f)− ν(f)|

∣∣∥f∥F ≤ 1
}

Theorem (Cockayne, Oates, Sullivan, and Girolami, 2017b, Theorem 4.3)
If a 7→ µa is γ-Hölder from (A, ∥·∥A) into (PU , dF ), then so too is the approximation µa

δ ≈ µa

as a function of δ. That is,

dF
(
µa, µa′) ≤ C · ∥a− a′∥γ for a, a′ ∈ A

=⇒ dF
(
µa, µa

δ

)
≤ C · Cϕ · δγ for A#µ-almost all a ∈ A.

Open question: when does the hypothesis, a quantitative version of the Tjur property
(Tjur, 1980), actually hold?

16/39



Numerical Disintegration iii

To evaluate expectations against µa we can extrapolate expectations against µa
δ (Schillings

and Schwab, 2016).

To sample µa
δ we take inspiration from rare event simulation and use tempering schemes

to sample the posterior: we set δ0 > δ1 > . . . > δN and consider

µa
δ0

, µa
δ1

, . . . , µa
δN

µa
δ0

is easy to sample — often µa
δ0
= µ.

µa
δN

has δN close to zero and is hard to sample.
Intermediate distributions define a “ladder” which takes us from prior to posterior.
Even within this framework, there is considerable choice of sampling scheme, e.g.
brute-force MCMC, SMC, QMC, pCN, …
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Example: Painlevé’s First Transcendental i

A multivalent boundary value problem:

u′′(t)− u(t)2 = −t for t ≥ 0
u(0) = 0

u(t)/
√
t → 1 as t → +∞
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3
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Figure 1: The two solutions of Painlevé’s first transcendental and their spectra in the orthonormal
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Example: Painlevé’s First Transcendental iii

Parallel tempered pCN with 100 δ-values log-spaced from δ = 10 to δ = 10−4 and 108
iterations recovers both solutions in approximately the same proportions as the
posterior densities at the two exact solutions. 3

SMC reliably recovers one solution, but not both simultaneously. !?
Of course, this comes at the price of MCMC… 7
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Coherent Pipelines of BPNMs



Computational Pipelines

Numerical methods usually form part of pipelines.
Prime example: a PDE solve is a forward model in an inverse problem.
Motivation for PNMs in the context of Bayesian inverse problems:

Make the forward and inverse problem
speak the same statistical language!

We can compose PNMs in series, e.g. B2(B1(µ, a1), a2) is formally B(µ, (a1, a2))…
although figuring out what the spaces U i, Ai and operators Ai etc. are is a headache!

20/39



Pipeline Example i: Bayesian Inverse Problems

A “simple” example of a computational pipeline is a Bayesian inverse problem for
recovering parameters θ ∈ Θ from data y ∈ Y . This can be represented as the
two-stage computational pipeline

y B1(µ, ·) θ 7→ ρ(y|θ) B2(µ, ·) θ

B1 is the method that converts data y into the likelihood function for parameters θ,
and hence incorporates any forward model such as an O/PDE solver.
B2 is the method that converts the prior on θ and the likelihood into a joint
distribution for (θ, y), then conditions upon the actual observation — it returns
something in PΘ.
B1 conventionally has deterministic output in RΘ, but in the world of PN, it could
return a non-trivial probability distribution in PRΘ , i.e. a randomised likelihood.
Lie et al. (2018) analyse how the stochastic variability in the forward model /
likelihood propagates to the (randomised or marginal) Bayesian posterior on θ.
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Pipeline Example ii: Split Integration

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

B1(µ, ·)

B2(µ, ·)

∫ 0.5
0 u(t)dt

∫ 1
0.5 u(t)dt

B3(µ, ·)
∫ 1
0 u(t)dt

Integrate a function over [0, 1] in two steps using nodes 0 ≤ t0 < · · · < tm−1 < 0.5,
tm = 0.5, and tm+1 < · · · < t2m ≤ 1.
For example, the two nodal sets are very large, and so two are handled by two
different processors with non-shared memory.
A third processor handles the (easy!) task of aggregating the two estimates of the
two integrals

∫ 0.5
0 u(t)dt and

∫ 1
0.5 u(t)dt into an estimate of

∫ 1
0 u(t)dt.
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Coherence i

We compose PNMs in a graphical way by allowing input information nodes (□) to
feed into method nodes (■), which in turn output new information.
N.B. one should at first think of having deterministic data at the left-most □ nodes,
then random variables as outputs, realisations of which get fed into the next ■.
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Coherence i

We compose PNMs in a graphical way by allowing input information nodes (□) to
feed into method nodes (■), which in turn output new information.
N.B. one should at first think of having deterministic data at the left-most □ nodes,
then random variables as outputs, realisations of which get fed into the next ■.
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We define the corresponding dependency graph by replacing each □→■→□ by
□→□, and number the vertices in an increasing fashion, so that i→ i′ implies i < i′.
The independence properties of the random variables at each node are crucial.
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Coherence ii

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

B1(µ, ·)

B2(µ, ·)

∫ 0.5
0 u(t)dt

∫ 1
0.5 u(t)dt

B3(µ, ·)
∫ 1
0 u(t)dt

Definition
A prior µ is coherent for the dependency graph if — when the “leaf” input nodes are
A♯µ-distributed and the remaining nodes are B(µ,parents)-distributed — every node Yk
is conditionally independent of all older non-parent nodes Yi given its direct parents Yj:

Yk ⊥⊥ Y{1,...,k−1}\parents(k) | Yparents(k)

This is weaker than the Markov condition for directed acyclic graphs (Lauritzen, 1991):
we do not insist that the variables at the source nodes are independent. 24/39
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Coherency Theorem

Theorem (Cockayne, Oates, Sullivan, and Girolami, 2017b, Theorem 5.9)
If a pipeline of PNMs is such that

the prior is coherent for the dependency graph, and
the component PNMs are all Bayesian

then the pipeline is the Bayesian pipeline data at leaves→■→final output .

Redundant structure in the pipeline (recycled information) will break coherence,
and hence Bayesianity of the pipeline.
In principle, coherence and hence being Bayesian depend upon the prior.
This should not be surprising — as a loose analogy, one doesn’t expect the
trapezoidal rule to be a good way to integrate very smooth functions.
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Split Integration: Coherence

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

B1(µ, ·)

B2(µ, ·)

∫ 0.5
0 u(t)dt

∫ 1
0.5 u(t)dt

B3(µ, ·)
∫ 1
0 u(t)dt

Integrate a function over [0, 1] in two steps using nodes 0 ≤ t0 < · · · < tm−1 < 0.5,
tm = 0.5, and tm+1 < · · · < t2m ≤ 1.
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∫ 1
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For a Brownian motion prior on the integrand u, yes.
For an integrated BM prior on u, i.e. a BM prior on u′, no.

26/39
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u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

B1(µ, ·)

B2(µ, ·)

∫ 0.5
0 u(t)dt

∫ 1
0.5 u(t)dt

B3(µ, ·)
∫ 1
0 u(t)dt

Integrate a function over [0, 1] in two steps using nodes 0 ≤ t0 < · · · < tm−1 < 0.5,
tm = 0.5, and tm+1 < · · · < t2m ≤ 1.
Is
∫ 1
0.5 u(t)dt independent of u(t0), . . . ,u(tm−1) given u(tm), . . . ,u(t2m)?

For a Brownian motion prior on the integrand u, yes.
For an integrated BM prior on u, i.e. a BM prior on u′, no.
So how do we elicit an appropriate prior that respects the problem’s structure? !?
And is being fully Bayesian worth it in terms of cost and robustness? Cf. Owhadi
et al. (2015), Jacob et al. (2017), and Lie et al. (2018). !?

26/39



Applications



Example: Hydrocyclones (Oates, Cockayne, and Ackroyd, 2017)

Hydrocyclones are used in industry as an alternative to
centrifuges or filtration systems to separate fluids of different
densities or particulate matter from a fluid.
Monitoring is an essential control component, but usually
cannot be achieved visually: Gutierrez et al. (2000) propose
electrical impedance tomography as an alternative.
EIT is an indirect imaging technique in which the
conductivity field in the interior — which correlates with
many material properties of interest — is inferred from
current and voltage boundary conditions.
In its Bayesian formulation, this is a well-posed inverse
problem (Dunlop and Stuart, 2016a,b) closely related to
Calderón’s problem (Uhlmann, 2009).
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Complete Electrode Model (Cheng et al., 1989; Somersalo et al., 1992)

The interior conductivity field σ and electrical potential field v and the applied boundary
currents Ii, measured voltages Vi, and known contact impedances ζi are related by

−∇ · σ(x)∇v(x) = 0 x ∈ D;
∫
Ei

σ(x)∂v(x)
∂n̂ du = Ii x ∈ Ei, i = 1, . . . ,m;

v(x) + ζiσ(x)
∂v(x)

∂n̂ = Vi x ∈ Ei; σ(x)∂v(x)
∂n̂ = 0 x ∈ ∂D \

m∪
i=1

Ei.

Furthermore, we consider a vector of such models, with multiple current stimulation
patterns, at multiple points in time, for a time-dependent field σ(t, x).

n̂
D

σ(x) = ???

(E1, I1,V1)

(E2, I2,V2)

(E3, I3,V3) 28/39



EIT Forward Problem

Sampling from the posterior(s) requires repeatedly solving the forward PDE.
We use the probabilistic meshless method of Cockayne et al. (2016, 2017a):

a Gaussian process extension of symmetric collocation;
a BPNM for a Gaussian prior and linear elliptic PDEs of this type.

PMM allows us to:
account for uncertainty arising from the PDE having no explicit solution;
use coarser discretisations of the PDE to solve the problem faster while still providing
meaningful UQ.
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Figure 2: Like collocation, PMM imposes the PDE relation at nA interior nodes and boundary
conditions at nB boundary nodes. 29/39



EIT Inverse Problem

For the inverse problem we use a Karhunen–Loève series prior:

log σ(t, x; ω) =
∞

∑
k=1

k−αψk(t; ω)ϕk(x),

with the ψk being a-priori independent Brownian motions in t.
Like Dunlop and Stuart (2016a), we assume additive Gaussian observational noise
with variance γ2 > 0, independently on each Ei.
We adopt a filtering formulation, inferring σ(ti, · ; ·) sequentially.
Within each data assimilation step, the Bayesian update is performed by SMC with
P ∈ N weighted particles and a pCN transition kernel (which uses point evaluations
of σ directly and avoids truncation of the KL expansion).
Real-world data obtained at 49 regular time intervals: rapid injection between frames
10 and 11, followed by diffusion and rotation of the liquids.
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EIT Static Recovery i
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when the PDE is discretised and the discretisation error is not modelled (blue, ‘Non-PN’). The
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EIT Static Recovery ii
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EIT Dynamic Recovery
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EIT Comments

Typically PDE discretisation error in BIPs is ignored, or its contribution is bounded
through detailed numerical analysis (Schwab and Stuart, 2012). Theoretical bounds
are difficult in the temporal setting due to propagation and accumulation of errors
As a modelling choice, the PN approach eases these difficulties. As with the Painlevé
example, this is a statistically correct implementation of the assumptions, but it is (at
present) costly. 3/7

Furthermore, Markov temporal evolution of the conductivity field was assumed; this
is likely incorrect, since time derivatives of this field will vary continuously. Even
a-priori knowledge about the spin direction is neglected at present. 7

Again, we see a need for priors that are ‘physically reasonable’ and
statistically/computationally appropriate. !?
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Closing Remarks



Closing Remarks

Numerical methods can be characterised in a Bayesian fashion. 3

This does not coincide with average-case analysis. 3

BPNMs can be composed into pipelines, e.g. for inverse problems. 3

Bayes’ rule as disintegration → (expensive!) numerical implementation. 3/7

Lots of room to improve computational cost and bias. !?
Departures from the “Bayesian gold standard” can be assessed in terms of cost-accuracy
tradeoff. !?

How to choose/design an appropriate (numerically-analytically right) prior? !?

Cockayne, Oates, Sullivan, and Girolami (2017b) arXiv:1702.03673.
Bayesian probabilistic numerical methods

Lie, Sullivan, and Teckentrup (2018) arXiv:1712.05717.
Random forward models and log-likelihoods in Bayesian inverse problems SIAM/ASA J. Uncertain. Quantif. To appear.

Thank You
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