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INTRODUCTION



A ROLE FOR PROBABILITY IN NUMERICS?

“Numerical analysts and statisticians are both in the business of estimating parameter val-
ues from incomplete information. The two disciplines have separately developed their own
approaches to formalizing strangely similar problems and their own solution techniques;
the author believes they have much to offer each other.”

— F. M. Larkin (1979c)
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THE CLASSIC TASKS OF NUMERICAL ANALYSIS

Suppose that we have the ability to interrogate/evaluate a function u : [0, 1] → R

pointwise (at finitely many points t1, . . . , tJ in finite time). Tasks that we might be
interested in performing — or quantities of interest — include:

quadrature: find q :=
∫ 1
0 u(x)dx;

interpolation: find q : [0, 1] → R such that q(tj) = u(tj) for each j = 1, . . . , J;
approximation: find q : [0, 1] → R such that q(tj) ≈ u(tj) for each j = 1, . . . , J, e.g. the
closest such q to u in some norm;
optimisation: find q ∈ [0, 1] such that u(q) ≤ u(x) for all x ∈ [0, 1];
solution of an ODE with u : [0, 1]× R → R and x0 ∈ R: find q : [0, 1] → R such that
q′(t) = u(t, q(t)) and q(0) = x0.

These are all deterministic problems!
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PROBABILISTIC NUMERICS

The field of probabilistic numerics (PN), loosely speaking, attempts to provide a
statistical treatment of the errors and/or approximations that are made en route to
the output of a deterministic numerical method.
The history of such approaches goes back at least a century.
This decade has seen a surge of activity in this field, with simultaneous input from
multiple scientific disciplines: mathematics, statistics, machine learning, and
computer science.
The field has, therefore, advanced on a broad front, with contributions ranging from
the building of over-arching general theory to practical implementations in specific
problems of interest. Over the same period of time, and because of increased
interaction among researchers coming from different communities, the extent to
which these developments were — or were not — presaged by twentieth-century
researchers has also come to be better appreciated.
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HISTORICAL DEVELOPMENTS



POINCARÉ (1912) BLENDS INTERPOLATION AND PROBABILITY

“Je suppose que l’on sache a priori que la fonction f(x) est développable, dans une certain domaine,
suivant les puissances croissantes des x,

f(x) = A0 +A1x+ . . . .

Nous ne savons rien sur les A, sauf que la probabilité pour que l’un d’eux, Ai, soit compris entre
certaines limites, y et y+ dy, est √

hi
π
e−hiy2 dy.

Nous connaissons par n observations

f(a1) = B1,

f(a2) = B2,

· · · · · · · · · · · ·
f(an) = Bn.

Nous cherchons la valeur probable de f(x) pour une autre valeur de x.”
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POINCARÉ

In modern terms, Poincaré (1912, Ch. 25), in his Calcul des Probabilités, considered a
(formal) Gaussian prior distribution on a function f, i.e. a randomised power series

f(x) =
∞

∑
k=0

Akxk, Ak ∼ N
(
0, 1√

2hk

)
.

Given n pointwise observations of the values of f, one seeks the probable values of
f(x) for another (not yet observed) value of x.
This analytical treatment predates the first digital multipurpose computers and
rigorous Gaussian measure theory by decades, yet it clearly illustrates a non-trivial
probabilistic perspective on interpolation, a hybrid approach that is entirely in
keeping with Poincaré’s reputation as one of the last universalist mathematicians
(Ginoux and Gerini, 2013).
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ROUND-OFF ERROR

What about probabilistic numerical methods for use on a computer?
The limited nature of the earliest computers led authors to focus initially on the
phenomenon of round-off error (Henrici, 1962; Hull and Swenson, 1966; von
Neumann and Goldstine, 1947), whether of fixed-point or floating-point type,
without any particular statistical inferential motivation; indeed, this aspect is still alive
(Barlow and Bareiss, 1985; Chatelin and Brunet, 1990; Tienari, 1970).
One early, utilitarian view is that probabilistic models in computation are useful
shortcuts, simply easier to work with than the unwieldy deterministic truth (cf. the
long-time state of a chaotic dynamical system):
“[Round-off errors] are strictly very complicated but uniquely defined number theoretical
functions [of the inputs], yet our ignorance of their true nature is such that we best treat
them as random variables.”

— von Neumann and Goldstine (1947, p. 1027)
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ORDINARY DIFFERENTIAL EQUATIONS

Concerning the numerical solution of ODEs, Henrici (1962, 1963) studied classical
finite difference methods and derived expected values and covariance matrices for
accumulated round-off error, under an assumption that individual round-off errors
can be modelled as independent random variables.
In particular, given posited means and covariance matrices of the individual errors,
Henrici demonstrated how these moments can be propagated through the
computation of a finite difference method.
In contrast with more modern treatments, Henrici was concerned with the analysis of
an established numerical method and did not attempt to statistically motivate the
numerical method itself.
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AL′BERT VALENTINOVICH SUL′DIN

One of the earliest attempts to statistically
motivate a numerical algorithm was due to A. V.
Sul′din (1924–1996), working at Kazan State
University in the USSR (Norden et al., 1978;
Zabotin et al., 1996).
After first making contributions to the study of
Lie algebras, towards the end of the 1950s Sul′din
turned his attention to computational and
applied mathematics, and in particular to
probabilistic and statistical methodology.
His work in this direction led to the
establishment of the Faculty of Computational
Mathematics and Cybernetics in Kazan, of which
he was the founding Dean.

Al′bert Valentinovich Sul′din (1924–1996)
© Kazan Federal University, reproduced

with permission.
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SUL′DIN I

Sul′din began by considering the problem of quadrature. Suppose that we wish to
approximate the definite integral

∫ b
a u(t)dt of a function u ∈ U := C0([a, b]; R), the space

of continuous real-valued functions on [a, b], under a statistical assumption that
(u(t)− u(a))t∈[a,b] follows a standard Brownian motion (Wiener measure, µW). For this
task we receive pointwise data about the integrand u in the form of the values of u at
J ∈ N arbitrarily located nodes t1, . . . , tJ ∈ [a, b], although for convenience we assume that

a = t1 < t2 < · · · < tJ = b.

In more statistical language, anticipating the terminology of Cockayne et al. (2019a), our
observed data or information concerning the integrand u is y := (tj,u(tj))Jj=1, which
takes values in the space Y := ([a, b]× R)J.
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SUL′DIN II

Since µW is a Gaussian measure and both the integral and pointwise evaluations of u are
linear functions of u, Sul′din (1959, 1960, 1963b) showed by direct calculation that the
quadrature rule B : Y → R that minimises the mean squared error

∫
U

∣∣∣∣∫ b

a
u(t)dt− B

(
(tj,u(tj))Jj=1

)∣∣∣∣2 µW(du) (1)

is the classical trapezoidal rule

Btr
(
(tj, zj)Jj=1

)
:=

1
2

J−1

∑
j=1

(zj+1 + zj)(tj+1 − tj) = z1
t2 − t1

2 +
J−1

∑
j=2

zj
tj+1 − tj−1

2 + zJ
tJ − tJ−1

2 ,

(2)

i.e. the definite integral of the piecewise linear interpolant of the observed data.
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SUL′DIN III

Sul′din saw the connection between his methods and statistical regression (Sul′din,
1963a) and conditional probability (Sul′din, 1963c) — but did he consider his work to
be an expression of statistical inference?
Since Sul′din’s methods were grounded in Hilbert space theory (Sul′din, 1968; Sul′din
et al., 1969), the underlying mathematics (the linear conditioning of Gaussian
measures on Hilbert spaces) is linear algebra which can be motivated without
recourse to a probabilistic framework.
Sul′din did contribute something novel. Up to this point, the role of statistics in
numerical analysis was limited to providing insight into the performance of a
traditional numerical method. The 1960s brought forth a new perspective, namely
the statistically-motivated design of numerical methods, as laid out in his 1969
habilitation thesis.
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FREDERICK MICHAEL (“MIKE”) LARKIN

On the other side of the Iron Curtain, between
1957 and 1969, Frederick Michael (“Mike”)
Larkin (1936–1982) worked for the UK Atomic
Energy Authority in its laboratories at Harwell
and Culham, as well as working for two years at
Rolls Royce.
Following a parallel path to that of Sul′din, over
the next decade Larkin would further blend
numerical analysis and statistical thinking
(Kuelbs et al., 1972; Larkin, 1969, 1972, 1974,
1979b,a,c), arguably laying the foundations on
which modern PN would be developed.

Frederick Michael Larkin (1936–1982)
© (Larkin et al., 1967, reproduced with

permission).
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LARKIN I

At Culham, Larkin worked on building some of the first graphical calculators, called
GHOST (short for graphical output system), and the GHOUL (graphical output
language) — perhaps a motivation for seeking a richer description of numerical error.
The perspective developed by Larkin was fundamentally statistical and, in modern
terminology, the probabilistic numerical methods he developed would be described
as Bayesian — though Larkin used the term relative likelihood for the prior.
Larkin’s perspective on quadrature: consider the Wiener measure as a prior, the
information (tj,u(tj))Jj=1 as (noiseless) data, and output the posterior marginal for∫ b
a u(t)dt — what we would now recognise as a probabilistic numerical method:

“Among other things, this permits, at least in principle, the derivation of joint probability
density functions for [both observed and unobserved] functionals on the space and also
allows us to evaluate confidence limits on the estimate of a required functional (in terms
of given values of other functionals).” — Larkin (1972)
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LARKIN II

Sul′din describes the trapezoidal rule Btr as a frequentist point estimator obtained
from minimising the MSE (1), which “just happens” to produce an unbiased
estimator with variance 1

12 ∑J−1
j=1(tj+1 − tj)3.

Larkin sees the normal distribution

N
(
Btr
(
(tj, zj)Jj=1

)
,
1
12

J−1

∑
j=1

(tj+1 − tj)3
)

(3)

on R as the measure-valued output of a probabilistic quadrature rule, of which
Btr
(
(tj, zj)Jj=1 is a convenient point summary. The technical development in this

pioneering work made fundamental contributions to the study of Gaussian measures
on Hilbert spaces (Kuelbs et al., 1972; Larkin, 1972).
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LARKIN III

Larkin moved to Canada in 1969 to Queen’s University in Kingston, Ontario. He
received tenure in 1977 and was promoted to full professor in 1980.
“He worked in isolation at Queen’s in that few graduate students and fewer faculty mem-
bers were aware of the nature of his research contributions to the field. […] Michael pio-
neered the idea of using a probabilistic approach to give an alternative local approximation
technique. In some cases this leads to the classical methods, but in many others leads
to new algorithms that appear to have practical advantages over more classical methods.
This work has finally begun to attract attention and I expect that the importance of his
contribution will grow in time.”

— Queen’s University at Kingston (11 Feb. 1982)
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SUL′DIN ↔ LARKIN? I

It now seems that Sul′din and Larkin were working in parallel, with similar
probabilistic perspectives on numerics, but limited to a Gaussian setting.
Naturally, given the linguistic barriers and nearly disjoint publication cultures of
their time, it would not have been easy for Larkin and Sul′din to be conversant with
each other’s work (Hollings, 2016).
At least by 1972 (Larkin, 1972), Larkin was aware of and cited Sul′din’s work on
minimal variance estimators for the values of linear functionals on Wiener space
(Sul′din, 1959, 1960), but apparently did not know of Sul′din’s 1969 habilitation
thesis, which laid out a broader agenda for the role of probability in numerics.
Soviet authors knew of Sul′din’s influence on e.g. U. Grenander and W. Freiberger at
Brown University, but make no mention of Larkin (Norden et al., 1978).
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SUL′DIN ↔ LARKIN? II

Their ideas were ahead of their time: given the limited computational resources
available at even cutting-edge facilities in the 1960s, the computational power needed
to make PN a reality simply did not exist.1

1To first approximation, a single modern laptop has a hundred times the computing power of all five
then-cutting-edge IBM System/360 Model 75J mainframe computers used for the ground support of the
Apollo missions (Manber and Norvig, 2012).
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OPTIMAL NUMERICAL METHODS ARE BAYES RULES (1980–1990) I

The average-case analysis (ACA) of numerical methods received interest and built
on the work of (Kolmogorov, 1936) and (Sard, 1963).
In ACA the performance of a numerical method is assessed in terms of its average
error with respect to a probability measure over the problem set; a prime example is
univariate quadrature with the average quadratic loss (1) given earlier.
A traditional (deterministic) NM can also be regarded as a decision rule and the
probability measure used in ACA can be used to instantiate the Bayesian
decision-theoretic framework (Berger, 1985). The average error is then recognised as
the expected loss, also called the risk. ACA is mathematically equivalent to Bayesian
decision theory — restricted to the case of an experiment that produces a
deterministic dataset (Kimeldorf and Wahba, 1970a,b; Parzen, 1970; Larkin, 1970).
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OPTIMAL NUMERICAL METHODS ARE BAYES RULES (1980–1990) II

Average-case optimal methods are recognised as Bayes rules or Bayes acts in the
decision-theoretic context. A key result in this area is the insight of Kadane and
Wasilkowski (1985) that ACA-optimal methods coincide with (non-randomised)
Bayes rules when the measure used to define the MSE is the Bayesian prior. Recently
it has become clear that ACA and Bayesian optimality differ in general (Cockayne
et al., 2019a; Oates et al., 2019b).
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INFORMATION-BASED COMPLEXITY

Information-based complexity (IBC) (Novak, 1988; Traub et al., 1983; Traub and
Woźniakowsi, 1980) developed simultaneously with ACA, with the aim of relating
the computational complexity and optimality properties of algorithms to the
available information on the unknowns.
For example, (Smale, 1985, Theorem D) compared the accuracies (with respect to
mean absolute error) for a given cost of the Riemann sum, trapezoidal, and Simpson
quadrature rules; in the same paper, Smale also considered root-finding,
optimisation via linear programming, and the solution of systems of linear equations.
Bayesian quadrature was again discussed in detail by Diaconis (1988), who repeated
Sul′din’s observation that the posterior mean for

∫ b
a u(t)dt under the Wiener measure

prior is the trapezoidal method, which is a ACA-optimal.
Diaconis posed a further question: can other numerical methods for other tasks be
similarly recovered as Bayes rules in a decision-theoretic framework? For linear
cubature methods, a positive and constructive answer was recently provided by
Karvonen et al. (2018b), but the general question remains open. 20/49



RESURGENCE IN THE 1990S I

Research interest in PN was revived by contributions from on quadrature (Minka,
2000; O’Hagan, 1991; Rasmussen and Ghahramani, 2003), each to a greater or lesser
extent a rediscovery of earlier work due to Larkin (1972). In each case the algorithmic
output was considered to be a probability distribution over the quantity of interest.
The 1990s saw an expansion in the PN agenda, first with early work on an area that
was to become Bayesian optimisation (Močkus, 1975, 1977, 1989).
Skilling (1992) presented a novel (partially) Bayesian perspective on the numerical
solution of ODE initial value problems of the form

u′(t) ≡ du
dt = f(t,u(t)) t ∈ [0,T],

u(0) = u0.
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RESURGENCE IN THE 1990S II

Skilling (1992) considered, e.g. the role of regularity assumptions on f, prior and
likelihood choice, and sampling strategies.
Skilling himself considered his then-new explicit emphasis on a Bayesian statistical
approach to be quite natural:
“This paper arose from long exposure to Laplace/Cox/Jaynes probabilistic reasoning, com-
bined with the University of Cambridge’s desire that the author teach some (traditional)
numerical analysis. The rest is common sense. […] Simply, Bayesian ideas are ‘in the
air’.”

— Skilling (1992)
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NEW MOTIVATION: UNCERTAINTY QUANTIFICATION

The last two decades have seen an explosion of interest in uncertainty quantification (UQ)
for complex systems (Le Maître and Knio, 2010; Smith, 2014; Sullivan, 2015):

“UQ studies all sources of error and uncertainty, including the following: systematic and
stochastic measurement error; ignorance; limitations of theoretical models; limitations of
numerical representations of those models; limitations of the accuracy and reliability of
computations, approximations, and algorithms; and human error. A more precise defini-
tion is UQ is the end-to-end study of the reliability of scientific inferences.”

— U.S. Department of Energy (2009, p. 135)

Since 2010, perhaps stimulated by this activity in the UQ community, a perspective on PN
has emerged that sees PN part of UQ (broadly understood) and should be performed
with a view to propagating uncertainty in computational pipelines.
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ON ADVANCES ON A BROAD FRONT (2010–) I

Quadrature: Briol et al. (2019); Gunter et al. (2014); Karvonen et al. (2018b); Oates
et al. (2017); Osborne et al. (2012a,b); Särkkä et al. (2016); Xi et al. (2018); Ehler et al.
(2019); Jagadeeswaran and Hickernell (2018); Karvonen et al. (2018a, 2019).
Optimisation: Chen et al. (2018); Snoek et al. (2012), including probabilistic
perspectives on quasi-Newton methods (Hennig and Kiefel, 2013) and line search
methods (Mahsereci and Hennig, 2015).
Numerical linear algebra: Bartels and Hennig (2016); Cockayne et al. (2019b);
Hennig (2015); Bartels et al. (2019) have approached the solution of a large linear
system of equations as a statistical learning task and developed probabilistic
alternatives to the classical conjugate gradient method.
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ON ADVANCES ON A BROAD FRONT (2010–) II

ODEs: approaches based on Gaussian filtering (Kersting and Hennig, 2016; Schober
et al., 2014, 2018; Tronarp et al., 2019) and perturbation of dynamics and time steps
(Abdulle and Garegnani, 2018; Chkrebtii et al., 2016; Conrad et al., 2017; Kersting
et al., 2018; Teymur et al., 2018, 2016).
A key result is the Bayesian optimality of evaluating f according to the classical
Runge–Kutta scheme, and numerical-analysis-style convergence guarantees are being
supplied (Conrad et al., 2017; Kersting et al., 2018; Schober et al., 2018; Teymur et al.,
2018; Lie et al., 2019).
PDEs: resent research includes (Chkrebtii et al., 2016; Cockayne et al., 2016, 2017;
Owhadi, 2015), with these contributions making substantial use of RKHS structure
and Gaussian processes.
The probabilistically-motivated theory of gamblets for PDEs (Owhadi, 2017; Owhadi
and Scovel, 2017a; Owhadi and Zhang, 2017) has gone hand-in-hand with the
development of fast solvers for structured matrix inversion and approximation
problems (Schäfer et al., 2017; Yoo and Owhadi, 2019). 25/49



PARALLEL DEVELOPMENTS IN MATHEMATICAL STATISTICS I

Optimal approximation using splines was applied by Schoenberg (1965, 1966) and
Karlin (1969, 1971, 1972, 1976) in the late 1960s and early 1970s to the linear problem
of quadrature. Larkin cites (Karlin, 1969) in (Larkin, 1974).
However, the works cited above were not concerned with randomness and equivalent
probabilistic interpretations were not discussed; in contrast, the Bayesian
interpretation of spline approximation was highlighted by Kimeldorf and Wahba
(1970a).
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PARALLEL DEVELOPMENTS IN MATHEMATICAL STATISTICS II

The experimental design literature of the late 1960s and early 1970s, including a
sequence of contributions from Sacks and Ylvisaker (1968, 1970a,b, 1966), considered
optimal selection of a design 0 ≤ t1 < t2 < · · · < tJ ≤ 1 to minimise the covariance of
the best linear estimator of β given discrete observations of stochastic process

Y(t) =
m
∑
i=1

βiϕi(t) + Z(t),

where Z is a stochastic process with E[Z(t)] = 0 and E[Z(t)2] < ∞, based on the data
{(tj,Y(tj))}Jj=1. As such, the mathematical content of these works concerns optimal
approximation in RKHSs, e.g. Sacks and Ylvisaker (1970a, p. 2064, Theorem 1); we
note that Larkin (1970) simultaneously considered optimal approximation in RKHSs.
However, the extent to which probability enters these works is limited to the
measurement error process Z.
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PARALLEL DEVELOPMENTS IN MATHEMATICAL STATISTICS III

The emulation of black-box functions, late 1970s and 1980s (O’Hagan, 1978; Sacks
et al., 1989), provided Bayesian and frequentist statistical perspectives (respectively)
on interpolation of a black-box function based on a finite number of function
evaluations. This literature did not present interpolation as an exemplar of other
more challenging numerical tasks, such as the solution of differential equations,
which could be similarly addressed but rather focused on the specific problem of
black-box interpolation in and of itself. Sacks et al. (1989) cite Sul′din but not Larkin.
The challenges of proposing a suitable stochastic process model for a deterministic
function discussed by Sacks et al. (1989) and Currin et al. (1991).
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CONCEPTUAL EVOLUTION — A SUMMARY

1. In the traditional setting of numerical analysis, c. 1950, all objects and operations are
seen as being strictly deterministic. These deterministic objects are sometimes
exceedingly complicated, to the extent that they may be treated as being stochastic.

2. Sard and Sul′din consider the questions of optimal performance of a numerical
method in, respectively, the worst-case and the average-case context. Some of the
average-case performance measures amount to variances of point estimators but are
not viewed as such; probabilistic aspects are not a motivating factor.

3. Larkin’s innovation, 1960s–1970s, is to formulate numerical tasks in terms of a joint
distribution over latent quantities and quantities of interest; the quantity of interest is
a stochastic object. Larkin summarises his posterior distributions using a point
estimator accompanied by a credible interval.

4. The fully modern viewpoint, circa 2019, is to explicitly think of the output as a
probability measure to be realised, sampled, and possibly summarised.
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BAYESIAN PROBABILISTIC NUMERICAL
METHODS COME INTO FOCUS



FOUNDATIONS FOR PNMS AND BAYESIAN PNMS I

A recent research direction, which provides formal foundations for the approach
pioneered by Larkin, is to interpret both traditional numerical methods and probabilistic
numerical methods as particular solutions to an ill-posed inverse problem (Cockayne et al.,
2019a). Given that the latent quantities involved in numerical tasks are frequently
functions, this development is in accordance with recent years’ interest in non-parametric
inversion in infinite-dimensional function spaces (Stuart, 2010).
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NUMERICAL METHODS I

From the point of view of Cockayne et al. (2019a), which echoes IBC and inverse problem
theory (Stuart, 2010), the common structure of numerical tasks such as quadrature,
optimisation, and the solution of an ODE or PDE, is the following:

two known spaces: U , where the unknown latent variable lives, and Q, where the
quantity of interest lives;
and a known function Q : U → Q, a quantity-of-interest function;

and the traditional role of the numerical analyst is to select/design

a space Y , where data about the latent variable live;
and two functions: Y : U → Y , an information operator that acts on the latent variable
to yield information, and a numerical method B : Y → Q such that B ◦ Y ≈ Q.

31/49



NUMERICAL METHODS II

E.g. Gaussian quadrature asks that the residual operator R := B ◦ Y−Q vanish on a
large enough finite-dimensional subspace of U .
Worst-case analysis asks that R be small in the supremum norm (Sard, 1949).
ACA asks that R be small in some integral norm against a probability measure on U .

In the chosen sense, “good” NMs make the following diagram approximately commute:

U Y //

Q
&&MM

MMM
MMM

MMM
MM Y

B
��
�
�
�

Q

(4)

A statistician might say that a deterministic NM B : Y → U uses observed data y := Y(u)
to give a point estimator B(y) ∈ Q for a quantity of interest Q(u) ∈ Q derived from a
latent variable u ∈ U .
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CANONICAL EXAMPLE: UNIVARIATE QUADRATURE

Consider, given nodes a ≤ t1 < · · · < tJ ≤ b,

U := C0([a, b]; R),

Q(u) :=
∫ b

a
u(t)dt ∈ Q := R,

Y(u) := (tj,u(tj))Jj=1 ∈ Y := ([a, b]× R)J.

Some but not all quadrature methods B : Y → Q construct an estimate of u and then
exactly integrate this estimate; Gaussian quadrature does this by polynomially
interpolating the observed data Y(u); the vanilla Monte Carlo estimate,

BMC
(
(tj, zj)Jj=1

)
=

1
J

J

∑
j=1

zj,

forgets the evaluation locations tj and uses only the values zj := u(tj) of u.
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PROBABILISTIC NUMERICAL METHODS

Let U , Y , and Q be measurable spaces, let Y and Q be measurable maps, and let PU etc.
denote the corresponding sets of probability distributions on these spaces. Let
Q♯ : PU → PQ denote the push-forward2 of the map Q, and define Y♯ etc. similarly.
Definition (Cockayne et al., 2019a, Section 2)
A probabilistic numerical method for the estimation of a quantity of interest Q consists
of an information operator Y : U → Y and a map β : PU ×Y → PQ, the latter being
termed a belief update operator.

I.e., given a belief µ about u, β(µ, ·) converts data y ∈ Y about u into a belief β(µ, y) ∈ PQ
about Q(u), as illustrated by the dashed arrow:

PU
Y♯

//

Q♯
&&NN

NNN
NNN

NNN
NN PY

B♯
��

Y

β(µ, · )
xxq q q q q q q

B
��

PQ Q
δ

oo

(5)

2I.e. Q♯µ(S) = µ(Q−1(S)) for all measurable S ⊆ Q
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Some PNMs β have point estimators (e.g. mean, median, or mode) that are closely
related to standard deterministic numerical methods B. This aspect is present in
works such as (Schober et al., 2014), which considers probabilistic ODE solvers with
Runge–Kutta schemes as their posterior means, and (Cockayne et al., 2016, 2017),
which consider PDE solvers with the symmetric collocation method as the posterior
mean.
Another desideratum for a PNM β is that the spread (e.g. the variance) of the
distributional output should provide a fair reflection of the accuracy to which the
quantity of interest is being approximated. In the statistics literature this amounts to
a deside for credible intervals to be well calibrated (Robins and van der Vaart, 2006).

35/49



BAYESIAN PNMS I

Diagram (4), when it commutes, characterises the “ideal” classical numerical method B;
there is, as yet, no closed loop in diagram (5) involving β, which we would need in order
to describe an “ideal” PNM β. This missing map in (5) is intimately related to the notion
of a Bayesian PNM (Cockayne et al., 2019a).

The key insight is that, given a prior belief expressed as a probability distribution µ ∈ PU
and the information operator Y : U → Y , a Bayesian practitioner has a privileged map
from Y into PU to add to diagram (5), i.e. conditioning, which maps any possible value
y ∈ Y of the observed data to the corresponding conditional distribution µy ∈ PU for u
given y. A Bayesian has no choice in her/his belief β(µ, y) about Q(u): it must be nothing
other than the image under Q of µy.
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BAYESIAN PNMS II

Definition
A probabilistic numerical method is said to be Bayesian for µ ∈ PU if,

β(µ, y) = Q♯µ
y for Y♯µ-almost all y ∈ Y .

In this situation µ is called a prior (for u) and β(µ, y) a posterior (for Q(u)).

In other words, being Bayesian means that the following diagram commutes:

PU

Q♯
&&NN

NNN
NNN

NNN
NN Y

y 7→β(µ,y)
xxq q q q q q q

y 7→µy
oo

PQ

(6)
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BAYESIAN PNMS III

A Bayesian PNM need not actually calculatesµy and then compute the push-forward;
we demand only that the output of the PNM is equal to Q♯µ

y.
Being Bayesian is specific to the quantity of interest Q— a PNM β(µ, ·) can be
Bayesian for some priors µ yet be non-Bayesian for other choices of µ.
Interestingly, about half of the papers published on PN can be viewed as being (at
least approximately) Bayesian.
A key advantage of Bayesian probabilistic numerical methods is that they are closed
under composition. For non-Bayesian PNMs it is unclear how these can/should be
combined, but we note an analogous discussion of statistical “models made of
modules” in the recent work of Jacob et al. (2017): strictly Bayesian models can be
brittle under model misspecification, whereas non-Bayesianity confers additional
robustness.

38/49



A TECHNICALITY

The conditioning operation y 7→ µy is interpreted in the sense of a disintegration (Chang
and Pollard, 1997); this is needed in order to make rigorous sense of the operation of
conditioning on the µ-negligible event that Y(u) = y. Thus,

for each y ∈ Y , µy ∈ PU is supported only on those values of u compatible with the
observation Y(u) = y, i.e. µy({u ∈ U | Y(u) 6= y}) = 0;
for any measurable set E ⊆ U , y 7→ µy(E) is a measurable function from Y into [0, 1]
satisfying the reconstruction property, or law of total probability,

µ(E) =
∫
Y

µy(E) (Y♯µ)(dy).

Under mild conditions3 such a disintegration always exists, and is unique up to
modification on Y♯µ-null sets.
3Sufficient conditions are, e.g., that U be a complete and separable metric space with its Borel σ-algebra (so
that every µ ∈ PU is a Radon measure) and that the σ-algebra on Y be countably generated and contain all
singletons.
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KERNEL QUADRATURE AS A BPNM; LARKIN, 1972 I

Take a Gaussian distribution µ on U := C0([a, b]; R), with mean function m : [a, b] → R

and covariance function k : [a, b]2 → R. Then, given the data

y = (tj, zj)Jj=1 ≡ (tj,u(tj))Jj=1,

the disintegration µy is again a Gaussian on C0([a, b]; R) with mean and covariance

my(t) = m(t) + kT(t)>k−1
TT (zT −mT), (7)

ky(t, t′) = k(t, t′)− kT(t)>k−1
TTkT(t′), (8)

where kT : [a, b] → RJ, kTT ∈ RJ×J, zT ∈ RJ, and mT ∈ RJ are given by

[kT(t)]j := k(t, tj), [kTT]i,j := k(ti, tj),
[zT]j := zj ≡ u(tj), [mT]j := m(tj).

40/49



KERNEL QUADRATURE AS A BPNM; LARKIN, 1972 II

Bayesian PNM output β(µ, y) = Q♯µ
y = N (my, (σy)2) with

my =
∫ b

a
m(t)dt+

[∫ b

a
kT(t)dt

]>
k−1
TT (zT −mT),

(σy)2 =
∫ b

a

∫ b

a
k(t, t′)dtdt′ −

[∫ b

a
kT(t)dt

]>
k−1
TT

[∫ b

a
kT(t′)dt′

]
.

From a practical perspective, k is typically taken to have a parametric form kθ and the
parameters θ are adjusted in a data-dependent manner, for example to maximise the
marginal likelihood of the information y under the Gaussian model.

For the Brownian covariance kernel k(t, t′) = min(t, t′), the posterior Q♯µ for
∫ b
a u(t)dt is

given by Larkin’s trapezoidal rule, the variance of which is clearly minimised by an
equally-spaced point set {tj}Jj=1. See O’Hagan (1991) for variance minimisation for more
general kernels k.
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DISCUSSION AND OUTLOOK



“Det er vanskeligt at spaa, især naar det gælder Fremtiden.”

— Danish proverb
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KILLER APPS I

Greatest area of success to date is Bayesian global optimisation (Snoek et al., 2012;
The MathWorks Inc.; Acerbi, 2018; Paul et al., 2018), a high-profile example being
Bayesian optimisation in AlphaGo (Chen et al., 2018).
Other applications of probabilistic methods for cubature in computer graphics
(Marques et al., 2013) and tracking (Prüher et al., 2018), as well as applications of
probabilistic numerical methods in medical tractography (Hauberg et al., 2015) and
nonlinear state estimation in an industrial context (Oates et al., 2019a).
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KILLER APPS II

It has been suggested that probabilistic numerics is likely to experience the most
success in addressing numerical tasks that are fundamentally difficult (Owen, 2019).
One area that we highlight, in particular, in this regard is the solution of nonlinear
PDEs that are prone to non-uniqueness of solutions. For some problems, physical
reasoning may be used to choose among the various solutions, from the probabilistic
or statistical perspective lack of uniqueness presents no fundamental philosophical
issues: the multiple solutions are simply multiple maxima of a likelihood, and the
prior is used to select among them; see e.g. Cockayne et al. (2019a).
It has also been noted that the probabilistic approach provides a promising paradigm
for the analysis of rounding error in mixed-precision calculations, where classical
bounds “do not provide good estimates of the size of the error, and in particular […]
overestimate the error growth, that is, the asymptotic dependence of the error on the problem
size” (Higham and Mary, 2018).
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ADAPTIVE BAYESIAN PNMS

The discussion above did not cover adaptive PNMs, e.g. sequential selection of
integration nodes. This is a major open area.
In the deterministic world, for linear problems, adaptive methods (e.g., in
quadrature, sequential selection of the notes tj) do not outperform non-adaptive
methods according to certain performance metrics such as worst-case error
(Woźniakowski, 1985, Section 3.2).
However, adaptation is known to be advantageous in general for nonlinear problems
(Woźniakowski, 1985, Section 3.8).
How this interacts with Bayesianity and the composition of PNMs into pipelines is
still open, as are connections to empirical Bayes methods (Carlin and Louis, 2000;
Casella, 1985) Some early work in this direction includes Schober et al. (2018) and
Jagadeeswaran and Hickernell (2018).
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AUTOMATED DESIGN OF PNMS

The IBC literature intensively studies (i) optimal information operators Y for a given
task, and (ii) optimal numerical method B for a given task, given information of a
known type (Traub et al., 1983).
In the statistical literature, there is also a long history of Bayesian optimal
experimental design, in parametric and non-parametric contexts (Lindley, 1956;
Piiroinen, 2005).
Open challenge: can these principles can be used to design optimal numerical
methods automatically (rather than by inspired guesswork on the mathematician’s
part, à la Larkin)? Cf. the automation of statistical reasoning envisioned by Wald and
subsequent commentators on his work (Owhadi and Scovel, 2017b).
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NUMERICAL ANALYSTS V. STATISTICIANS I

A major challenge is the interdisciplinary gap between numerical analysts and
statisticians.
A caricature of this mutual incomprehension is the following: A numerical analyst
will quite rightly point out that almost all problems have numerical errors that are
provably non-Gaussian, not least because s/he can exhibit a rigorous a-priori or
a-posteriori error bound. Therefore, to the numerical analyst it seems wholly
inappropriate to resort to Gaussian models for any purpose at all; these are often the
statistician’s first models of choice, though they should not be the last.
Numerical analysts are happier to discuss the modelling of errors than the latent
quantities which they regard as fixed, whereas statisticians seems to have the opposite
preference.
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NUMERICAL ANALYSTS V. STATISTICIANS II

The numerical analyst also wonders why, in the presence of an under-resolved
integral, the practitioner does not simply apply an adaptive quadrature scheme and
run it until an a posteriori global error indicator falls below a pre-set tolerance.
A way forward: a more careful statement of the approach being taken to address the
numerical task. The meeting ground for the numerical analysts and statisticians, and
the critical arena of application for PN, consists of problems that cannot be run to
convergence more cheaply than quantifying the uncertainties of the coarse solution,
cf. the tradeoff in multilevel methods (Giles, 2015).
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CLOSING REMARKS



CLOSING REMARKS

Probabilistic approaches to numerical tasks have a long history, and keep coming
around, especially as computer power advances.
What appears to be new this time is more engagement between numerical analysts
and statisticians, and computing paradigms that demand the crossover.
Formal structures to describe PNMs and their relationship to (Bayesian) inference
are now established.
Are PNMs here to stay this time? Who knows…
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