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MOTIVATION AND CONTEXT



CONTEXT: MATH+ PROJECT TRU-2

The MATH+ industrial transfer project TrU-2 “Demand modelling and control for
e-commerce using RKHS transfer operator approaches” aims to transfer recent
advances in kernel-based representations of operators and kernel-based machine
learning into a specific commericial setting.
We are aiming to — based on Zalando sales data — learn and then control the
essential dynamics underlying time-dependent demand.

Aim = an empty warehouse and a full purse at season’s end.

Hence, we are interested in embedding probability distributions over time series
into appropriate RKHS feature spaces, and performing conditioning. 2/33



EXECUTIVE SUMMARY

Parameters and data that live in nonlinear high- or infinite-dimensional spaces can
be embedded “faithfully” into reproducing kernel Hilbert spaces, as can probability
distributions over such parameters and data.
Conditioning, e.g. for Bayesian inference, can be performed using surprisingly
simple linear algebra in the RKHS.
The current literature almost gets this right…but there are some typos, some
mistaken or hard-to-check assumptions, and misapplied results.
Our aim is to rigorously establish the conditional mean embedding formula under
relaxed but also verifiable conditions.
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REPRODUCING KERNEL HILBERT SPACES



RKHSS — A CLASSICAL THEOREM

Theorem

Let ℋ be a Hilbert space of real-valued functions on a set 𝒳. Then the following are
equivalent:

For every 𝑥 ∈ 𝒳, the point evaluation functional 𝛿𝑥 ∶ ℋ → ℝ, ⟨𝛿𝑥|𝑢⟩ ≔ 𝑢(𝑥), is
bounded, i.e. in the dual space ℋ′.
There exists a map 𝜙∶ 𝒳 → ℋ with the reproducing property: for all 𝑢 ∈ ℋ and all
𝑥 ∈ 𝒳, 𝑢(𝑥) = ⟨𝜙(𝑥), 𝑢⟩ℋ.
There exists a symmetric and positive-definite function 𝑘 ∶ 𝒳 × 𝒳 → ℝ such that
𝑘(𝑥, ⋅ ) ∈ ℋ for all 𝑥 ∈ 𝒳 and, for all 𝑥 ∈ 𝒳 and 𝑢 ∈ ℋ, 𝑢(𝑥) = ⟨𝑘(𝑥, ⋅ ), 𝑢⟩ℋ.

If one (and hence any) of these conditions hold, then ℋ is called a reproducing kernel
Hilbert space (RKHS), 𝑘 its reproducing kernel, and 𝜙 its (canonical) feature map.
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REPRODUCING KERNEL HILBERT SPACES

The Moore–Aronszajn theorem tells us that ℋ = span{𝑘(𝑥, ⋅) ∶ 𝑥 ∈ 𝒳} with inner
product given by

⟨𝑘(𝑥, ⋅ ), 𝑘(𝑥′, ⋅ )⟩ℋ ≔ 𝑘(𝑥, 𝑥′).

RKHSs are long-established and well-studied tools for machine learning.
The successes of RKHSs are usually attributed to the kernel trick: many nonlinear
statements about functions on 𝒳 are turned into linear algebra in the RKHS ℋ.
RKHS structure also allows for nice representation of linear operators on ℋ, singular
value decompositions / principal component analysis etc. (Mollenhauer (2018))
Important to bear in mind: the space ℋ exists “on the blackboard” but is almost
always only accessed indirectly via the kernel / feature map — ditto for linear
operators on ℋ.
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REPRODUCING KERNEL HILBERT SPACES

𝜑∶ ℝ2 → ℝ3

(𝑥1, 𝑥2) ↦ (𝑥2
1, 𝑥1𝑥2, 𝑥2

2)

Figure 1: Example of the kernel trick: under the nonlinear feature map 𝜑, the separation of the
blue crosses from the orange circles becomes the problem of finding a plane in the feature space
ℝ3 that separates the images of these points.
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KERNEL MEAN EMBEDDING



KERNEL MEAN EMBEDDING I

Definition
Let 𝑋 be a random variable with distribution ℙ𝑋 on 𝒳, and let ℋ be an RKHS over 𝒳
with canonical feature map 𝜑. The kernel mean embedding of 𝑋 (or ℙ𝑋) is

𝜇𝑋 ≔ 𝔼[𝜑(𝑋)] ≡ ∫
𝒳

𝜑(𝑥) ℙ𝑋(d𝑥) ∈ ℋ,

which is well defined if 𝔼[‖𝜑(𝑋)‖ℋ] is finite.

For any ℎ ∈ ℋ, the reproducing property yields

⟨ℎ, 𝜇𝑋⟩ℋ = 𝔼[⟨ℎ, 𝜑(𝑋)⟩ℋ] = 𝔼[ℎ(𝑋)] ∈ ℝ,
i.e. the function 𝜇𝑋 ∶ 𝒳 → ℝ is the embedding into ℋ of the operation “integrate with
respect to ℙ𝑋”.
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KERNEL MEAN EMBEDDING II

Definition
The RKHS ℋ is called characteristic if the linear map

ℙ𝑋 ↦ ∫
𝒳

𝜑(𝑥) ℙ𝑋(d𝑥) ∈ ℋ

is injective.

This is, in some sense, a measure of expressivity of the kernel / feature map.
It is known, for example, that the Gaussian kernel 𝑘 on a bounded domain 𝒳 ⊂ ℝ𝑑,
𝑑 ∈ ℕ, is characteristic.
See Sriperumbudur et al. (2010) for necessary and sufficient conditions for a kernel
to be characteristic, and for relationships to weak convergence.
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CHARACTERISTIC, UNIVERSAL, ETC... (SRIPERUMBUDUR ET AL., 2010)
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KERNEL COVARIANCE OPERATORS

The outer product of 𝑎, 𝑏 ∈ ℋ is a linear operator from ℋ into itself,

(𝑎 ⊗ 𝑏)𝑐 ≔ 𝑎⟨𝑏, 𝑐⟩ℋ.

Definition
Let 𝑋 be a random variable with distribution ℙ𝑋 on 𝒳, and let ℋ be an RKHS over 𝒳
with canonical feature map 𝜑. The uncentred kernel covariance operator of 𝑋 (or ℙ𝑋)
is

𝑢𝐶𝑋 ≔ 𝔼[𝜑(𝑋) ⊗ 𝜑(𝑋)] ≡ ∫
𝒳

𝜑(𝑥) ⊗ 𝜑(𝑥) ℙ𝑋(d𝑥)∶ ℋ → ℋ,

which is well defined if 𝔼[‖𝜑(𝑋)‖2
ℋ] is finite. The centred kernel covariance operator of

𝑋 (or ℙ𝑋) is

𝐶𝑋 ≔ 𝔼[(𝜑(𝑋) − 𝜇𝑋) ⊗ (𝜑(𝑋) − 𝜇𝑋)] ≡ 𝑢𝐶𝑋 − 𝜇𝑋 ⊗ 𝜇𝑋 ∶ ℋ → ℋ.
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KERNEL CROSS-COVARIANCE OPERATORS

Definition
Let (𝑋, 𝑌 ) be a random variable with distribution ℙ(𝑋,𝑌 ) on 𝒳 × 𝒴, and let ℋ be an
RKHS over 𝒳 with canonical feature map 𝜑, and 𝒢 an RKHS over 𝒴 with canonical
feature map 𝜓. The uncentred kernel cross-covariance operator of 𝑋 and 𝑌 is

𝑢𝐶𝑋𝑌 ≔ 𝔼[𝜑(𝑋) ⊗ 𝜓(𝑌 )] ≡ ∫
𝒳×𝒴

𝜑(𝑥) ⊗ 𝜓(𝑦) ℙ(𝑋,𝑌 )(d𝑥, d𝑦) ∶ 𝒢 → ℋ,

which is well defined if 𝔼[‖𝜑(𝑋)‖2
ℋ] and 𝔼[‖𝜓(𝑌 )‖2

𝒢] are finite. The centred kernel
cross-covariance operator of 𝑋 and 𝑌 is

𝐶𝑋𝑌 ≔ 𝔼[(𝜑(𝑋) − 𝜇𝑋) ⊗ (𝜓(𝑌 ) − 𝜇𝑌 )] ≡ 𝑢𝐶𝑋𝑌 − 𝜇𝑋 ⊗ 𝜇𝑌 ∶ 𝒢 → ℋ.
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KERNEL COVARIANCE AND CROSS-COVARIANCE OPERATORS

𝑢𝐶𝑋 is the KME of ℙ𝑋 under the ℋ ⊗ ℋ-valued tensor product feature map 𝜑 ⊗ 𝜑; it
is a Hilbert–Schmidt operator on ℋ; similarly for 𝐶𝑋 .
The reproducing properties imply that, for all ℎ1, ℎ2 ∈ ℋ,

⟨ℎ1, 𝑢𝐶𝑋ℎ2⟩ℋ ≔ 𝔼[⟨ℎ1, 𝜑(𝑋)⟩ℋ⟨ℎ2, 𝜑(𝑋)⟩ℋ] = 𝔼[ℎ1(𝑋)ℎ2(𝑋)] ∈ ℝ

and

⟨ℎ1, 𝐶𝑋ℎ2⟩ℋ ≔ 𝔼[⟨ℎ1, 𝜑(𝑋) − 𝜇𝑋⟩ℋ⟨ℎ2, 𝜑(𝑋) − 𝜇𝑋⟩ℋ] = Cov[ℎ1(𝑋), ℎ2(𝑋)] ∈ ℝ.

Similarly, for all ℎ, ℎ1, ℎ2 ∈ ℋ and 𝑔 ∈ 𝒢,

⟨ℎ, 𝑢𝐶𝑋𝑌 𝑔⟩ℋ = 𝔼[ℎ(𝑋), 𝑔(𝑌 )] ∈ ℝ,
⟨ℎ, 𝐶𝑋𝑌 𝑔⟩ℋ = Cov[ℎ(𝑋), 𝑔(𝑌 )] ∈ ℝ.
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CONDITIONAL MEAN EMBEDDING



CONDITIONAL MEAN EMBEDDING

As before, we consider random variables 𝑋 and 𝑌 taking values in 𝒳 and 𝒴
respectively, with joint distribution ℙ(𝑋,𝑌 ), and RKHSs

(ℋ, 𝒳, 𝑘, 𝜑) (𝒢, 𝒴, ℓ, 𝜓).

We will think of 𝑌 as being parameters (with prior distribution ℙ𝑋) that we wish to
condition on an observation 𝑋 = 𝑥.
Under mild assumptions1 there is a ℙ𝑋-a.e. uniquely defined regular version of the
conditional distribution ℙ𝑌 |𝑋=𝑥.
Question. How are the KMEs 𝜇𝑋 , 𝜇𝑌 , and 𝜇𝑌 |𝑋=𝑥 related?

1𝒳 needs measurable structure, and 𝒴 needs a measurable structure isomorphic to a Borel subset of [0, 1];
in particular, this holds if 𝒴 is Polish. See e.g. Kallenberg (2006).
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RECALL: GAUSSIAN CONDITIONING

Suppose that we have a bona fide Gaussian random variable (𝑈, 𝑉 ) taking values in
𝒢 ⊕ ℋ, where the mean and covariance have the block structure

(𝑈
𝑉 ) ∼ 𝒩((𝜇𝑈

𝜇𝑉
), ( 𝐶𝑈 𝐶𝑈𝑉

𝐶𝑉 𝑈 𝐶𝑉
)).

The well-known Sherman–Morrison–Woodbury / Schur complement formula for the
Gaussian conditional random variable 𝑈|𝑉 = 𝑣 is

(𝑈|𝑉 = 𝑣) ∼ 𝒩(𝜇𝑈|𝑉 =𝑣, 𝐶𝑈|𝑉 =𝑣)
𝜇𝑈|𝑉 =𝑣 = 𝜇𝑈 + 𝐶𝑈𝑉 𝐶−1

𝑉 (𝑣 − 𝜇𝑉 )
𝐶𝑈|𝑉 =𝑣 = 𝐶𝑈 − 𝐶𝑈𝑉 𝐶−1

𝑉 𝐶𝑉 𝑈

provided 𝐶𝑉 is invertible and the data space ℋ is finite-dimensional. (For the more
general setting, see e.g. Owhadi and Scovel (2018).)
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A SHOCKINGLY NAÏVE IDEA I

Now…our embedded random variable (𝜓(𝑌 ), 𝜑(𝑋)) is not Gaussian.
Naïve proposal: the conditional mean embedding, i.e. the representative in 𝒢 of
ℙ𝑌 |𝑋=𝑥, is obtained by pretending that (𝜓(𝑌 ), 𝜑(𝑋)) is Gaussian:

𝜇𝑌 |𝑋=𝑥 = 𝜇𝑌 + 𝐶𝑌 𝑋𝐶−1
𝑋 (𝜑(𝑥) − 𝜇𝑋)???

Does this formula, or anything like it, even stand a chance of being true? If so, then
what are rigorous conditions for its validity?
Must 𝜑(𝑥) − 𝜇𝑋 lie in ran 𝐶𝑋? If not, how do we make sense of 𝐶𝑌 𝑋𝐶−1

𝑋 (𝜑(𝑥) − 𝜇𝑋)?
Can we handle non-invertible 𝐶𝑋 and dimℋ = ∞?
Why should 𝜇𝑌 + 𝐶𝑌 𝑋𝐶−1

𝑋 (𝜑(𝑥) − 𝜇𝑋) be the KME of anything at all, let alone of
𝑌 |𝑋 = 𝑥?
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A SHOCKINGLY NAÏVE IDEA II

Dare we apply the Gaussian conditioning formula with 𝑈 = 𝜓(𝑌 ), 𝑉 = 𝜑(𝑋)?
A priori, there seems to be no reason why (𝜓(𝑌 ), 𝜑(𝑋)) should behave so much like
a Gaussian with the same two moments that we may condition as if it were Gaussian.
The data RKHS ℋ is basically always ∞-dimensional (e.g. long time series in 𝒳,
furthermore mapped through 𝜑).
Slogans:

Life is not as simple as replacing inverses by pseudo-inverses.
Life is surprisingly good in RKHSs, but still one cannot be naïve.
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KERNEL MEAN EMBEDDINGS & COVARIANCE OPERATORS

(ℋ, 𝒳, 𝑘, 𝜑), (𝒢, 𝒴, ℓ, 𝜓) RKHSs
𝑋, 𝑌 = random variables in 𝒳, 𝒴 with joint distribution ℙ𝑋𝑌
Consider the random variable (𝜓(𝑌 ), 𝜑(𝑋)) in 𝒢 ⊕ ℋ and define

kernel mean embeddings (KME) kernel (cross-) covariance operators

𝜇 ≔ 𝔼[(𝜓(𝑌 )
𝜑(𝑋))] = (𝜇𝑌

𝜇𝑋
), 𝐶 ≔ Cov[(𝜓(𝑌 )

𝜑(𝑋))] = ( 𝐶𝑌 𝐶𝑌 𝑋
𝐶𝑋𝑌 𝐶𝑋

).

𝜇𝑌 |𝑋=𝑥 = 𝔼[𝜓(𝑌 )|𝑋 = 𝑥], 𝐶𝑌 |𝑋=𝑥 = Cov[𝜓(𝑌 )|𝑋 = 𝑥].
Basic assumptions:

𝔼[‖𝜑(𝑋)‖2
ℋ] < ∞, 𝔼[‖𝜓(𝑌 )‖2

𝒢] < ∞, 𝔼[‖𝜓(𝑌 )‖2
𝒢|𝑋 = 𝑥] < ∞,

which imply existence of the KMEs and covariance operators and that

ℋ ⊆ ℒ2(ℙ𝑋), 𝒢 ⊆ ℒ2(ℙ𝑌 ), 𝒢 ⊆ ℒ2(ℙ𝑌 |𝑋=𝑥).
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CONDITIONAL MEAN EMBEDDINGS: IDEA

“observation” space 𝒳
“parameter” space 𝒴

feature spaces ℋ, 𝒢
(RKHS)

⎧{{{
⎨{{{⎩

𝑥 ∈ 𝒳
𝑋 ∼ ℙ𝑋

𝑌 ∼ ℙ𝑌

(𝑋, 𝑌 ) ∼ ℙ𝑋𝑌

⎫}}}
⎬}}}⎭

⎧{{{
⎨{{{⎩

𝜑(𝑥)
𝜓(𝑌 ), 𝜑(𝑋)
𝜇𝑌 , 𝐶𝑌 , 𝐶𝑌 𝑋

𝜇𝑋, 𝐶𝑋𝑌 , 𝐶𝑋

⎫}}}
⎬}}}⎭

(𝑌 |𝑋 = 𝑥) ∼ ℙ𝑌 |𝑋=𝑥 𝜇𝑌 |𝑋=𝑥 = 𝐶𝑌 𝑋𝐶−1
𝑋 𝜑(𝑥)

embed
𝜓,𝜑

conditioning
on

𝑋
=𝑥

conditionalm
ean

em
bedding

embed
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CONDITIONAL MEAN EMBEDDINGS (SONG ET AL., 2009, THEOREM 4)

For 𝑔 ∈ 𝒢 define 𝑓𝑔(𝑥) = 𝔼[𝑔(𝑌 )|𝑋 = 𝑥] and assume 𝑓𝑔 ∈ ℋ
Note that 𝑓𝜓(𝑦)(𝑥) = 𝔼[ℓ(𝑦, 𝑌 )|𝑋 = 𝑥] = 𝜇𝑌 |𝑋=𝑥(𝑦).
Observe that, for ℎ ∈ ℋ and 𝑔 ∈ 𝒢,

⟨ℎ, 𝐶𝑋𝑓𝑔⟩ℋ = Cov[ℎ(𝑋), 𝑓𝑔(𝑋)] = Cov[ℎ(𝑋), 𝑔(𝑌 )] = ⟨ℎ, 𝐶𝑋𝑌 𝑔⟩ℋ

⇒ 𝐶𝑋𝑓𝑔 = 𝐶𝑋𝑌 𝑔 ⟹ 𝑓𝑔 = 𝐶−1
𝑋 𝐶𝑋𝑌 𝑔

Reproducing properties yield

𝜇𝑌 |𝑋=𝑥(𝑦) = ⟨𝑓𝜓(𝑦), 𝜑(𝑥)⟩ℋ = ⟨𝐶−1
𝑋 𝐶𝑋𝑌 𝜓(𝑦), 𝜑(𝑥)⟩ℋ

= ⟨𝜓(𝑦), 𝐶𝑌 𝑋𝐶−1
𝑋 𝜑(𝑥)⟩𝒢 = (𝐶𝑌 𝑋𝐶−1

𝑋 𝜑(𝑥))(𝑦)

⇒ 𝜇𝑌 |𝑋=𝑥 = 𝐶𝑌 𝑋𝐶−1
𝑋 𝜑(𝑥)

This formula is never applicable for independent 𝑋, 𝑌 !
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PROBLEMS WITH INDEPENDENCE AND CONSTANT FUNCTIONS

In the trivial case where 𝑋 and 𝑌 are independent, the CME should yield
𝜇𝑌 |𝑋=𝑥 = 𝜇𝑌 . However, independence implies that 𝐶𝑋𝑌 = 0, and so the CME
formula of Song et al. (2009) yields 𝜇𝑌 |𝑋=𝑥 = 0, regardless of 𝑥.
In order to understand what has gone wrong it is helpful to consider in turn the two
cases in which the constant function 1𝒳 ∶ 𝑥 ↦ 1 is, or is not, an element of ℋ.

If 1𝒳 ∈ ℋ, then 𝐶𝑋 cannot be injective, since 𝐶𝑋1𝒳 = 0, and the CME formula
of Song et al. (2009) is not applicable.
If 1𝒳 ∉ ℋ and 𝑋 and 𝑌 are independent, then the assumption
𝔼[𝑔(𝑌 )|𝑋 = ⋅ ] ∈ ℋ cannot hold (except for those special elements 𝑔 ∈ ℋ for
which 𝔼[𝑔(𝑌 )] = 0 or if 𝔼[ℓ(𝑦, 𝑌 )] = 0 for all 𝑦 ∈ 𝒴, respectively).

In summary, the CME formula of Song et al. (2009) is never applicable for
independent random variables except in certain degenerate cases.
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PREVIOUS WORK & OUR CONTRIBUTION

centered operators (Song et al., 2009) uncentred operators (Fukumizu et al., 2013)
pr
ev
io
us
wo
rk 𝜇𝑌 |𝑋=𝑥 = 𝐶𝑌 𝑋𝐶−1

𝑋 𝜑(𝑥) wrong 𝜇𝑌 |𝑋=𝑥 = 𝑢𝐶𝑌 𝑋
𝑢𝐶−1

𝑋 𝜑(𝑥) correct

Assumption 𝑓𝑔 ∈ ℋ ∀𝑔 Assumption 𝑓𝑔 ∈ ℋ ∀𝑔

Assumption 𝜑(𝑥) ∈ ran 𝐶𝑋 Assumption 𝜑(𝑥) ∈ ran 𝑢𝐶𝑋

ou
rc
on
tr
ib
ut
io
n

𝜇𝑌 |𝑋=𝑥 = 𝜇𝑌 + (𝐶†
𝑋𝐶𝑋𝑌 )∗(𝜑(𝑥) − 𝜇𝑋) 𝜇𝑌 |𝑋=𝑥 = (𝑢𝐶†

𝑋
𝑢𝐶𝑋𝑌 )∗𝜑(𝑥)

Assumption 𝑓𝑔 ∈ ℝ + ℋ ∀𝑔 Assumption 𝑓𝑔 ∈ ℋ ∀𝑔

𝐶†
𝑋𝐶𝑋𝑌 bounded operator 𝑢𝐶†

𝑋
𝑢𝐶𝑋𝑌 bounded operator

Some things are wrong or hard to verify in practice; other things are nice. 21/33



RIGOROUS SETTINGS FOR CONDITIONAL
MEAN EMBEDDING



ASSUMPTIONS FOR CMES I

We establish the CME formula under various assumptions, for centred and
uncentred covariance operators.
The assumptions are all related to what we call Assumption A,

A ∶ For all 𝑔 ∈ 𝒢, 𝑓𝑔 ≔ 𝔼[𝑔(𝑌 )|𝑋 = ⋅ ] ∈ ℋ.

For centred operators we seek to establish that

𝜇𝑌 |𝑋=𝑥 = 𝜇𝑌 + (𝐶†
𝑋𝐶𝑋𝑌 )∗(𝜑(𝑥) − 𝜇𝑋)

and for uncentred operators we seek

𝜇𝑌 |𝑋=𝑥 = (𝑢𝐶†
𝑋

𝑢𝐶𝑋𝑌 )∗𝜑(𝑥).
We also seek to understand the effect of finite-dimensional approximation of the
data space, and convergence as the approximation dimension tends to infinity.
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ASSUMPTIONS FOR CMES II

Replacement of 𝐶−1
𝑋 by a Moore–Penrose pseudo-inverse 𝐶†

𝑋 is a natural
generalisation.
Our principal aim is to replace Assumption A — that 𝔼[𝑔(𝑌 )|𝑋 = ⋅ ] ∈ ℋ for all 𝑔 ∈ 𝒢
— with something both weaker and practically verifiable.
It turns out that 𝑘 being characteristic is one such condition, but, unfortunately, the
suggestion of Fukumizu et al. (2004) is flawed.
To take care of issues related to constant functions we introduce

𝒞 ≔ {𝑓 ∈ ℒ2 ∣ 𝑓 is constant ℙ𝑋-a.s.},
ℒ2

𝒞 ≔ ℒ2/𝒞,
⟨[𝑓1], [𝑓2]⟩ℒ2

𝒞
≔ Cov[𝑓1(𝑋), 𝑓2(𝑋)].

and define ℋ𝒞 similarly.
Our (admittedly complex at first glance!) hierarchy of assumptions is… 23/33



∃𝐶 > 0 ∀𝑥1, 𝑥2 ∈ 𝒳, 𝑦1, 𝑦2 ∈ 𝒴 ∶ 𝜇𝑌 |𝑋=𝑥1
(𝑦1) 𝜇𝑌 |𝑋=𝑥2

(𝑦2) ≤ 𝐶 𝑘(𝑥1, 𝑥2) ℓ(𝑥1, 𝑥2)

ℋ = ℒ2(ℙ𝑋) ℋ𝒞 = ℒ2
𝒞(ℙ𝑋)

A: 𝑓𝑔 ∈ ℋ for 𝑔 ∈ 𝒢 B: [𝑓𝑔] ∈ ℋ𝒞 for 𝑔 ∈ 𝒢 C: 𝑃
ℋ𝒞

ℒ2
𝒞
[𝑓𝑔] ∈ ℋ𝒞 for 𝑔 ∈ 𝒢

𝑢C: 𝑃
ℋℒ2 𝑓𝑔 ∈ ℋ for 𝑔 ∈ 𝒢

A*: 𝑓𝜓(𝑦) ∈ ℋℒ2
for 𝑦 ∈ 𝒴 B*: [𝑓𝜓(𝑦)] ∈ ℋ𝒞

ℒ2
𝒞 for 𝑦 ∈ 𝒴

ℋ dense in ℒ2(ℙ𝑋) ℋ𝒞 dense in ℒ2
𝒞(ℙ𝑋) 𝑘 is characteristic

/
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∃𝐶 > 0 ∀𝑥1, 𝑥2 ∈ 𝒳, 𝑦1, 𝑦2 ∈ 𝒴 ∶ 𝜇𝑌 |𝑋=𝑥1
(𝑦1) 𝜇𝑌 |𝑋=𝑥2

(𝑦2) ≤ 𝐶 𝑘(𝑥1, 𝑥2) ℓ(𝑥1, 𝑥2)

ℋ = ℒ2(ℙ𝑋) ℋ𝒞 = ℒ2
𝒞(ℙ𝑋)

A: 𝑓𝑔 ∈ ℋ for 𝑔 ∈ 𝒢 B: [𝑓𝑔] ∈ ℋ𝒞 for 𝑔 ∈ 𝒢 C: 𝑃
ℋ𝒞

ℒ2
𝒞
[𝑓𝑔] ∈ ℋ𝒞 for 𝑔 ∈ 𝒢

𝑢C: 𝑃
ℋℒ2 𝑓𝑔 ∈ ℋ for 𝑔 ∈ 𝒢

A*: 𝑓𝜓(𝑦) ∈ ℋℒ2
for 𝑦 ∈ 𝒴 B*: [𝑓𝜓(𝑦)] ∈ ℋ𝒞

ℒ2
𝒞 for 𝑦 ∈ 𝒴

ℋ dense in ℒ2(ℙ𝑋) ℋ𝒞 dense in ℒ2
𝒞(ℙ𝑋) 𝑘 is characteristic

/

Under A : 𝜇𝑌 |𝑋=𝑥 = (𝑢𝐶†
𝑋

𝑢𝐶𝑋𝑌 )∗𝜑(𝑥)
Under B : 𝜇𝑌 |𝑋=𝑥 = 𝜇𝑌 + (𝐶†

𝑋𝐶𝑋𝑌 )∗(𝜑(𝑥) − 𝜇𝑋)
Under B*: 𝜇𝑌 |𝑋=𝑥 = 𝜇𝑌 + lim

𝑛→∞
(𝐶(𝑛)†

𝑋 𝐶(𝑛)
𝑋𝑌 )∗(𝜑(𝑥) − 𝜇𝑋) 25/33



CONDITIONAL MEAN EMBEDDINGS I

Theorem (Centred CME; Klebanov et al., 2019)

Under Assumption C, 𝐶†
𝑋𝐶𝑋𝑌 ∶ 𝒢 → ℋ is a bounded operator and, for all 𝑦 ∈ 𝒴 and

ℎ ∈ ℋ,

⟨ℎ, 𝜇𝑌 |𝑋= ⋅ (𝑦)⟩ℒ2(ℙ𝑋) = ⟨ℎ, (𝜇𝑌 + (𝐶†
𝑋𝐶𝑋𝑌 )∗ (𝜑( ⋅ ) − 𝜇𝑋))(𝑦)⟩

ℒ2(ℙ𝑋)
.

If also 𝑘 is characteristic or ℋ𝒞 is dense in ℒ2
𝒞(ℙ𝑋), or Assumption B holds or

[𝑓𝜓(𝑦)] ∈ ℋ𝒞 for each 𝑦 ∈ 𝒴, then, for ℙ𝑋-a.e. 𝑥 ∈ 𝒳,

𝜇𝑌 |𝑋=𝑥 = 𝜇𝑌 + (𝐶†
𝑋𝐶𝑋𝑌 )∗ (𝜑(𝑥) − 𝜇𝑋).
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FINITE-RANK APPROXIMATION OF INFINITE-DIMENSIONAL DATA

Question: How do CMEs behave as we see more and more of an in principle
infinite-dimensional data object? (E.g. a long time series, or an image under
increasing resolution.)
Let (ℎ𝑛)𝑛∈ℕ be a complete orthonormal system of ℋ that is an eigenbasis of 𝐶𝑋 , let
ℋ(𝑛) ≔ span{ℎ1, … , ℎ𝑛}, let ℱ ≔ 𝒢 ⊕ ℋ, let 𝑃 (𝑛) ∶ ℱ → ℱ be the orthogonal
projection onto 𝒢 ⊕ ℋ(𝑛), and let

𝐶 ≔ ( 𝐶𝑌 𝐶𝑌 𝑋
𝐶𝑋𝑌 𝐶𝑋

), 𝐶(𝑛) ≔ 𝑃 (𝑛)𝐶𝑃 (𝑛) = ( 𝐶𝑌 𝐶(𝑛)
𝑌 𝑋

𝐶(𝑛)
𝑋𝑌 𝐶(𝑛)

𝑋
).
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CONDITIONAL MEAN EMBEDDINGS II

Theorem (Centred CME with finite-rank approximation; Klebanov et al., 2019)

ran 𝐶(𝑛)
𝑋𝑌 ⊆ ran 𝐶(𝑛)

𝑋 and so ℎ(𝑛)
𝑔 ≔ 𝐶(𝑛)†

𝑋 𝐶(𝑛)
𝑋𝑌 𝑔 ∈ ℋ is well defined for each 𝑔 ∈ 𝒢. For

each 𝑦 ∈ 𝒴 and ℎ ∈ ℋ,

⟨ℎ, 𝜇𝑌 |𝑋= ⋅ (𝑦)⟩ℒ2(ℙ𝑋) = lim
𝑛→∞

⟨ℎ, (𝜇𝑌 + (𝐶(𝑛)†
𝑋 𝐶(𝑛)

𝑋𝑌 )∗ (𝜑( ⋅ ) − 𝜇𝑋))(𝑦)⟩
ℒ2(ℙ𝑋)

. (1)

If also 𝑘 is characteristic, or ℋ𝒞 is dense in ℒ2
𝒞(ℙ𝑋), or B∗ holds, then, for ℙ𝑋-a.e.

𝑥 ∈ 𝒳,
𝜇𝑌 |𝑋=𝑥 = 𝜇𝑌 + lim

𝑛→∞
(𝐶(𝑛)†

𝑋 𝐶(𝑛)
𝑋𝑌 )∗ (𝜑(𝑥) − 𝜇𝑋). (2)
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CONDITIONAL MEAN EMBEDDINGS III

Theorem (Uncentred CME: Klebanov et al., 2019)

Under Assumption 𝑢C, the operator 𝑢𝐶†
𝑋

𝑢𝐶𝑋𝑌 ∶ 𝒢 → ℋ is bounded and, for all 𝑦 ∈ 𝒴
and ℎ ∈ ℋ,

⟨ℎ, 𝜇𝑌 |𝑋= ⋅ (𝑦)⟩ℒ2(ℙ𝑋) = ⟨ℎ, ((𝑢𝐶†
𝑋

𝑢𝐶𝑋𝑌 )∗𝜑( ⋅ ))(𝑦)⟩
ℒ2(ℙ𝑋)

.

If also ℋ is dense in ℒ2(ℙ𝑋), or Assumption A holds, or 𝑓𝜓(𝑦) ∈ ℋ for each 𝑦 ∈ 𝒴, then,
for ℙ𝑋-a.e. 𝑥 ∈ 𝒳,

𝜇𝑌 |𝑋=𝑥 = (𝑢𝐶†
𝑋

𝑢𝐶𝑋𝑌 )∗ 𝜑(𝑥).
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CONNECTION TO GAUSSIAN CONDITIONING IN HILBERT SPACES

𝒳, 𝒴 ℋ, 𝒢 Gaussian r.v. on ℋ ⊕ 𝒢

⎧{{{
⎨{{{⎩

𝑥 ∈ 𝒳
𝑋 ∼ ℙ𝑋

𝑌 ∼ ℙ𝑌

(𝑋, 𝑌 ) ∼ ℙ𝑋𝑌

⎫}}}
⎬}}}⎭

⎧{{{
⎨{{{⎩

𝜑(𝑥)
𝜓(𝑌 ), 𝜑(𝑋)
𝜇𝑌 , 𝐶𝑌 , 𝐶𝑌 𝑋

𝜇𝑋, 𝐶𝑋𝑌 , 𝐶𝑋

⎫}}}
⎬}}}⎭

(𝑈
𝑉 ) ∼ 𝒩((𝜇𝑌

𝜇𝑋
), ( 𝐶𝑌 𝐶𝑌 𝑋

𝐶𝑋𝑌 𝐶𝑋
))

(𝑌 |𝑋 = 𝑥) ∼ ℙ𝑌 |𝑋=𝑥 𝜇𝑌 |𝑋=𝑥, 𝐶𝑌 |𝑋=𝑥 (𝑈|𝑉 = 𝑣) ∼ 𝒩(𝜇𝑈|𝑉 =𝑣, 𝐶𝑈|𝑉 =𝑣)

embed
𝜓,𝜑

conditioning
on

𝑋
=𝑥

Gaussian
on ℋ⊕𝒢

conditionalm
ean

em
bedding

conditioning
on

𝑉
=𝑣=𝜑(𝑥)

embed
𝜓,𝜑

Gaussian on 𝒢
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CONNECTION TO GAUSSIAN CONDITIONING IN HILBERT SPACES

Theorem (Klebanov et al., 2019)
Under B*, for ℙ𝑋-a.e. 𝑥 ∈ 𝒳,

𝜇𝑈|𝑉 =𝑣 = 𝜇𝑌 |𝑋=𝑥, 𝐶𝑈|𝑉 =𝑣 = 𝔼[𝐶𝑌 |𝑋] = ∫
𝒳

𝐶𝑌 |𝑋=𝑥 ℙ𝑋(d𝑥),

where 𝑣 = 𝜑(𝑥) and

(𝑈
𝑉 ) ∼ 𝒩((𝜇𝑌

𝜇𝑋
), ( 𝐶𝑌 𝐶𝑌 𝑋

𝐶𝑋𝑌 𝐶𝑋
)).

Performing Gaussian conditioning on the kernel mean+covariance does yield the
KME of the conditioned random variable!
Interpretation of the conditioned covariance operator…?
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CLOSING REMARKS



SUMMARY

We now have:

a rigorous derivation of conditional mean embeddings under weaker assumptions;
an improved understanding of which assumptions have which implications, in
particular,

stronger assumptions are needed for the uncentred case than the centred case,
and
characteristic kernels are sufficient for the centered case;

a connection to Gaussian conditioning — (𝜓(𝑌 ), 𝜑(𝑋)) behaves astonishingly like a
Gaussian random variable.
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SUMMARY

Work in progress:

the “outbedding” that recovers ℙ𝑌 |𝑋=𝑥 from 𝜇𝑌 |𝑋=𝑥 — cf. Fukumizu et al. (2013);
the effect on our results of empirical approximation using IID data (𝑥𝑚, 𝑦𝑚) ∼ ℙ𝑋𝑌 :

𝜇𝑋 ≈ ̂𝜇𝑋 ≔ 1
𝑀

𝑀
∑
𝑚=1

𝜑(𝑥𝑚),

𝐶𝑋 ≈ 𝐶𝑋 ≔ 1
𝑀 − 1

𝑀
∑
𝑚=1

(𝜑(𝑥𝑚) − ̂𝜇𝑋) ⊗ (𝜑(𝑥𝑚) − ̂𝜇𝑋)

𝐶𝑋𝑌 ≈ 𝐶𝑋𝑌 ≔ 1
𝑀 − 1

𝑀
∑
𝑚=1

(𝜑(𝑥𝑚) − ̂𝜇𝑋) ⊗ (𝜓(𝑦𝑚) − ̂𝜇𝑌 ).

(These are empirical RKHS operators in the sense of Mollenhauer (2018), so the
linear algebra is nice, but the convergence is not yet clear.)

Thank You!
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