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“Numerical analysts and statisticians are both in the business of estimating parameter values
from incomplete information. The two disciplines have separately developed their own approaches
to formalizing strangely similar problems and their own solution techniques; the author believes
they have much to offer each other.” — F. M. Larkin (1979b)
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OVERVIEW: PNMS AND BIPS

There are many reasons to consider a probabilistic/statistical perspective on the
analysis and design of numerical methods, and even to return probabilistic
solutions to deterministic forward problems like quadrature / DE solution.
In various forms, these ideas have a long history.

→ Oates and Sullivan (2019) Stat. Comp. arXiv:1901.04457
What are probabilistic numerical methods (PNMs) and in what sense can they be
Bayesian? → Cockayne et al. (2019) SIAM Rev. arXiv:1702.03673
A Bayesian interpretation of forward problems is especially appealing for Bayesian
inverse problems (BIPs), since then both the forward and inverse problem “speak
the same language”, without spurious posterior over-concentration.
How does their use connect to established theory for BIPs?

→ Lie et al. (2018) SIAM/ASA JUQ arXiv:1712.05717
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MOTIVATING EXAMPLE: FITZHUGH–NAGUMO ODE INFERENCE

Nonlinear FitzHugh–Nagumo oscillator u : [0,T] → R2:

du
dt = f(u) :=

[
u1 −

u3
1
3 + u2

− 1
θ3
(u1 − θ1 + θ2u2)

]

Aim: recover θ ∈ R3
>0 from observations yi = u(tobsi ) + ηi at some discrete times

tobsi = 0, 1, . . . , 40, ηi ∼ N (0, 10−3I) i.i.d.
Take ground truth u(0) = (−1, 1) and θ = (0.2, 0.2, 3); generate data from a reference
trajectory using RK4 with time step τ = 10−3.
Infer θ using PN–Euler solvers with local noise ξ of variance ∝ στ3 and hence strong
error E

[
sup0≤t≤T ‖u(t)− uPN(t)‖2

]
≤ Cτ2 (Lie et al., 2019).

Take log-normal prior for θ and compute the marginal Bayesian posterior
Eξ

[
P[θ|y, τ, ξ]

]
for various τ > 0 and σ ≥ 0.
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MOTIVATING EXAMPLE: FITZHUGH–NAGUMO ODE INFERENCE

Figure 1: The deterministic posteriors (i.e. σ = 0) are over-confident at all values of the time step
τ = 0.1, 0.05, 0.02, 0.01, 0.005, often do not overlap, and are biased. 4/51



MOTIVATING EXAMPLE: FITZHUGH–NAGUMO ODE INFERENCE

Figure 1: In contrast, the PN-Euler posteriors (here with σ = 1/5) for τ = 0.1, 0.05, 0.02, 0.01, 0.005
are less confident and overlap more, though are still biased. 4/51



OUTLINE

1. A little history

2. Numerics: An inference perspective

3. Optimal information operators

4. Disintegration

5. Coherent pipelines of PNMs, and Bayesian inverse problems

6. Applications

7. Closing remarks
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A LITTLE HISTORY



POINCARÉ (1912) BLENDS INTERPOLATION AND PROBABILITY

“Je suppose que l’on sache a priori que la fonction f(x) est développable, dans une certain domaine,
suivant les puissances croissantes des x,

f(x) = A0 +A1x+ . . . .

Nous ne savons rien sur les A, sauf que la probabilité pour que l’un d’eux, Ai, soit compris entre
certaines limites, y et y+ dy, est √

hi
π
e−hiy2 dy.

Nous connaissons par n observations

f(a1) = B1,

f(a2) = B2,

· · · · · · · · · · · ·
f(an) = Bn.

Nous cherchons la valeur probable de f(x) pour une autre valeur de x.”
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ROUND-OFF ERROR

What about probabilistic numerical methods for use on a computer?
The limited nature of the earliest computers led authors to focus initially on the
phenomenon of round-off error (Henrici, 1962; Hull and Swenson, 1966; von
Neumann and Goldstine, 1947), whether of fixed-point or floating-point type,
without any particular statistical inferential motivation; indeed, this aspect is still alive
(Barlow and Bareiss, 1985; Chatelin and Brunet, 1990; Tienari, 1970).
One early, utilitarian view is that probabilistic models in computation are just useful
shortcuts:
“[Round-off errors] are strictly very complicated but uniquely defined number theoretical
functions [of the inputs], yet our ignorance of their true nature is such that we best treat
them as random variables.”

— von Neumann and Goldstine (1947, p. 1027)
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AL′BERT VALENTINOVICH SUL′DIN

One of the earliest attempts to statistically
motivate a numerical algorithm was due to A. V.
Sul′din (1924–1996), working at Kazan State
University in the USSR Norden et al. (1978);
Zabotin et al. (1996).
After first making contributions to the study of
Lie algebras, towards the end of the 1950s Sul′din
turned his attention to computational and
applied mathematics, and in particular to
probabilistic and statistical methodology.
His work in this direction led to the
establishment of the Faculty of Computational
Mathematics and Cybernetics in Kazan, of which
he was the founding Dean.

Al′bert Valentinovich Sul′din (1924–1996)
© Kazan Federal University, reproduced

with permission.
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FREDERICK MICHAEL (“MIKE”) LARKIN

On the other side of the Iron Curtain, between
1957 and 1969, Frederick Michael (“Mike”)
Larkin (1936–1982) worked for the UK Atomic
Energy Authority in its laboratories at Harwell
and Culham, as well as working for two years at
Rolls Royce; from 1969, he was at Queen’s
University in Kingston, Ontario, Canada.
Following a parallel path to that of Sul′din, over
the next decade Larkin would further blend
numerical analysis and statistical thinking
Kuelbs et al. (1972); Larkin (1969, 1972, 1974,
1979c,a,b), arguably laying the foundations on
which modern PN would be developed.

Frederick Michael Larkin (1936–1982)
© (Larkin et al., 1967, reproduced with

permission).
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LARKIN

Larkin worked on building some of the first graphical calculators, called GHOST
(short for graphical output system), and the GHOUL (graphical output language) —
perhaps a motivation for seeking a richer description of numerical error.
The perspective developed by Larkin was fundamentally statistical and, in modern
terminology, the probabilistic numerical methods he developed would be described
as Bayesian — though Larkin used the term relative likelihood for the prior.
Larkin’s perspective on quadrature: consider the Wiener measure as a prior, the
information (tj,u(tj))Jj=1 as (noiseless) data, and output the posterior marginal for∫ b
a u(t)dt — what we would now recognise as a probabilistic numerical method:

“Among other things, this permits, at least in principle, the derivation of joint probability
density functions for [both observed and unobserved] functionals on the space and also
allows us to evaluate confidence limits on the estimate of a required functional (in terms
of given values of other functionals).” — Larkin (1972)
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LARKIN V. SUL′DIN ON UNIVARIATE QUADRATURE I

We wish to approximate the definite integral
∫ b
a u(t)dt of u ∈ U := C0([a, b]; R)

under a statistical assumption that (u(t)− u(a))t∈[a,b] follows a standard Brownian
motion (Wiener measure, µW).
We receive pointwise data about u in the form of the values of u at J ∈ N nodes
a = t1 < t2 < · · · < tJ = b.
In more statistical language, anticipating the terminology of Cockayne et al. (2019):

we have a latent quantity (integrand) u living in a space U ,
our observed data or information concerning u is y := (tj,u(tj))Jj=1, living in the space
Y := ([a, b]× R)J,
and we care about the quantity of interest Q(u) :=

∫ b
a u(t)dt, living in Q := R.
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LARKIN V. SUL′DIN ON UNIVARIATE QUADRATURE II

Sul′din (1959, 1960, 1963) showed by direct calculation that the quadrature rule
B : Y → R that minimises the mean squared error

∫
U

∣∣∣∣∫ b

a
u(t)dt− B

(
(tj,u(tj))Jj=1

)∣∣∣∣2 µW(du)

is the classical trapezoidal rule

Btr
(
(tj, zj)Jj=1

)
:=

1
2

J−1

∑
j=1

(zj+1 + zj)(tj+1 − tj) = z1
t2 − t1

2 +
J−1

∑
j=2

zj
tj+1 − tj−1

2 + zJ
tJ − tJ−1

2 ,

i.e. the definite integral of the piecewise linear interpolant of the observed data.
Thus, Sul′din describes the trapezoidal rule Btr as a frequentist point estimator
obtained from minimising the mean square error, which “just happens” to produce
an unbiased estimator with variance 1

12 ∑J−1
j=1(tj+1 − tj)3.
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LARKIN V. SUL′DIN ON UNIVARIATE QUADRATURE III

However, Larkin sees the normal distribution

N
(
Btr
(
(tj, zj)Jj=1

)
,
1
12

J−1

∑
j=1

(tj+1 − tj)3
)

on R as the measure-valued output of a probabilistic quadrature rule, of which
Btr
(
(tj, zj)Jj=1 is a convenient point summary. The technical development in this

pioneering work made fundamental contributions to the study of Gaussian measures
on Hilbert spaces (Kuelbs et al., 1972; Larkin, 1972).
However, neither Larkin nor Sul′din would have had access to the computing
resources needed to realise their more general vision except in special cases.
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OPTIMAL NUMERICAL METHODS ARE BAYES RULES (1980–1990) I

The average-case analysis (ACA) of numerical methods received interest and built
on the work of Kolmogorov (1936) and Sard (1963).
In ACA the performance of a numerical method is assessed in terms of its average
error with respect to a probability measure over the problem set; a prime example is
univariate quadrature with the average quadratic loss given earlier.
A traditional (deterministic) NM can also be regarded as a decision rule and the
probability measure used in ACA can be used to instantiate the Bayesian
decision-theoretic framework (Berger, 1985). The average error is then recognised as
the expected loss, also called the risk. ACA is mathematically equivalent to Bayesian
decision theory — restricted to the case of an experiment that produces a
deterministic dataset (Kimeldorf and Wahba, 1970a,b; Parzen, 1970; Larkin, 1970).
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OPTIMAL NUMERICAL METHODS ARE BAYES RULES (1980–1990) II

ACA optimal methods are Bayes rules or Bayes acts in the decision-theoretic context.
Kadane and Wasilkowski (1985) had the insight that ACA-optimal methods coincide
with (non-randomised) Bayes rules when the measure used to define the MSE is the
Bayesian prior. Recently it has become clear that ACA and Bayesian optimality differ
in general (Cockayne et al., 2019; Oates et al., 2019b).
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INFORMATION-BASED COMPLEXITY

Information-based complexity (IBC) Novak (1988); Traub et al. (1983); Traub and
Woźniakowsi (1980) developed simultaneously with ACA, with the aim of relating
the computational complexity and optimality properties of algorithms to the
available information on the unknowns.
For example, (Smale, 1985, Theorem D) compared the accuracies (with respect to
mean absolute error) for a given cost of the Riemann sum, trapezoidal, and Simpson
quadrature rules; in the same paper, Smale also considered root-finding,
optimisation via linear programming, and the solution of systems of linear equations.
Bayesian quadrature was again discussed in detail by Diaconis (1988), who repeated
Sul′din’s observation that the posterior mean for

∫ b
a u(t)dt under the Wiener measure

prior is the trapezoidal method, which is a ACA-optimal.
Diaconis posed a further question: can other numerical methods for other tasks be
similarly recovered as Bayes rules in a decision-theoretic framework? For linear
cubature methods, a positive and constructive answer was recently provided by
Karvonen et al. (2018), but the general question remains open. 16/51



RESURGENCE IN THE 1990S I

Research interest in PN was revived by contributions from on quadrature (Minka,
2000; O’Hagan, 1991; Rasmussen and Ghahramani, 2003), each to a greater or lesser
extent a rediscovery of earlier work due to Larkin (1972). In each case the algorithmic
output was considered to be a probability distribution over the quantity of interest.
The 1990s saw an expansion in the PN agenda, first with early work on an area that
would become Bayesian optimisation (Močkus, 1975, 1977, 1989).
Skilling (1992) presented a novel (partially) Bayesian perspective on the numerical
solution of ODE initial value problems of the form

u′(t) ≡ du
dt = f(t,u(t)) t ∈ [0,T],

u(0) = u0.
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RESURGENCE IN THE 1990S II

Skilling (1992) considered, e.g. the role of regularity assumptions on f, prior and
likelihood choice, and sampling strategies.
Skilling himself considered his then-new explicit emphasis on a Bayesian statistical
approach to be quite natural:
“This paper arose from long exposure to Laplace/Cox/Jaynes probabilistic reasoning, com-
bined with the University of Cambridge’s desire that the author teach some (traditional)
numerical analysis. The rest is common sense. […] Simply, Bayesian ideas are ‘in the
air’.”

— Skilling (1992)

The machine learning community took up the ODE theme again ≈ 5 years ago
(Schober et al., 2014), provoking further mathematical analysis (Conrad et al., 2016)
and then an explosion of more general studies.1

1I have a marvellous literature list, but this slide is too small to contain it…
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CONCEPTUAL EVOLUTION — A SUMMARY

1. In the traditional setting of numerical analysis, c. 1950, all objects and operations are
seen as being strictly deterministic. These deterministic objects are sometimes
exceedingly complicated, to the extent that they may be treated as being stochastic.

2. Sard and Sul′din consider the questions of optimal performance of a numerical
method in, respectively, the worst-case and the average-case context. Some of the
average-case performance measures amount to variances of point estimators but are
not viewed as such; probabilistic aspects are not a motivating factor.

3. Larkin’s innovation, 1960s–1970s, is to formulate numerical tasks in terms of a joint
distribution over latent quantities and quantities of interest; the quantity of interest is
a stochastic object. Larkin summarises his posterior distributions using a point
estimator accompanied by a credible interval.

4. The fully modern viewpoint, circa 2019, is to explicitly think of the output as a
probability measure to be realised, sampled, and possibly summarised.
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AN INFERENCE PERSPECTIVE ON
NUMERICAL TASKS



AN ABSTRACT VIEW OF NUMERICAL METHODS I

An abstraction of a numerical task consists of three spaces and three functions:

U , where an unknown/variable object u lives; dimU = ∞

Q, with a quantity of interest Q : U → Q;
Y , where we observe information Y(u), via a function Y : U → Y . dimY < ∞

Example (Quadrature)

U = C0([0, 1]; R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Q(u) =
∫ 1

0
u(t)dt

Conventional numerical methods are cleverly-designed functions B : Y → Q: such a
method “believes” that Q(u) ≈ B(Y(u)).
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AN ABSTRACT VIEW OF NUMERICAL METHODS II

Example (Quadrature)

U = C0([0, 1]; R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Q(u) =
∫ 1

0
u(t)dt

Conventional numerical methods are cleverly-designed functions B : Y → Q: such a
method “believes” that Q(u) ≈ B(Y(u)).

N.B. Somemethods try to invert Y, form an estimate of u, then apply Q, but not all do!
E.g. the trapezoidal rule does estimate u:

Btrap
(
(tj, zj)Jj=1

)
:=

J−1
∑
j=1

zj+1 + zj
2 (tj+1 − tj) = z1

t2 − t1
2 +

J−1
∑
j=2

zj
tj+1 − tj−1

2 + zJ
tJ − tJ−1

2 .

E.g. vanilla Monte Carlo does not estimate u! (cf. O’Hagan, 1987)

BMC((ti, zi)ni=1) :=
1
n

n
∑
i=1

zi
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AN ABSTRACT VIEW OF NUMERICAL METHODS II

Example (Quadrature)
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∑
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2 .

E.g. vanilla Monte Carlo does not estimate u! (cf. O’Hagan, 1987)
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1
n

n
∑
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AN ABSTRACT VIEW OF NUMERICAL METHODS III

Question: What makes for a “good” numerical method? (Larkin, 1970)
Answer 1, Gauss: B ◦ Y = Q on a “large” finite-dimensional subspace of U .
Answer 2, Sard (1949): residual B ◦ Y−Q is “small” on U . In what sense?

The worst-case error:
eWC := sup

u∈U
‖B(Y(u))−Q(u)‖Q.

The average-case error (Ritter, 2000) with respect to a probability measure µ ∈ PU :

eAC :=
∫
U
‖B(Y(u))−Q(u)‖Q µ(du).

To a Bayesian, seeing the additional structure of µ, there is only one way forward: if
u ∼ µ, then B(Y(u)) should be obtained by conditioning µ and then applying Q. But is
this Bayesian solution always well-defined, and what are its error properties?
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REV. BAYES DOES SOME NUMERICS I

U
Y

++

Q
��

Y

Q
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REV. BAYES DOES SOME NUMERICS I

U
Y

++

Q
��

Y

B
ss

|
x

tqnkiQ

B : Y → Q

Example (Quadrature)

U = C0([0, 1]; R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Y(u) =
∫ 1

0
u(t)dt

A deterministic numerical method uses
only the spaces and data to produce a
point estimate of the integral, Q(u).
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REV. BAYES DOES SOME NUMERICS I

U
Y

++

Q
��

Y

B
ss

|
x

tqnkiQ

B : Y → Q

Go Probabilistic!

µ ∈ PU

(Y♯µ)(E) := µ(Y−1(E))

PU

Y♯
++

Q♯

��

PY

B♯tt

v
s

pmk
PQ Y

δ

UU

average-case performance of B?

Example (Quadrature)

U = C0([0, 1]; R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Y(u) =
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REV. BAYES DOES SOME NUMERICS I

U
Y

++

Q
��

Y

B
ss

|
x

tqnkiQ

B : Y → Q

Go Probabilistic!

µ ∈ PU

(Y♯µ)(E) := µ(Y−1(E))

PU

Y♯
++

Q♯

��

PY

PQ Y

δ

UU

y 7→β(µ,y)
kk gdb_\Z

β(µ, ·) : Y → PQ

Example (Quadrature)

U = C0([0, 1]; R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Y(u) =
∫ 1

0
u(t)dt

A deterministic numerical method uses
only the spaces and data to produce a
point estimate of the integral, Q(u).

A probabilistic numerical method converts
an additional belief µ ∈ PU about u into a
belief β(µ, Y(u)) ∈ PQ about Q(u).
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REV. BAYES DOES SOME NUMERICS I

U
Y

++

Q
��

Y

B
ss

|
x

tqnkiQ

B : Y → Q

Go Probabilistic!

µ ∈ PU

(Y♯µ)(E) := µ(Y−1(E))

PU

Y♯
++

Q♯

��

PY

PQ Y

y 7→
µ y

ffNNNNNNNNNNNNNN
δ

UU

y 7→β(µ,y)
kk gdb_\Z

β(µ, ·) : Y → PQ

Definition (Bayesian PNM)
A PNM β(µ, ·) : Y → PQ with prior µ ∈ PU is Bayesian for a QoI Q : U → Q and
information operator Y : U → Y if the bottom-left Y-PU -PQ triangle commutes, i.e. the
output of β is the push-forward of the conditional distribution µy through Q:

β(µ, y) = Q♯µ
y, for Y♯µ-almost all y ∈ Y .
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REV. BAYES DOES SOME NUMERICS II

Definition (Bayesian PNM)
A PNM β with prior µ ∈ PU is Bayesian for a quantity of interest Q and information Y if
its output is exactly the image of the conditional distribution µy = µ|[Y = y] under Q:

β(µ, y) = Q♯µ
y, for Y♯µ-almost all y ∈ Y .

Example

Under the Gaussian Brownian motion prior on U = C0([0, 1]; R), the posterior mean
/ MAP estimator for the definite integral is the trapezoidal rule, i.e. integration using
linear interpolation (Sul′din, 1959, 1960).
Integrated Brownian motion prior ↔ integration using cubic spline interpolation.

For technical reasons, “conditioning” here is meant in the sense of disintegration, as
advocated by e.g. Chang and Pollard (1997).
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A ROGUE’S GALLERY OF BAYESIAN AND NON-BAYESIAN PNMS (2017)
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OPTIMAL INFORMATION OPERATORS:
THE WORST, THE AVERAGE,
AND THE BAYESIAN



MEASURES OF ERROR / LOSS

Suppose we have a loss function L : Q×Q → R, e.g. L(q, q′) := ‖q− q′‖2Q.

The worst-case loss for a classical numerical method B : Y → Q is

eWC(Y,B) := sup
u∈U

L
(
B(Y(u)),Q(u)

)
.

The average-case loss under a probability measure µ ∈ PU is

eAC(Y,B) :=
∫
U
L
(
B(Y(u)),Q(u)

)
µ(du),

eAC(Y,β) :=
∫
U

[∫
Q
L
(
q,Q(u)

)
β(µ, Y(u))(dq)

]
µ(du).

Kadane and Wasilkowski (1985) show that the minimisers are deterministic decision
rules B, and the minimiser Y is “optimal information” for this task.
A BPNM β has “no choice” but to be Q♯µ

y once Y(u) = y is given; optimality of Y
means minimising the Bayesian loss

eBPN(Y) :=
∫
U

[∫
Q
L(q,Q(u)) (Q♯µ

Y(u))(dq)
]

µ(du). 26/51



OPTIMAL INFORMATION: AC = BPN?

Theorem (AC = BPN for quadratic loss; Cockayne et al., 2019)
For a quadratic loss L(q, q′) := ‖q− q′‖2Q on a Hilbert space Q, optimal information for BPNM
and AC coincide (though the minimal values may differ).
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For a quadratic loss L(q, q′) := ‖q− q′‖2Q on a Hilbert space Q, optimal information for BPNM
and AC coincide (though the minimal values may differ).

Theorem (AC 6= BPN in general; Oates et al. (2019b))
If U can be partitioned into three sets of positive probability, then there exists a choice of QoI and
loss so that optimal information for BPNM and AC differ.
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OPTIMAL INFORMATION: AC = BPN?

Theorem (AC = BPN for quadratic loss; Cockayne et al., 2019)
For a quadratic loss L(q, q′) := ‖q− q′‖2Q on a Hilbert space Q, optimal information for BPNM
and AC coincide (though the minimal values may differ).

Example (AC 6= BPN in general; Oates et al. (2019b))
Decide whether or not a card drawn fairly at random is ©, incurring unit loss if you
guess wrongly; can choose to be told whether the card is red (Y1) or is non-¨ (Y2).

U = {¨, ©, ª, «} µ = UnifU Q = {0, 1} ⊂ R

Y1 = {0, 1} Y1(u) = 1[u ∈ {©, ª}] Q(u) = 1[u = ©]

Y2 = {0, 1} Y2(u) = 1[u ∈ {©, ª, «}] L(q, q′) = 1[q 6= q′]

Which information operator, Y1 or Y2, is better? (Note that eWC(Yi,B) = 1 for all
deterministic b!)
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OPTIMAL INFORMATION: AC 6= BPN!

U = {¨, ©, ª, «} µ = UnifU Q = {0, 1} ⊂ R

Y1(u) = ■ vs. ■ Y(u) = 1[u = ©]

Y2(u) = ¬¨ vs. ¨ L(q, q′) = 1[q 6= q′]

u= ¨ © ª «

eAC(Y1,B) = 1
4
(

L(B(■), 0) + L(B(■), 1) + L(B(■), 0) + L(B(■), 0)
)
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DISINTEGRATION:
EXACT AND NUMERICAL



DEFINING THE POSTERIOR

The posterior µy is subtle to define precisely, since heuristically it is given by

µy(du) ∝ 1[Y(u) = y] µ(du)
We have a 0-1 likelihood, and moreover the likelihood is zero µ-a.e.!

Numerical analysts usually think of function evaluations as noiseless, in contrast to the
noisy observations that are typical in statistics.
E.g. what is the prior probability that a Brownian path interpolates given data?

We cannot even express Bayes’ formula in the form favoured by Stuart (2010),
dµy

dµ
(u) = 1[Y(u) = y]

Z(y) ,

because µy is singular with respect to µ, the density on the LHS does not exist, and
Z(y) = 0.
One way to consistently condition on events of measure zero is to define the
conditioning operation in terms of disintegration.

29/51



DISINTEGRATION I

Definition (Disintegration)
A disintegration of µ ∈ PU with respect to a measurable map Y : U → Y is a map
Y → PU , y 7→ µy, such that

(support) µy({u ∈ U | Y(u) = y}) = 1 for Y#µ-almost all y ∈ Y ;

and, for each measurable f : U → [0, ∞), (f = 1E, E ⊆ U will do)

(measurability) y 7→
∫
U f(u) µy(du) is

(conditioning/reconstruction/law of total probability)∫
U
f(u) µ(du) =

∫
Y

[∫
U
f(u) µy(du)

]
(Y#µ)(dy).

(Closely related concept: a regular conditional probability is basically the same thing, but
in a different coordinate system.)

30/51



DISINTEGRATION II

Theorem (Disintegration theorem (Chang and Pollard, 1997, Thm. 1))
Let U be a metric space and let µ ∈ PU be inner regular. If the Borel σ-algebra on U is countably
generated and contains all singletons {y} for y ∈ Y , then there is an essentially unique
disintegration {µy}y∈Y of µ with respect to Y. (If {νy}y∈Y is another such disintegration, then
{y ∈ Y | µy 6= νy} is an Y#µ-null set.)

The familiar conditional densities for a probability density on Rn conditioned on a
“nice” subset such as a lower-dimensional submanifold M ⊂ Rn are disintegrations.
In particular, the familiar Woodbury formula for the conditioning of Gaussian
measures subject to linear constraints is a disintegration (Owhadi and Scovel, 2015).
But, in general, disintegrations cannot be computed exactly — we have to work
approximately.
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NUMERICAL DISINTEGRATION I

The exact disintegration “µy(du) ∝ 1[Y(u) = y] µ(du)” can be accessed numerically
via relaxation, with approximation guarantees provided y 7→ µy is “nice”, e.g.
Y♯µ ∈ PY has a smooth Lebesgue density.
Consider relaxed posterior µ

y
δ(du) ∝ ϕ(‖Y(u)− y‖Y/δ) µ(du) with 0 < δ � 1.

Essentially any ϕ : [0, ∞) → [0, 1] tending continuously to 1 at 0 and decaying quickly
enough to 0 at ∞ will do.
E.g. ϕ(r) := 1[r < 1] or ϕ(r) := exp(−r2).

Definition
The integral probability metric on PU associated to a normed space F of test functions
f : U → R is

dF (µ, ν) := sup
{
|µ(f)− ν(f)|

∣∣‖f‖F ≤ 1
}
.

F = bounded continuous functions with uniform norm ↔ total variation.
F = bounded Lipschitz continuous functions with Lipschitz norm ↔ Wasserstein.
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NUMERICAL DISINTEGRATION II

“µy(du) ∝ 1[Y(u) = y] µ(du)”
µ
y
δ(du) ∝ ϕ(‖Y(u)− y‖Y/δ) µ(du)

dF (µ, ν) := sup
{
|µ(f)− ν(f)|

∣∣‖f‖F ≤ 1
}

Theorem (Cockayne et al., 2019, Theorem 4.3)
If y 7→ µy is γ-Hölder from (Y , ‖·‖Y ) into (PU , dF ), then so too is the approximation µ

y
δ ≈ µy

as a function of δ. That is,

dF
(
µy, µy′) ≤ C · ‖y− y′‖γ for y, y′ ∈ Y

=⇒ dF
(
µy, µ

y
δ

)
≤ C · Cϕ · δγ for Y♯µ-almost all y ∈ Y .

Open question: when does the hypothesis, a quantitative version of the Tjur property
(Tjur, 1980), actually hold? (Fixing y and varying y′ is ok; having both y and y′ free is
hard.) 33/51



EXAMPLE: PAINLEVÉ’S FIRST TRANSCENDENTAL I

A simple but multivalent boundary value problem:

u′′(t)− u(t)2 = −t for t ≥ 0
u(0) = 0

u(t)/
√
t → 1 as t → +∞
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Figure 2: The two solutions of Painlevé’s first transcendental and their spectra in the orthonormal
Chebyshev polynomial basis over [0, 10].
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EXAMPLE: PAINLEVÉ’S FIRST TRANSCENDENTAL II

Parallel tempered pCN with 100 δ-values log-spaced from δ = 10 to δ = 10−4 and 108
iterations recovers both solutions in approximately the same proportions as the
posterior densities at the two exact solutions. 3

SMC reliably recovers one solution, but not both simultaneously. !?
Of course, this comes at the price of MCMC… 7
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COHERENT PIPELINES OF PNMS, AND
BAYESIAN INVERSE PROBLEMS



COMPUTATIONAL PIPELINES

Numerical methods usually form part of pipelines.
Prime example: a PDE solve is a forward model in an inverse problem.
Motivation for PNMs in the context of Bayesian inverse problems:

Make the forward and inverse problem
speak the same statistical language!

We can compose PNMs in series, e.g. β2(β1(µ, y1), y2) is formally β(µ, (y1, y2))…
although figuring out what the spaces U i, Y i and operators Yi etc. are is a headache!
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PIPELINE EXAMPLE: SPLIT INTEGRATION

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

β1(µ, ·)

β2(µ, ·)

∫ 0.5
0 u(t)dt

∫ 1
0.5 u(t)dt

β3(µ, ·)
∫ 1
0 u(t)dt

Integrate a function over [0, 1] in two steps using nodes 0 ≤ t0 < · · · < tm−1 < 0.5,
tm = 0.5, and tm+1 < · · · < t2m ≤ 1.
For example, the two nodal sets are very large, and so two are handled by two
different processors with non-shared memory.
A third processor handles the (easy!) task of aggregating the two estimates of the
two integrals

∫ 0.5
0 u(t)dt and

∫ 1
0.5 u(t)dt into an estimate of

∫ 1
0 u(t)dt.
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COHERENCE I

We compose PNMs in a graphical way by allowing input information nodes (□) to
feed into method nodes (■), which in turn output new information.
N.B. one should at first think of having deterministic data at the left-most □ nodes,
then random variables as outputs, realisations of which get fed into the next ■.
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COHERENCE I

We compose PNMs in a graphical way by allowing input information nodes (□) to
feed into method nodes (■), which in turn output new information.
N.B. one should at first think of having deterministic data at the left-most □ nodes,
then random variables as outputs, realisations of which get fed into the next ■.

1

2

3

4

5

6

7

8

9

10

We define the corresponding dependency graph by replacing each □→■→□ by
□→□, and number the vertices in an increasing fashion, so that i→ i′ implies i < i′.
The independence properties of the random variables at each node are crucial.
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COHERENCE II

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

β1(µ, ·)

β2(µ, ·)

∫ 0.5
0 u(t)dt

∫ 1
0.5 u(t)dt

β3(µ, ·)
∫ 1
0 u(t)dt

Definition
A prior µ is coherent for the dependency graph if — when the “leaf” input nodes are
Y♯µ-distributed and the remaining nodes are β(µ,parents)-distributed — every node Yk
is conditionally independent of all older non-parent nodes Yi given its direct parents Yj:

Yk ⊥⊥ Y{1,...,k−1}\parents(k) | Yparents(k)

This is weaker than the Markov condition for directed acyclic graphs (Lauritzen, 1991):
we do not insist that the variables at the source nodes are independent. 39/51
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COHERENCY THEOREM

Theorem (Cockayne et al., 2019, Theorem 5.9)
If a pipeline of PNMs is such that

the prior is coherent for the dependency graph, and
the component PNMs are all Bayesian

then the pipeline is the Bayesian pipeline data at leaves→■→final output .

Redundant structure in the pipeline (recycled information) will break coherence,
and hence Bayesianity of the pipeline.
In principle, coherence and hence being Bayesian depend upon the prior.
This should not be surprising — as a loose analogy, one doesn’t expect the
trapezoidal rule to be a good way to integrate very smooth functions.
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SPLIT INTEGRATION: COHERENCE

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

β1(µ, ·)

β2(µ, ·)

∫ 0.5
0 u(t)dt

∫ 1
0.5 u(t)dt

β3(µ, ·)
∫ 1
0 u(t)dt

Integrate a function over [0, 1] in two steps using nodes 0 ≤ t0 < · · · < tm−1 < 0.5,
tm = 0.5, and tm+1 < · · · < t2m ≤ 1.
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Integrate a function over [0, 1] in two steps using nodes 0 ≤ t0 < · · · < tm−1 < 0.5,
tm = 0.5, and tm+1 < · · · < t2m ≤ 1.
Is ■ (

∫ 1
0.5 u(t)dt) independent of ■ (u(t0), . . . ,u(tm−1)) given ■ (u(tm), . . . ,u(t2m))?
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SPLIT INTEGRATION: COHERENCE
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tm = 0.5, and tm+1 < · · · < t2m ≤ 1.
Is ■ (

∫ 1
0.5 u(t)dt) independent of ■ (u(t0), . . . ,u(tm−1)) given ■ (u(tm), . . . ,u(t2m))?

For a Brownian motion prior on the integrand u, yes.
For an integrated BM prior on u, i.e. a BM prior on u′, no.
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SPLIT INTEGRATION: COHERENCE

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

β1(µ, ·)
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∫ 0.5
0 u(t)dt

∫ 1
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∫ 1
0 u(t)dt

Integrate a function over [0, 1] in two steps using nodes 0 ≤ t0 < · · · < tm−1 < 0.5,
tm = 0.5, and tm+1 < · · · < t2m ≤ 1.
Is ■ (

∫ 1
0.5 u(t)dt) independent of ■ (u(t0), . . . ,u(tm−1)) given ■ (u(tm), . . . ,u(t2m))?

For a Brownian motion prior on the integrand u, yes.
For an integrated BM prior on u, i.e. a BM prior on u′, no.
So how do we elicit an appropriate prior that respects the problem’s structure? !?
And is being fully Bayesian worth it in terms of cost and robustness? Cf. Jacob et al.
(2017), and Lie et al. (2018). !?
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SHORT PIPELINES: BAYESIAN INVERSE PROBLEMS

A Bayesian inverse problem for recovering parameters θ ∈ Θ from data d ∈ D can be
represented as the automatically coherent two-stage computational pipeline

d β1(µ, ·) θ 7→ ρ(d|θ) β2(µ, ·) θ

β1 converts data d into the likelihood function for parameters θ, and hence
incorporates any forward model such as an O/PDE solver.
β2 converts the prior on θ and the likelihood into a joint distribution for (θ, d), then
conditions upon the actual observation — it returns something in PΘ.
β1 conventionally has deterministic output in RΘ; a bona fide PNM would return a
non-trivial probability distribution in PRΘ , i.e. a randomised likelihood.
Lie et al. (2018) analyse how the stochastic variability in the forward model /
likelihood propagates to the (randomised or marginal) Bayesian posterior on θ.
Alternative approach: assess sufficiency of forward solver accuracy for BIP purposes
using Bayes factors (Capistrán et al., 2016; Christen et al., 2017).

42/51



APPLICATIONS



EXAMPLE: HYDROCYCLONES (OATES ET AL., 2019A)

Hydrocyclones are used in industry as an alternative to
centrifuges or filtration systems to separate fluids of different
densities or particulate matter from a fluid.
Monitoring is an essential control component, but usually
cannot be achieved visually: Gutierrez et al. (2000) propose
electrical impedance tomography as an alternative.
EIT is an indirect imaging technique in which the
conductivity field in the interior — which correlates with
many material properties of interest — is inferred from
current and voltage boundary conditions.
In its Bayesian formulation, this is a well-posed inverse
problem (Dunlop and Stuart, 2016a,b) closely related to
Calderón’s problem (Uhlmann, 2009).
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COMPLETE ELECTRODE MODEL (CHENG ET AL., 1989; SOMERSALO ET AL., 1992)

The interior conductivity field σ and electrical potential field v and the applied boundary
currents Ii, measured voltages Vi, and known contact impedances ζi are related by

−∇ · σ(x)∇v(x) = 0 x ∈ D;
∫
Ei

σ(x)∂v(x)
∂n̂ du = Ii x ∈ Ei, i = 1, . . . ,m;

v(x) + ζiσ(x)
∂v(x)

∂n̂ = Vi x ∈ Ei; σ(x)∂v(x)
∂n̂ = 0 x ∈ ∂D \

m⋃
i=1

Ei.

Furthermore, we consider a vector of such models, with multiple current stimulation
patterns, at multiple points in time, for a time-dependent field σ(t, x).

n̂
D

σ(x) = ???

(E1, I1,V1)

(E2, I2,V2)

(E3, I3,V3) 44/51



EIT FORWARD PROBLEM

Sampling from the posterior(s) requires repeatedly solving the forward PDE.
We use the probabilistic meshless method (PMM) of Cockayne et al. (2016, 2017):

a Gaussian process extension of symmetric collocation;
a Bayesian PNM for a Gaussian prior and linear elliptic PDEs of this type.

PMM allows us to:
account for uncertainty arising from the PDE having no explicit solution;
use coarser discretisations of the PDE to solve the problem faster while still providing
meaningful UQ for the inverse problem, cf. Capistrán et al. (2016); Christen et al. (2017).
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Figure 3: Like collocation, PMM imposes the PDE relation at nA interior nodes and boundary
conditions at nB boundary nodes.
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EIT INVERSE PROBLEM

For the inverse problem we use a Karhunen–Loève series prior:

log σ(t, x; ω) =
∞

∑
k=1

k−αψk(t; ω)ϕk(x),

with the ψk being a-priori independent Brownian motions in t.
Like Dunlop and Stuart (2016a), we assume additive Gaussian observational noise
with variance γ2 > 0, independently on each Ei.
We adopt a filtering formulation, inferring σ(ti, · ; ·) sequentially.
Within each data assimilation step, the Bayesian update is performed by SMC with
P ∈ N weighted particles and a pCN transition kernel (which uses point evaluations
of σ directly and avoids truncation of the KL expansion).
Real-world data obtained at 49 regular time intervals: rapid injection between frames
10 and 11, followed by diffusion and rotation of the liquids.
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EIT STATIC RECOVERY I
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EIT STATIC RECOVERY II
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The first column shows the reference solution, obtained using symmetric collocation with a large
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EIT DYNAMIC RECOVERY

0.000

0.025

0.050

0.075

0.100

0.125

ψ1

PN

Non-PN

Truth

−15

−10

−5

ψ2

−7.5

−5.0

−2.5

0.0

2.5

5.0

ψ3

−30 −20 −10

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

−15 −10 −5 −5 0 5 −15 −10 −5 0

ψ4

Figure 6: Posterior distribution over the coefficients ψk at the final time. A small number
nA + nB = 71 of collocation points was used to discretise the PDE. The reference posterior
distribution over the coefficients ψk is plotted (grey) and compared to the approximation to the
posterior obtained when discretisation of the PDE is not modelled (blue, ‘Non-PN’) and modelled
(orange, ‘PN’). 49/51



EIT COMMENTS

Typically PDE discretisation error in BIPs is ignored, or its contribution is bounded
through detailed numerical analysis (Schwab and Stuart, 2012). Theoretical bounds
are difficult in the temporal setting due to propagation and accumulation of errors
As a modelling choice, the PN approach eases these difficulties. As with the Painlevé
example, this is a statistically correct implementation of the assumptions, but it is (at
present) costly. 3/7

Furthermore, Markov temporal evolution of the conductivity field was assumed; this
is likely incorrect, since time derivatives of this field will vary continuously. Even
a-priori knowledge about the spin direction is neglected at present. 7

Again, we see a need for priors that are ‘physically reasonable’ and
statistically/computationally appropriate. !?
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CLOSING REMARKS

Numerical methods can be characterised in a Bayesian fashion, distinct from ACA. 3

BPNMs can be composed into pipelines, e.g. for inverse problems. 3

Bayes’ rule as disintegration → (expensive!) numerical implementation. 3/7

Lots of room to improve computational cost and bias. !?
Departures from the “Bayesian gold standard” can be assessed in terms of cost-accuracy
tradeoff. !?

How to choose/design an appropriate (numerically-analytically right) prior? !?

Foundations: Cockayne et al. (2019) arXiv:1702.03673
Optimality: Oates et al. (2019b) arXiv:1901.04326
BIPs: Lie et al. (2018) arXiv:1712.05717
Industrial applications: Oates et al. (2019a) arXiv:1707.06107
History: Oates and Sullivan (2019) arXiv:1901.04457

Thank You
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