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“Numerical analysts and statisticians are both in the business
of estimating parameter values from incomplete information.
The two disciplines have separately developed their own
approaches to formalizing strangely similar problems and their
own solution techniques; the author believes they have much to
offer each other.”
— F. M. Larkin (1979)
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OVERVIEW: PNMS AND BIPS

There are many reasons to consider a probabilistic/statistical perspective on the
analysis and design of numerical methods, and even to return probabilistic
solutions to deterministic forward problems like quadrature / DE solution.
In various forms, these ideas have a long history.

→ Oates and Sullivan (2019) Stat. Comp. arXiv:1901.04457
What are probabilistic numerical methods (PNMs) and in what sense can they be
Bayesian? → Cockayne et al. (2019) SIAM Rev. arXiv:1702.03673
A Bayesian interpretation of forward problems is especially appealing for Bayesian
inverse problems (BIPs), since then both the forward and inverse problem “speak
the same language”, without spurious posterior over-concentration.
How does their use connect to established theory for BIPs?

→ Lie et al. (2018) SIAM/ASA JUQ arXiv:1712.05717
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MOTIVATING EXAMPLE: FITZHUGH–NAGUMO ODE INFERENCE

FitzHugh–Nagumo Oscillator
Nonlinear oscillator u : [0,T] → R2:

du
dt = f(u) :=

[
u1 −

u3
1
3 + u2

− 1
θ3
(u1 − θ1 + θ2u2)

]

Note that f is not globally Lipschitz, but is one-sided Lipschitz!

Aim: recover θ ∈ R3
>0 from observations yi = u(tobsi ) + ηi at some discrete times

tobsi = 0, 1, . . . , 40, ηi ∼ N (0, 10−3I) i.i.d.
Take ground truth u(0) = (−1, 1) and θ = (0.2, 0.2, 3); generate data from a reference
trajectory using RK4 with time step τ = 10−3.
Infer θ using PN–Euler solvers with local noise ξ of variance ∝ στ3 and hence strong
error E

[
sup0≤t≤T ‖u(t)− uPN(t)‖2

]
≤ Cτ2 (Lie et al., 2019).

Take log-normal prior for θ and compute the marginal Bayesian posterior
Eξ

[
P[θ|y, τ, ξ]

]
for various τ > 0 and σ ≥ 0. 3/37



MOTIVATING EXAMPLE: FITZHUGH–NAGUMO ODE INFERENCE

Figure 1: The deterministic posteriors (i.e. σ = 0) are over-confident at all values of the time step
τ = 0.1, 0.05, 0.02, 0.01, 0.005, often do not overlap, and are biased. 4/37



MOTIVATING EXAMPLE: FITZHUGH–NAGUMO ODE INFERENCE

Figure 1: In contrast, the PN-Euler posteriors (here with σ = 1/5) for τ = 0.1, 0.05, 0.02, 0.01, 0.005
are less confident and overlap more, though are still biased. 4/37
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AN INFERENCE PERSPECTIVE ON
NUMERICAL TASKS



AN ABSTRACT VIEW OF NUMERICAL METHODS I

An abstraction of a numerical task consists of three spaces and three functions:

U , where an unknown/variable object u lives; dimU = ∞

Q, with a quantity of interest Q : U → Q;
Y , where we observe information Y(u), via a function Y : U → Y . dimY < ∞

Example (Quadrature)

U = C0([0, 1]; R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Q(u) =
∫ 1

0
u(t)dt

Conventional numerical methods are cleverly-designed functions B : Y → Q: such a
method “believes” that Q(u) ≈ B(Y(u)).
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AN ABSTRACT VIEW OF NUMERICAL METHODS II

Example (Quadrature)

U = C0([0, 1]; R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Q(u) =
∫ 1

0
u(t)dt

Conventional numerical methods are cleverly-designed functions B : Y → Q: such a
method “believes” that Q(u) ≈ B(Y(u)).

N.B. Somemethods try to invert Y, form an estimate of u, then apply Q, but not all do!
E.g. the trapezoidal rule does estimate u:

Btrap
(
(tj, zj)Jj=1

)
:=

J−1
∑
j=1

zj+1 + zj
2 (tj+1 − tj) = z1

t2 − t1
2 +

J−1
∑
j=2

zj
tj+1 − tj−1

2 + zJ
tJ − tJ−1

2 .

E.g. vanilla Monte Carlo does not estimate u! (cf. O’Hagan, 1987)

BMC((ti, zi)ni=1) :=
1
n

n
∑
i=1

zi
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AN ABSTRACT VIEW OF NUMERICAL METHODS III

Question: What makes for a “good” numerical method? (Larkin, 1970)
Answer 1, Gauss: B ◦ Y = Q on a “large” finite-dimensional subspace of U .
Answer 2, Sard (1949): B ◦ Y−Q is “small” on U . In what sense?

The worst-case error:
eWC := sup

u∈U
‖B(Y(u))−Q(u)‖Q.

The average-case error (Ritter, 2000) with respect to a probability measure µ ∈ PU :

eAC :=
∫
U
‖B(Y(u))−Q(u)‖Q µ(du).

To a Bayesian, seeing the additional structure of µ, there is only one way forward: if
u ∼ µ, then B(Y(u)) should be obtained by conditioning µ and then applying Q. But is
this Bayesian solution always well-defined, and what are its error properties?
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REV. BAYES DOES SOME NUMERICS I

U
Y

++

Q
��

Y

Q
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x

tqnkiQ

B : Y → Q

Example (Quadrature)

U = C0([0, 1]; R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Y(u) =
∫ 1

0
u(t)dt

A deterministic numerical method uses
only the spaces and data to produce a
point estimate of the integral.
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U
Y

++

Q
��

Y

B
ss

|
x

tqnkiQ

B : Y → Q

Go Probabilistic!

µ ∈ PU

(Y♯µ)(E) := µ(Y−1(E))

PU

Y♯
++

Q♯

��

PY

B♯tt

v
s

pmk
PQ Y

δ

UU

average-case performance of B?
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B : Y → Q

Go Probabilistic!

µ ∈ PU

(Y♯µ)(E) := µ(Y−1(E))

PU

Y♯
++

Q♯

��

PY

PQ Y

δ

UU

y 7→β(µ,y)
kk gdb_\Z

β(µ, ·) : Y → PQ

Example (Quadrature)

U = C0([0, 1]; R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Y(u) =
∫ 1

0
u(t)dt

A deterministic numerical method uses
only the spaces and data to produce a
point estimate of the integral.

A probabilistic numerical method converts
an additional belief about the integrand
into a belief about the integral.
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REV. BAYES DOES SOME NUMERICS I

U
Y

++

Q
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Y

B
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tqnkiQ

B : Y → Q

Go Probabilistic!

µ ∈ PU

(Y♯µ)(E) := µ(Y−1(E))

PU

Y♯
++

Q♯

��

PY

PQ Y

y 7→
µ y

ffNNNNNNNNNNNNNN
δ

UU

y 7→β(µ,y)
kk gdb_\Z

β(µ, ·) : Y → PQ

Definition (Bayesian PNM)
A PNM β(µ, ·) : Y → PQ with prior µ ∈ PU is Bayesian for a QoI Q : U → Q and
information operator Y : U → Y if the bottom-left Y-PU -PQ triangle commutes, i.e. the
output of β is the push-forward of the conditional distribution µy through Q:

β(µ, y) = Q♯µ
y, for Y♯µ-almost all y ∈ Y .
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REV. BAYES DOES SOME NUMERICS II

Definition (Bayesian PNM)
A PNM β with prior µ ∈ PU is Bayesian for a quantity of interest Q and information Y if
its output is exactly the image of the conditional distribution µy = µ|[Y = y] under Q:

β(µ, y) = Q♯µ
y, for Y♯µ-almost all y ∈ Y .

Example

Under the Gaussian Brownian motion prior on U = C0([0, 1]; R), the posterior mean
/ MAP estimator for the definite integral is the trapezoidal rule, i.e. integration using
linear interpolation (Sul′din, 1959, 1960).
Integrated Brownian motion prior ↔ integration using cubic spline interpolation.

For technical reasons, “conditioning” here is meant in the sense of disintegration, as
advocated by e.g. Chang and Pollard (1997).
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A ROGUE’S GALLERY OF BAYESIAN AND NON-BAYESIAN PNMS (2017)
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OPTIMAL INFORMATION:
THE WORST, THE AVERAGE,
AND THE BAYESIAN



MEASURES OF ERROR / LOSS

Suppose we have a loss function L : Q×Q → R, e.g. L(q, q′) := ‖q− q′‖2Q.

The worst-case loss for a classical numerical method B : Y → Q is

eWC(Y,B) := sup
u∈U

L
(
B(Y(u)),Q(u)

)
.

The average-case loss under a probability measure µ ∈ PU is

eAC(Y,B) :=
∫
U
L
(
B(Y(u)),Q(u)

)
µ(du),

eAC(Y,β) :=
∫
U

[∫
Q
L
(
q,Q(u)

)
β(µ, Y(u))(dq)

]
µ(du).

Kadane and Wasilkowski (1985) show that the minimisers are deterministic decision
rules B, and the minimiser Y is “optimal information” for this task.
A BPNM β has “no choice” but to be Q♯µ

y once Y(u) = y is given; optimality of Y
means minimising the Bayesian loss

eBPN(Y) :=
∫
U

[∫
Q
L(q,Q(u)) (Q♯µ

Y(u))(dq)
]

µ(du). 12/37



OPTIMAL INFORMATION: AC = BPN?

Theorem (AC = BPN for quadratic loss; Cockayne et al., 2019)
For a quadratic loss L(q, q′) := ‖q− q′‖2Q on a Hilbert space Q, optimal information for BPNM
and AC coincide (though the minimal values may differ).
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Theorem (AC 6= BPN in general; Oates et al. (2019b))
If U can be partitioned into three sets of positive probability, then there exists a choice of QoI and
loss so that optimal information for BPNM and AC differ.
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Theorem (AC = BPN for quadratic loss; Cockayne et al., 2019)
For a quadratic loss L(q, q′) := ‖q− q′‖2Q on a Hilbert space Q, optimal information for BPNM
and AC coincide (though the minimal values may differ).

Example (AC 6= BPN in general; Oates et al. (2019b))
Decide whether or not a card drawn fairly at random is ©, incurring unit loss if you
guess wrongly; can choose to be told whether the card is red (Y1) or is non-¨ (Y2).

U = {¨, ©, ª, «} µ = UnifU Q = {0, 1} ⊂ R

Y1 = {0, 1} Y1(u) = 1[u ∈ {©, ª}] Q(u) = 1[u = ©]

Y2 = {0, 1} Y2(u) = 1[u ∈ {©, ª, «}] L(q, q′) = 1[q 6= q′]

Which information operator, Y1 or Y2, is better? (Note that eWC(Yi,B) = 1 for all
deterministic b!)
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OPTIMAL INFORMATION: AC 6= BPN!

U = {¨, ©, ª, «} µ = UnifU Q = {0, 1} ⊂ R

Y1(u) = ■ vs. ■ Y(u) = 1[u = ©]

Y2(u) = ¬¨ vs. ¨ L(q, q′) = 1[q 6= q′]

u= ¨ © ª «

eAC(Y1,B) = 1
4
(

L(B(■), 0) + L(B(■), 1) + L(B(■), 0) + L(B(■), 0)
)
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DISINTEGRATION:
EXACT AND NUMERICAL



DEFINING THE POSTERIOR

The posterior µy is subtle to define precisely, since heuristically it is given by

µy(du) ∝ 1[Y(u) = y] µ(du)
We have a 0-1 likelihood, and moreover the likelihood is zero µ-a.e.!

Numerical analysts usually think of function evaluations as noiseless, in contrast to the
noisy observations that are typical in statistics.
E.g. what is the prior probability that a Brownian path interpolates given data?

We cannot even express Bayes’ formula in the form favoured by Stuart (2010),
dµy

dµ
(u) = 1[Y(u) = y]

Z(y) ,

because µy is singular with respect to µ, the density on the LHS does not exist, and
Z(y) = 0.
One way to consistently condition on events of measure zero is to define the
conditioning operation in terms of disintegration.
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DISINTEGRATION I

Definition (Disintegration)
A disintegration of µ ∈ PU with respect to a measurable map Y : U → Y is a map
Y → PU , y 7→ µy, such that

(support) µy({u ∈ U | Y(u) = y}) = 1 for Y#µ-almost all y ∈ Y ;

and, for each measurable f : U → [0, ∞), (f = 1E, E ⊆ U will do)

(measurability) y 7→
∫
U f(u) µy(du) is

(conditioning/reconstruction/law of total probability)∫
U
f(u) µ(du) =

∫
Y

[∫
U
f(u) µy(du)

]
(Y#µ)(dy).

(Closely related concept: a regular conditional probability is basically the same thing, but
in a different coordinate system.)
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DISINTEGRATION II

Theorem (Disintegration theorem (Chang and Pollard, 1997, Thm. 1))
Let U be a metric space and let µ ∈ PU be inner regular. If the Borel σ-algebra on U is countably
generated and contains all singletons {y} for y ∈ Y , then there is an essentially unique
disintegration {µy}y∈Y of µ with respect to Y. (If {νy}y∈Y is another such disintegration, then
{y ∈ Y | µy 6= νy} is an Y#µ-null set.)

Example
For µ ∈ PR2 with continuous Lebesgue density ρ : R2 → [0, ∞), i.e.
dµ(x1, x2) = ρ(x1, x2)d(x1, x2), the disintegration of µ with respect to vertical projection
Y(x1, x2) := x1 is just the family of measures µy, where µy has Lebesgue density
ρ(a, ·)/Zy on the vertical line {(y, x2) | x2 ∈ R}, and Zy :=

∫
R

ρ(y, x2)dx2.

Except for nice situations like this, Gaussian measures, etc. (Owhadi and Scovel, 2015),
disintegrations cannot be computed exactly — we have to work approximately.
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NUMERICAL DISINTEGRATION I

The exact disintegration “µy(du) ∝ 1[Y(u) = y] µ(du)” can be accessed numerically
via relaxation, with approximation guarantees provided y 7→ µy is “nice”, e.g.
Y♯µ ∈ PY has a smooth Lebesgue density.
Consider relaxed posterior µ

y
δ(du) ∝ ϕ(‖Y(u)− y‖Y/δ) µ(du) with 0 < δ � 1.

Essentially any ϕ : [0, ∞) → [0, 1] tending continuously to 1 at 0 and decaying quickly
enough to 0 at ∞ will do.
E.g. ϕ(r) := 1[r < 1] or ϕ(r) := exp(−r2).

Definition
The integral probability metric on PU associated to a normed space F of test functions
f : U → R is

dF (µ, ν) := sup
{
|µ(f)− ν(f)|

∣∣‖f‖F ≤ 1
}
.

F = bounded continuous functions with uniform norm ↔ total variation.
F = bounded Lipschitz continuous functions with Lipschitz norm ↔ Wasserstein.
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NUMERICAL DISINTEGRATION II

“µy(du) ∝ 1[Y(u) = y] µ(du)”
µ
y
δ(du) ∝ ϕ(‖Y(u)− y‖Y/δ) µ(du)

dF (µ, ν) := sup
{
|µ(f)− ν(f)|

∣∣‖f‖F ≤ 1
}

Theorem (Cockayne et al., 2019, Theorem 4.3)
If y 7→ µy is γ-Hölder from (Y , ‖·‖Y ) into (PU , dF ), then so too is the approximation µ

y
δ ≈ µy

as a function of δ. That is,

dF
(
µy, µy′) ≤ C · ‖y− y′‖γ for y, y′ ∈ Y

=⇒ dF
(
µy, µ

y
δ

)
≤ C · Cϕ · δγ for Y♯µ-almost all y ∈ Y .

Open question: when does the hypothesis, a quantitative version of the Tjur property
(Tjur, 1980), actually hold? (Fixing y and varying y′ is ok; having both y and y′ free is
hard.) 19/37



EXAMPLE: PAINLEVÉ’S FIRST TRANSCENDENTAL I

A simple but multivalent boundary value problem:

u′′(t)− u(t)2 = −t for t ≥ 0
u(0) = 0

u(t)/
√
t → 1 as t → +∞
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Figure 2: The two solutions of Painlevé’s first transcendental and their spectra in the orthonormal
Chebyshev polynomial basis over [0, 10].
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EXAMPLE: PAINLEVÉ’S FIRST TRANSCENDENTAL II

Parallel tempered pCN with 100 δ-values log-spaced from δ = 10 to δ = 10−4 and 108
iterations recovers both solutions in approximately the same proportions as the
posterior densities at the two exact solutions. 3

SMC reliably recovers one solution, but not both simultaneously. !?
Of course, this comes at the price of MCMC… 7
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COHERENT PIPELINES OF PNMS, AND
BAYESIAN INVERSE PROBLEMS



COMPUTATIONAL PIPELINES

Numerical methods usually form part of pipelines.
Prime example: a PDE solve is a forward model in an inverse problem.
Motivation for PNMs in the context of Bayesian inverse problems:

Make the forward and inverse problem
speak the same statistical language!

We can compose PNMs in series, e.g. β2(β1(µ, y1), y2) is formally β(µ, (y1, y2))…
although figuring out what the spaces U i, Y i and operators Yi etc. are is a headache!
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PIPELINE EXAMPLE: SPLIT INTEGRATION

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

β1(µ, ·)

β2(µ, ·)

∫ 0.5
0 u(t)dt

∫ 1
0.5 u(t)dt

β3(µ, ·)
∫ 1
0 u(t)dt

Integrate a function over [0, 1] in two steps using nodes 0 ≤ t0 < · · · < tm−1 < 0.5,
tm = 0.5, and tm+1 < · · · < t2m ≤ 1.
For example, the two nodal sets are very large, and so two are handled by two
different processors with non-shared memory.
A third processor handles the (easy!) task of aggregating the two estimates of the
two integrals

∫ 0.5
0 u(t)dt and

∫ 1
0.5 u(t)dt into an estimate of

∫ 1
0 u(t)dt.
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COHERENCE I

We compose PNMs in a graphical way by allowing input information nodes (□) to
feed into method nodes (■), which in turn output new information.
N.B. one should at first think of having deterministic data at the left-most □ nodes,
then random variables as outputs, realisations of which get fed into the next ■.
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COHERENCE I

We compose PNMs in a graphical way by allowing input information nodes (□) to
feed into method nodes (■), which in turn output new information.
N.B. one should at first think of having deterministic data at the left-most □ nodes,
then random variables as outputs, realisations of which get fed into the next ■.
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We define the corresponding dependency graph by replacing each □→■→□ by
□→□, and number the vertices in an increasing fashion, so that i→ i′ implies i < i′.
The independence properties of the random variables at each node are crucial.
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COHERENCE II

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

β1(µ, ·)

β2(µ, ·)

∫ 0.5
0 u(t)dt

∫ 1
0.5 u(t)dt

β3(µ, ·)
∫ 1
0 u(t)dt

Definition
A prior µ is coherent for the dependency graph if — when the “leaf” input nodes are
Y♯µ-distributed and the remaining nodes are β(µ,parents)-distributed — every node Yk
is conditionally independent of all older non-parent nodes Yi given its direct parents Yj:

Yk ⊥⊥ Y{1,...,k−1}\parents(k) | Yparents(k)

This is weaker than the Markov condition for directed acyclic graphs (Lauritzen, 1991):
we do not insist that the variables at the source nodes are independent. 25/37
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COHERENCY THEOREM

Theorem (Cockayne et al., 2019, Theorem 5.9)
If a pipeline of PNMs is such that

the prior is coherent for the dependency graph, and
the component PNMs are all Bayesian

then the pipeline is the Bayesian pipeline data at leaves→■→final output .

Redundant structure in the pipeline (recycled information) will break coherence,
and hence Bayesianity of the pipeline.
In principle, coherence and hence being Bayesian depend upon the prior.
This should not be surprising — as a loose analogy, one doesn’t expect the
trapezoidal rule to be a good way to integrate very smooth functions.
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SPLIT INTEGRATION: COHERENCE

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

β1(µ, ·)

β2(µ, ·)

∫ 0.5
0 u(t)dt

∫ 1
0.5 u(t)dt

β3(µ, ·)
∫ 1
0 u(t)dt

Integrate a function over [0, 1] in two steps using nodes 0 ≤ t0 < · · · < tm−1 < 0.5,
tm = 0.5, and tm+1 < · · · < t2m ≤ 1.
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∫ 1
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∫ 1
0.5 u(t)dt) independent of ■ (u(t0), . . . ,u(tm−1)) given ■ (u(tm), . . . ,u(t2m))?

For a Brownian motion prior on the integrand u, yes.
For an integrated BM prior on u, i.e. a BM prior on u′, no.
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u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

β1(µ, ·)

β2(µ, ·)

∫ 0.5
0 u(t)dt

∫ 1
0.5 u(t)dt

β3(µ, ·)
∫ 1
0 u(t)dt

Integrate a function over [0, 1] in two steps using nodes 0 ≤ t0 < · · · < tm−1 < 0.5,
tm = 0.5, and tm+1 < · · · < t2m ≤ 1.
Is ■ (

∫ 1
0.5 u(t)dt) independent of ■ (u(t0), . . . ,u(tm−1)) given ■ (u(tm), . . . ,u(t2m))?

For a Brownian motion prior on the integrand u, yes.
For an integrated BM prior on u, i.e. a BM prior on u′, no.
So how do we elicit an appropriate prior that respects the problem’s structure? !?
And is being fully Bayesian worth it in terms of cost and robustness? Cf. Jacob et al.
(2017), and Lie et al. (2018). !?
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SHORT PIPELINES: BAYESIAN INVERSE PROBLEMS

A Bayesian inverse problem for recovering parameters θ ∈ Θ from data d ∈ D can be
represented as the automatically coherent two-stage computational pipeline

d β1(µ, ·) θ 7→ ρ(d|θ) β2(µ, ·) θ

β1 converts data d into the likelihood function for parameters θ, and hence
incorporates any forward model such as an O/PDE solver.
β2 converts the prior on θ and the likelihood into a joint distribution for (θ, d), then
conditions upon the actual observation — it returns something in PΘ.
β1 conventionally has deterministic output in RΘ; a bona fide PNM would return a
non-trivial probability distribution in PRΘ , i.e. a randomised likelihood.
Lie et al. (2018) analyse how the stochastic variability in the forward model /
likelihood propagates to the (randomised or marginal) Bayesian posterior on θ.
Alternative approach: assess sufficiency of forward solver accuracy for BIP purposes
using Bayes factors (Capistrán et al., 2016; Christen et al., 2017).
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APPLICATIONS



EXAMPLE: HYDROCYCLONES (OATES ET AL., 2019A)

Hydrocyclones are used in industry as an alternative to
centrifuges or filtration systems to separate fluids of different
densities or particulate matter from a fluid.
Monitoring is an essential control component, but usually
cannot be achieved visually: Gutierrez et al. (2000) propose
electrical impedance tomography as an alternative.
EIT is an indirect imaging technique in which the
conductivity field in the interior — which correlates with
many material properties of interest — is inferred from
current and voltage boundary conditions.
In its Bayesian formulation, this is a well-posed inverse
problem (Dunlop and Stuart, 2016a,b) closely related to
Calderón’s problem (Uhlmann, 2009).
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COMPLETE ELECTRODE MODEL (CHENG ET AL., 1989; SOMERSALO ET AL., 1992)

The interior conductivity field σ and electrical potential field v and the applied boundary
currents Ii, measured voltages Vi, and known contact impedances ζi are related by

−∇ · σ(x)∇v(x) = 0 x ∈ D;
∫
Ei

σ(x)∂v(x)
∂n̂ du = Ii x ∈ Ei, i = 1, . . . ,m;

v(x) + ζiσ(x)
∂v(x)

∂n̂ = Vi x ∈ Ei; σ(x)∂v(x)
∂n̂ = 0 x ∈ ∂D \

m⋃
i=1

Ei.

Furthermore, we consider a vector of such models, with multiple current stimulation
patterns, at multiple points in time, for a time-dependent field σ(t, x).

n̂
D

σ(x) = ???

(E1, I1,V1)

(E2, I2,V2)

(E3, I3,V3) 30/37



EIT FORWARD PROBLEM

Sampling from the posterior(s) requires repeatedly solving the forward PDE.
We use the probabilistic meshless method (PMM) of Cockayne et al. (2016, 2017):

a Gaussian process extension of symmetric collocation;
a Bayesian PNM for a Gaussian prior and linear elliptic PDEs of this type.

PMM allows us to:
account for uncertainty arising from the PDE having no explicit solution;
use coarser discretisations of the PDE to solve the problem faster while still providing
meaningful UQ for the inverse problem, cf. Capistrán et al. (2016); Christen et al. (2017).
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Figure 3: Like collocation, PMM imposes the PDE relation at nA interior nodes and boundary
conditions at nB boundary nodes.
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EIT INVERSE PROBLEM

For the inverse problem we use a Karhunen–Loève series prior:

log σ(t, x; ω) =
∞

∑
k=1

k−αψk(t; ω)ϕk(x),

with the ψk being a-priori independent Brownian motions in t.
Like Dunlop and Stuart (2016a), we assume additive Gaussian observational noise
with variance γ2 > 0, independently on each Ei.
We adopt a filtering formulation, inferring σ(ti, · ; ·) sequentially.
Within each data assimilation step, the Bayesian update is performed by SMC with
P ∈ N weighted particles and a pCN transition kernel (which uses point evaluations
of σ directly and avoids truncation of the KL expansion).
Real-world data obtained at 49 regular time intervals: rapid injection between frames
10 and 11, followed by diffusion and rotation of the liquids.
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EIT STATIC RECOVERY I
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the coefficients ψk is plotted (grey) and compared to the approximation to the posterior obtained
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EIT STATIC RECOVERY II
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Figure 5: Posterior means and standard-deviations for the recovered conductivity field at t = 14.
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EIT DYNAMIC RECOVERY
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EIT COMMENTS

Typically PDE discretisation error in BIPs is ignored, or its contribution is bounded
through detailed numerical analysis (Schwab and Stuart, 2012). Theoretical bounds
are difficult in the temporal setting due to propagation and accumulation of errors
As a modelling choice, the PN approach eases these difficulties. As with the Painlevé
example, this is a statistically correct implementation of the assumptions, but it is (at
present) costly. 3/7

Furthermore, Markov temporal evolution of the conductivity field was assumed; this
is likely incorrect, since time derivatives of this field will vary continuously. Even
a-priori knowledge about the spin direction is neglected at present. 7

Again, we see a need for priors that are ‘physically reasonable’ and
statistically/computationally appropriate. !?
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CLOSING REMARKS

Numerical methods can be characterised in a Bayesian fashion, distinct from ACA. 3

BPNMs can be composed into pipelines, e.g. for inverse problems. 3

Bayes’ rule as disintegration → (expensive!) numerical implementation. 3/7

Lots of room to improve computational cost and bias. !?
Departures from the “Bayesian gold standard” can be assessed in terms of cost-accuracy
tradeoff. !?

How to choose/design an appropriate (numerically-analytically right) prior? !?

Foundations: Cockayne et al. (2019) arXiv:1702.03673
Optimality: Oates et al. (2019b) arXiv:1901.04326
BIPs: Lie et al. (2018) arXiv:1712.05717
Industrial applications: Oates et al. (2019a) arXiv:1707.06107
History: Oates and Sullivan (2019) arXiv:1901.04457

Thank You
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