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0. INTRODUCTION
Problem. We wish to assign a numerical size ,u(E ) to subsets £ of a given space X .
Geometry: X =R”; u(E)= Area(E).

Mechanics: X =R* =model for thin sheet of metal with density p(x,y); u(E)=mass of
E.

Probability Theory: X = sample space, collection of possible outcomes; £ X an
“event”; ,u(E ):probability that £ happens.

However, there are problems. For instance, what is the area of this?

“Magnification” doesn’t help. We encounter similar problems with the idea of mass —
what is the mass of, say, a sponge? Or, in the case of probability, imagine picking a real
number “at random” — what is the probability that the number chosen is rational?

What would we like to have for R ?

Idea. (1) A function z with domain 2% and range [0,+ co]; £(@)=0, u(R)=oo.
(2) Translation-invariance: ,u(x +E ) = ,u(E ) forall xeR, EcCR.

(3) “Consistency”:
(i) Monotonicity: 4 B=> u(4)< u(B);

(i) u(A11B)= pu(A)+ u(B);
(iii) o -additivity: (1, 4)=>.  u(4);
(iv) u(@)=0;

Sad Fact. These requirements are not self-consistent!
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Condition (1) is very strong because there are too many subsets:
[2%[=27" >> 2% >> N, =|N|
o -additivity is also asking for a lot because limits are involved.

The standard choice is to relax (1) and keep o -additivity for the sake of practicality and
an easy life. Relaxing (1) means that the domain for g should only be a subcollection F

of subsets of X . We would like F to have the following properties:
(1) 9, X eF,

(2Q) A, BeF=>AUB,ANB,A\B, A € F;
G) {4}, n F=UL4.N, 4eF.

We do not require that F be closed under arbitrary unions and intersections, simply
countable ones.

Definition. Let X be a set. A o -algebra of subsets of X is a collection of subsets of X
that contains & and is closed under complementation and countable unions of its
members.

Exercise. Prove that a o -algebra satisfies the properties given above.

Definition. A measurable space is a pair (X,F), where X is a set and F is a o -

algebra of subsets of X . Elements of F are called F -measurable, or simply
measurable.

Definition. Let (X,7) be a measurable space. A measure on (X,F) is a function
12 F —[0,+ 0] such that

() #(@)=0;

(2) u is o -additive, i.c. if 4 € F are pairwise disjoint then (1, 4)=>  u(4).

The triple (X, F, 1) is called a measure space.

Proposition. (Basic properties of measures.) Let (X ,F, ,u) be a measure space.

n

(1) Additivity: A,...,A, € F pairwise disjoint = ,u(]_[ " Al.): zi:v“(Ai);
(2) Monotonicity: A,Be F,Ac B=> u(A4)< u(B);
(3) Inclusion-Exclusion Principle: if A,B e F and ,u(A N B) <o then

#(A40 B)= p(4)+ u(B)~ u(4 N B)

(4) Difference Formula: if A,Be F, AC B, u(4)<o then u(B\ A)= u(B)— u(A4).
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Proof. (1) Define

By o -additivity,

wllly, 4)= w7, B)
:z;'u(Bi)
:z;”(’i‘)

H(ALI(B\ 4))= pu(A)+ u(B\ 4) > u(4).

(2) 1(B)

(4) u(B)=u(A)+ u(B\A). If u(4)<oo as given we can subtract u(4) from both sides
to get (B)— p(A4)= u(B\ 4).

3)
uAB)= p(A11(B\ 4))
= pu(4)+ u(B\ 4)
= u(A)+ u(B\(4" B))
= p(A)+ u(B)~ (4 B)
|
Definition. (Monotone sequences of sets.) We say that a sequence {El. }Zl increases

(respectively decreases) to a set E if

VieN, E,cE, and U E =E,

1

and write E, T E (respectively
VieN, EoE, and N E =E,
and write E, 1 E).

Proposition. (Continuity of measures.) Let (X ,F, ,u) be a measure space and let
ELcF.
() If E,TE then u(E)=1limu(E,).

i—0©
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2) If E,\ E and 3i, such that ,u(Ei )< w then p(E)=1limu(E,).

0 i—©

Proof. (1) Assume first that ,u(Ei) < oo forall i. We claim that
E=ULE =E H(Hiz E, \Ei—l)'

Indeed, LHS< RHS since if xe £ then there is a minimal 7 such that x e E;. By
minimality, x¢ £,_,,so xe€ E;\ E_, < RHS. RHS c LHS is trivial.

To see that the union on the RHS is pairwise disjoint suppose i< j. Then

Ei\E‘]._lgEj\El. since EiEEi+1§---§E;—1§E;- So, since E].\Ej_lgEl.C and

ENE_ cE,(ENE_)N(ENE,)=2.

We now use the o -additivity of x to calculate u(E):

o0

ﬂ(E) = :L‘(El)+ ; ,U(Ei \ Ei—l)
= )+ 2 () s(E, )

=lim(u(E, )+ (u(E,) - t(E,)) +..+ (ulE, ) - ulE,,)))
)

n—0

=lim u(E

n
n—0

This proves (1) under the assumption that x(E,)< oo for all i. If 3j, such that /J(E,-o ): 0
then by Monotonicity i > i, = u(E,)=o and u(E)> u(E,)=c0, hence

,u(E): o =limo = lim,u(Ei),

i—0 i—0

thus proving (1).
(2) By de Morgan,
E N7 E =U%, (B \E)
and
(£ \E)T (£, \N7, E)
by (1). So
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/J(Eio )_ /u(ﬂ o ): /"(Eio \N o Ei)
= ﬂ(UjO:iO Eio \Ei)
= lim ulE, \E)
= ﬂ(EiO )_ }ggﬂ(Ez)
= ,u(ﬂ i=iy Ei): }LIE#(EI)

We observe that (17, E, =N, E,.



1. LEBESGUE’S MEASURE

Aim. Define a measure m on R such that
(1) m(interval) = length(interval);
(2) translation-invariance, i.e. m(x +E ) = m(E ) .

Strategy. ‘Do what we must.’

(1) Define the measure on certain basic sets for which the definition is obvious — the
intervals.

(2) Extend the definition to all sets by approximating them by countable unions of basic
sets.

(3) Restrict to a o -algebra to get o -additivity.

Step 1 — Defining the Measure on Intervals
We begin with some notation and definitions.

An interval is a set of the form (a,b), (a,b], [a,b), [a,b] where a <b. We also allow
J, R, (a,0), [a,0), (-0,b), (~0,b]. We shall use <a,b> to represent all the

possibilities above.

Int={E c R | Eisaninterval }

Let X be a set. A collection S < 2% is called a semi-algebra (of subsets of X ) if
(1) D,XeS8;

2) A, BeS=ANBeS;

(3) VAe S, A° can be written as a finite union of pairwise disjoint elements of S .

Proposition. Int is a semi-algebra of subsets of R (but is not a o -algebra).

Proof. (1) @ =(0,0), R =(~o0,+0).
(2) The intersection of two intervals is empty, an interval, or a point [a, a].

(3) The complement of an interval is empty, an interval, or the union of two disjoint

intervals.
[ |

Definition. Let 7 : Int > [O, 00] be the length function given by
K((a,b>): b-—a.

Is ¢ o-additive on Int? Le.if 7 =117_ I, , where 1,I, € Int, does it follow that



MA359 MEASURE THEORY

Lemma. (1) ¢ is finitely additive: for 1,1, € Int,

N

=111, = 01)=> 1)
(2) { is o -sub-additive: for 1,1, €Int,
I1=Ui L, =>u1)<y " A1)

Proof. (1) If / is not bounded then ((1 ): o . In this case at least one of the /;, I, say,

must be unbounded (because a finite union of bounded sets is bounded). Thus,

N)=c0=0(1,)<3" 1,)
= E(I)ZOOZZLK(L{)

From now on, assume /,/, are bounded; / :<a,b>, I, :<ak,bk>. Re-order so that

a,<a,<...<a, .Observe that

(i) Vk, b, <a,,, since if not there would be an overlap, I, N1, 2(a,,,.a,,, +&] would
be non-empty;
(1) Vi< N-1, b =a,,, since if not there would be a gap, (bk,am), yet I can have no

gaps.
By (ii),

ZkN=1€(1k): 21]:/=1(bk - ak)
- Z:;ll(akﬂ - ak)+ (bN - aN)

:(aN _a1)+(bN _aN)

Since the a, were ordered, b, =b and a, =a, so

o(n)=3" u1,)=b-a.

(2) Case 1: I is a compact interval [a,b].
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Write 1, =(a,,b,), fix £>0 and set J, = (ai —g/2" b, +5/2”1). {7.}7, is an open cover

of the compact interval /. Therefore, by the Heine-Borel Theorem, there exists a finite
subcover; fix N and re-order so that 7 < U?,J,. Write

o, =a—g/2"

B, =b+e/2™
aelcUY,J, so 3i such that aeJ, <o <a<p . If IcJ, westop. Ifnot, § el
and so 3i, suchthat aeJ, <o < <pf . If IcJ, UJ, westop. Ifnot, B el and
so Ji; such that aeJ, &, <f <p . Continue this process; this process stops

eventually and gives us i,...,i,,, N'< N, such that

IcUJ,,

o <a<p,o <pB <p .o <b<p .

L+l

a b

Therefore, because of overlaps,

Thus,

Since & >0 was arbitrary, ¢(7)< zzlﬁ(li). Thus, Case 1 is proved.

Case 2: I 1s a bounded interval, /, arbitrary intervals.

If 1, bounded for all k we are in Case 1. If not 3k such that #(/,)=co and

-10 -
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UI)<oo=0(1,)<7 U1,).

Case 3: General case.

Write [ = <a,b>, a,b possibly infinite. Choose a, v a, b, Th, a, <b,. Clearly

[ak’bk]g<ak’bk>guol:=1]k'

0

By Case 2, /([a,.5,])<> " A(1,). But {(a,.b,])=b,—a, —> ((I),s0 ((1)<>"" u1,).

k—o
|

Tricks. (1) g/ 2" trick — we need summable errors.
(2) Approximating sets from within by compact sets.

We need to check that ¢ is o -additive on Int otherwise we have no chance of getting a
measure out of /.

Proposition. /:Int — [0,00] is o -additive on Int. Le., if 1,1, €Int and I =117 I, then

6(1): ijlg(]k)'

Proof. (<) This follows from o -sub-additivity.

(>) It is enough to prove that ¢(7)> zlilf(l ,) for each N, since we can then pass to the

limit N —o0. The idea is to show that 7\U}_ I, is a finite pairwise disjoint union of

intervals. This will do because if

1:( 2[=1[k)H( Zl Jf)’
with J, € Int

(*)
then the finite additivity of ¢ on Int would imply

A0)=200n)+ 2L 00)= 3 ).

| —
>0

To prove (*) we can use the properties of Int as a semi-algebra. We claim that

UL derrgmlmlf NI NN

is a finite disjoint union of intervals and prove this by induction on N .

-11 -
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Case N =1: Since Int is a semi-algebra /7 =11’_ J, for some J, € Int. Therefore,

INIf =11 InJ,,but INnJ, €lnt.

Induction Step: Assume INIF NIs n...nIy=11}_J, with J, elnt. Since Int is a

semi-algebra, I, =117, K,, K, € Int. So,

INIEAIS A IS, =, 7 )~ (U k)

+1

= 1<L[ (Jk M Ki)
12@2

Exercise. Check that this union is pairwise disjoint.

Since Int is a semi-algebra, (*) is proved, and so is the proposition.
|

Exercise. Modify the proof of (>) to obtain the stronger statement: If /,/; € Int and
12U, 1, then £(1)2 " ol1)).
Step 2 — Outer Measures

Or, “Approximating the measure of an arbitrary set from above”.

We want to bound the measure of a general set from above. We do this by considering
countable covers by basic sets.

Definition. Lebesgue’s outer measure is the function m” : 2% — [O,oo] given by

m*<A>={gz<zk>

AcJ1. 1, eInt}.

k=1

Definition. In general, given a set X, an outer measure on X 1is a function
i 2% —[0,0] such that

(1) 1 (@)=0;
(2) monotonicity: 4 < B= u'(4)< 1 (B);

(3) o -sub-additivity: 1'(U7, 4)< Y7 1'(4).

Remark. An outer measure is not, in general, a measure.

Proposition. Lebesgue’s outer measure is an outer measure.

-12 -
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Proof. (1) @cU7,1, where I,=(1,1)=@, and so m*(Q)SZ:;O:O. Obviously

m'(4)>0 VACR so m (D)=0.
(2) Fix £ >0 and find {/,}”, < Int for which

BcULL,

ZZ%(L)S m'(B)+¢.

(The cover exists by the definition of infimum.) Since 4 ¢ B < U7, 1, we must also have

m (4)<>” o1)<m'(B)+e,
but &> 0 is arbitrary so m’(4)<m’(B).

(3) Let £ >0. For each i find {Iﬁ")}af , C Int such that

4 cU” Ja

=g

> 1)< m'(4)+/2
Clearly,

Uz, 4 Uz U7, 19).

=L

The collection {Ij(.i) i,jeN } is countable and so

Uz 4)< E0 3 A)
<307 (' (4)+2/2)
:zzlm*(Ai)+g

So m" is o -sub-additive.
[ |

Question. Is it true that m’:2% —[0,00] is an extension of the length function, i.e.
VIelnt, m"(I)=£(I)?

- 13 -
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Proposition. The Lebesgue outer measure of an interval is its length. Moreover, if

o0

A=U7,1,, I, €lnt, then m*(A)zzkzlﬁ(Ik).

I

Proof. (<) Ac 117, 1, so m'(4)<D " U1,).
(=) Fix £>0 and let {J[}Zl be a cover of [17_ 7, by J, € Int such that

Z;E(J,-)Sm*( o Ik)+g.

Since [}, 7, cU.J, I,cU.J NI, VkeN. Since Int is closed under

intersections, the sets J, N1, are intervals. Therefore, since ¢ is o -sub-additive on Int,
01,)<>" 0J,n1,) VkeN.
Sum over all ke N:
DALY M, AL)=" > iJ,nIL)

By assumption the 7, are pairwise disjoint, so J, 2[5 J, NI, . By the earlier exercise,

0(,)2>." 0(J, 1) It follows that

l

Z:j:lﬁ(]k)g ZZIK(J,»)

Sm*( lelk)+g

Since & >0 was arbitrary, the proposition follows.

Example. What is m"(Q)?

(1) Direct method: enumerate Q = {x, }::1 . Choose intervals
I, = (xk —g/2"" x, +8/2k”)

for a fixed £>0. {I,}”

. isacoverof Q.

0<>" )= Zj;g/z" =0

>0

(2) By o -sub-additivity:

-14-
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m*(Q): m*( o {xk })S Zf=1€([xk=xk])= 0

Exercise. (1) Show that every countable set in R has zero outer measure.
(2) Show that a countable union of sets with outer measure zero also has outer measure
Zero.

Summary. We have extended /:Int —[0,00] to m":2% —[0,00]; m" is defined for all

* . o, . * . ., . .
subsets of R; m" is o -sub-additive on 2%; m" is not o -additive on 2% and so is not a
measure.

Step 3 — Obtaining a Measure from m" by Restricting its Domain

Definition. A set £ — R is called Lebesgue measurable if it satisfies the condition
VTR, m'(T)=m' (T VE)+m'(T ~E°).
This condition is called Carathéodory’s criterion.

Remarks. (1) T is often called a “test set”.
(2) Carathéodory’s criterion is symmetric with respect to E, so if E is Lebesgue

measurable so is E€.
(3) The inequality

m'(T)<m (T ~E)+m'(T ~ES)
is always true by the o -sub-additivity of m" .

Notation. B, = { E R | E is Lebesgue measurable |.

We aim to prove:
(1) B, isa o -algebra;
(2) m*‘B : B, —[0,00] is o -additive;

(3) B, o Int.

Given these, (R, B,, m'

5 ) will be a measure space.
Proposition. Let B, = { E R | E is Lebesgue measurable |. Then

(1) O,ReB,;
2) EeB,= E€B,;

-15-
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(3) E.E, B, = E NE,,E, UE, E\E, B,.
Proof. (1) @ € B, since m'(T)=m"(T D)+ m*(TrW@C):O+m*(T); similarly for R .
(2) If E is Lebesgue measurable then VT c R |

' () =m' (T~ E)4m’ (T AES)=m' (T (B ) (7 E)
(3) Let E,,E, € B,. Then

m' (T ~(E, VE,))=m'(T ~(E L(E, ~EF)))
<m'(T " E)+m'(T ~(E, nEF))
' (1 (B, UE, ) )=m'(T ~(EC A ES))
=m'(T " E)ES)
=m' (T ES)-m'(T "ES NE,)

because if we apply Carathéodory’s criterion for E, using the test set TN E{ we get
m (T AES)=m (T NES A E,)+m' (T ~(EE nES))
Adding these estimates gives

' (T (B OB ) +m (T~ (B, OB ) )<m' (T AE)+m' (T A ES)=m'(T)

The reverse inequality is always true (see the remark above) so E, UE, eB,. The

remainder (intersections, differences, etc.) follow from that already shown and de

Morgan’s laws.

Lemma. m" is finitely additive on B, .

Proof. We require that given E,,...,E, € B, pairwise disjoint, m*(]_[ " E[): > m'(E).

i=1

Apply Carathéodory’s criterion for E, withtestset 7=[1"_ E,:

m'(T)=m'(T ~E,)+m' (T ~ES)
= m*(En)+ m*(]_[ " El.)

= Z;m*(El)

-16 -
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and the result follows by induction.

Exercise. Prove that if E,,...,E, € B, are pairwise disjoint then VI c R,
m (T AL E)=Y" m'(TAE).
Proposition. 3, is a o -algebra.

Proof. We already know that 3, is an algebra so we need only check that given {Ei}ji1
in B, the union U7, E, € B,,.

Step 1: It is possible to assume without loss of generality that this collection of sets is a
collection of pairwise disjoint sets.

Proof: Let E]=E, \U _ ;. These are in B, because we know that B, is closed under
finite unions and set differences. Also, U7, E, =U7, E] and E{NE’ = fori# j.

So we can assume that the E; are pairwise disjoint.
Step 2: VT <R, m' (T)=m' (T A%, E, )+ m" (T \ L%, E,).
Proof- (<) follows from the o -sub-additivity of m".

(2) VNeN, I}, E, € B, since B, is an algebra of sets. Therefore, VT c R,

m'(T)=m (T ALY, E)+m'(T\ 11, E,)
=X " m' (T AE)+m (Y, E)
>3 W' (T AE)+m (T\%, E,)
So for each NeN, m'(T)> zzlm*(TmEi)an*(T\H‘f:l Ei). Passing to the limit as
N —> o

m'(T)2X" m' (T AE)+m (T\1I7, E)
>m' (T AU E)+m' (T\LZ E,)

-17-
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Proposition. m is o -additive on B,,.

Proof. We need to show that if {El}z in B, are pairwise disjoint then

1

m*(HL Ei): z:m*(Ez)
(<) is the o -sub-additivity of m".

1

(=) By monotonicity, VN e N, m*(]_[ji1 E,.)z m*(]_[fil E,.), which equals zzlm*(E) by
finite additivity. Since this holds forall N, m" (12, £)2> " m'(E,).

i= !

Proposition. Intervals are Lebesgue measurable.

Proof. Let / € Int. We need to show that VI < R,
m'(T)=m'(T A 1)+m'(T A 1€).
(Z) is always true.

(2) Fix £€>0 and let {Ik}le be a cover of T by intervals I, such that

m'(T)2Y"" ((I,)-¢. Then

m'(TaD<m Uz 1, 1)< w1, A1)
m (TAI)<Y" m'(1,~1°)

So
m (T A +m (TAI)<S " (' (1, A1)+ m'(1, A T9).
If we knew that m"(I, N 1)+ m*(]k m[c)z m’(I,) then we would have
RHS< Y " m'(1,)<m'(T)+¢

Passing to the limit as &€ — 0 would prove (<). So we need only prove that Vk e N,

m' (I, 2 1) +m' (I, A 1€)=m'(1,).

- 18 -
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Int forms a semi-algebra and so I, "/ elInt, INI°=11"J, with J, € Int. It follows
that

m' (1, A1)+ m' (1, A 1)=0(1, AD)+ X" 4(7,)
- E((Ik ﬂ])H( = Ji))
:g(lk)
=m" Ik)

Theorem. There exists a o -algebra B, of subsets of R and a set function
m: B, = [0,00] such that

(1) B,oInt;

(2) m is o -additive;

(3) m(I)=((I) for I eInt.

Notation and Terminology. (1) m =m’

5 is called Lebesgue measure.
0

(2) B, is the o -algebra of Lebesgue measurable subsets.

(3) (]R, B,, m) is Lebesgue’s measure space (on R).
Properties of Lebesgue Measure

Proposition. (Translation-invariance) If E € B, and x € R then m(E)=m(x+E).

Proof. It is obvious that ¢:Int—[0,00] is translation-invariant. It follows that m" is

is also translation-

0

invariant. However, we don’t know that Ee By=>x+EeB,. Let T c R.

translation-invariant. We would like to now say that m=m’

So m 1is translation-invariant.
|

Definition. A measure space (X ,F, ,u) i1s called o -finite if 3F, € F such that
X =UZLF and u(F)<eo.

-19 -



MA359 MEASURE THEORY

A measure space (X ,F, y) is called a probability space if u(X ) =1.
Proposition. (R,B,,m) is o -finite.

Proof. Take

n

[ [ek+1) n=2k
C[-k—k+1) n=2k+1
|

Definition. Let (X ,F, ,u) be a measure space. 4 < X is called u-negligible (or u -null)
if inf{u(E)| ACEeF }=0.(X,F,u) is called complete if every u -null setis in F .

Proposition. (R,B,,m) is complete.

Proof. Suppose A is a null set. Fix £>0 and find an E e B, such that Ac £ and

u(E)< g/2. Since m = m*‘B there must exist a cover of £ by a countable collection of

intervals {7} such that

k=1

Z:J(]k)ﬁ m'(E)+e/2<e.

Clearly 4 c E is covered by U7_, I, as well. So

m'(4)<>" Ul)<e

Since & >0 was arbitrary, m*(A) =0. This implies that 4 € B, because

m (T)<m' (T~ A)+m"(T\ A)
<m (A)+ m*(T)

(7)

andso m"(T)=m" (T~ A)=m"(T\ A).

We will now work towards the following result:

Proposition. Open and closed subsets of R are Lebesgue measurable.

-20 -
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Lemma. (Lindel6f’s Lemma) Every open subset of R is a countable union of open
intervals.

Proof. Fix an open set UcR. Every xeU has a neighbourhood such that
(x—&,x+¢&,)cU. Choose x—¢, <a,<x<pB, <x+e&, such that a ,p, €Q. Clearly

U=U.,q (a,,p.). The cardinality of the cover {(e,,/,)}.,, is at most |@ X Q| =N,-

xeU

Definition. The smallest o -algebra of subsets of R containing all open sets is called the
Borel o -algebra and is denoted B(R). Elements of B(R) are called Borel sets.

Remark. Assignment 1 proves that the smallest o -algebra containing a given collection
actually exists.

Lemma. A/l intervals, open sets and closed sets are Borel sets.
Proof. Open sets are Borel because, by Lindelof’s Lemma, they are countable unions of

open intervals. Closed sets are complements of open sets, and so are Borel. Intervals
(a,b) and [a,b] are Borel because they are open and closed respectively.

(a,b]=(a,c)U]e,b] for any c e (a,b)

5o (a,b] is Borel. Similarly for [a,b).
|

Note. We can define the Borel o -algebra for any topological space (X , T): simply close
7T under complementation.

Proposition. B(R) c B, i.e., every Borel set is Lebesgue measurable.

Proof. Define F ={E e B(R) | E € B, }. We prove that F o B(R) by showing

(1) F contains the open sets;

(2) F is a o -algebra.

The proposition then follows, since B(R) is the smallest o -algebra contains the open
sets.

(1) Suppose U < R is open. By Lindel6f’s Lemma there are open intervals {I k}L such

that U =U7_ I, . Intervals are Lebesgue measurable and B, is a o -algebra. So U € B, .
B(R) 2 {opensets} so U e B(R) so U € F .

(2) D e F istrivial.
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EecF = E e F since

EcF < EcBR)EeB,
< E“eB(R),EeB,
SE‘eF

{E}", c F=U7,E, e F because

{E}", cF & Vi,E e BR),E eB,
—>ULE € B(R)’  E €B,

=>ULEeF
|

Theorem. (Regularity Theorem) If E € B, then & >0 there are sets F c E U such

that F is closed, U is open, and m(U \F)< &. Moreover, if m(E)<w then F can be
chosen to be compact.

Remark. Informally, this says that every measurable set is approximately open and
approximately closed.

Proof. Step 1: Constructing U . Define E,1=[n,n+1) for neZ. By definition,
m(E, )=m"(E,), so for every & >0 there is a countable cover of E, by intervals
<a,£”),b,£”)> such that

S el )< (8,45,

If ]lgn) — (al({n) _gn/2k+1 ,blgn) + 8’1/2k+1) then En - UO;ZIIIEM) and
m(E,)2 Y (1)-24)-e,
=y )-2e,

Define U, =U%, 1" and U =U, U, . Note that U o E and that

m({U\E)<Y' m(U,\E)
<>  mU,\E,)
=2, (mU,)-m(E,))
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<X X ) -m(E)

< 2¢&

ne’ n

=22 b

Now choose &, =£/2"" to obtain

m(U\E)< 25(2; L+ Z:‘:lzﬁk 26(1 +1)=¢/2
This shows that VE € B,, Y& >0, 3U open, such that U 2 E and m(U\ E)< &/2.

Step 2: Constructing F . Apply Step 1 to E€ to obtain an open set ¥ o E€ such that
m(V\EC)< g/2.Then F =V° satisfies F closed, F < E and

m(E\F)=m(E~V)=m(y\E)<g/2.
Taken together, Steps 1 and 2 give F < E c U such that

mU\F)<mU\E)+m(E\F)
<gl2+¢/2

=&

Step 3: Compact Lower Bound. Suppose m(E)<oo. Use Steps 1 and 2 to obtain F
closed such that m(E\ F)< &/2. For each n set F, = F n[-n,n]. This set is closed and

bounded, hence compact. We also have F, TF, so E\F, J E\F. By assumption,
m(E)<w, so m(E\F,)>m(E\F) as n— o, and m(E\F)<g/2<o. It follows that

we can choose 7 large enough so that m(E\ F,)< & . F, is our suitable compact set.
|

Corollary. (Structure of Lebesgue Measurable Sets) If E € B, then there is a B € B(R)
and a null set N such that E = BAN = (B\N)U(N\B).

Proof. Take U, o E open such that m(Un \E)<1/n and consider B=(17_U,. Then
E=B\(B\E), B isBorel, and B\ E is null.

Alternatively, take F, c E closed such that m(E\ F,)<1/n and consider B=U*_U, .
]

Sets that are not Lebesgue Measurable
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Theorem. (Vitali’s Theorem) There exists a subset of [0,1] that is not Lebesgue
measurable.

Idea. Show that [0,1] can be written as a countable pairwise disjoint union
[0,1]=117_, 4, of sets 4, such that if 4, is measurable then all 4, are measurable and

have the same measure as 4,. This implies that 4, is not measurable because otherwise

1= ([0 1]) ( = 1Ak)zz;ilm(/lk):m(Al)"'m(Al)"'-"

which is impossible since if m( )> 0 the RHS is infinite, and if m( ) 0 then RHS is
0. We construct a suitable A4, using the translation-invariance of B, and m .

Proof. Define a binary operation on [0,1) by

@ x+y x+ye[0,1)
X =
d x+y-1 x+y21

Step 1. ([0,1),®) is an Abelian group.

x@y) eZm'x 2y

Proof. x® y is determined by the two conditions x® y €[0,1) and & e

Commutativity:

eZm‘(x@y) — eZﬂierﬂiy

— eZiﬂyeZm'x
— eZ;zi(y@x)
Associativity:

A(x@(y®z)) _ (ezmyezmz)

e
(e 7ix 2my )€2m‘z

27i((x®y )Bz)

€

=e

The neutral element is 0 and the inverse of x, —x=1-x.

Step 2. B, and m are @ -invariant.

Proof. Write A=A 114, where 4 =A4N[0,1-x), 4, =AN[l-x,1). If 4€B, then
A,A4,€B, and
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x®A=x®(4114,)
=(x® 4)(x® 4,)
:(x+A1)H((x—1)+A2)

Since B, is +-invariant, x+A4,(x—1)+4,eB, and so x® AdeB,. Since m is +-
invariant, m(x ® A) = m(Al)Jr m(Az) = m(A)

Step 3. Obtain a partition by defining an equivalence relation on [0,1) by
x~y<x—yeQ (itis easy to see ~ is an equivalence relation). Let

bl={yelo) ] x~y}
be the equivalence class of ~ containing x.

We wish to choose a representative from each class. Formally, let € = {[x]| x[0,1)} be

the collection of equivalence classes. Using the Axiom of Choice find a choice function
f:€—10,1) such that f([x])e[x] (f is our law that “chooses™ a representative).

Define A={f([x])| x€[0,1)}=the collection of representatives, and enumerate
Qn[0,1) as {g,}7,. We claim that if 4, =g, ® 4 then [0,1)=117_ 4,, i.e.

(1) [Oal): P
Qi#zj=>4nA4,=00.

Proof of (1). 1t is enough to show that [0,1) c U3, 4, . Suppose y e [0,1). v 1is equivalent
to the representative of its class, whence y— f ([x]) =q¢'eQ.

If ¢’ €[0,1) set ¢ =¢' and observe that y=g+ f([y])=¢® f([y])eqg® 4.

If not then ¢' = y— f([y])e(~1,0). In this case define ¢ =¢'+1cQn[0,1) and note that
y=q+f([y])-1=9® f([y])e ¢ ® 4. In cither case, 3g € QN [0,1) such that ye gD 4.
By definition, 3k such that g=¢q, and yeq, + A=4, .

Proof of (2). Suppose ye 4N 4;. Then ¢,® f(V))=y=¢,® f([v]). Add 1- /(]
mod 1 to both sides to obtain g, =¢,,1.e. i=.

This argument implies that 4, 4,, 4,,... are all non-measurable since if one of them were

measurable then by Step 1 all would be measurable with equal measure. This contradicts
o -additivity because we have
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1=m([0,1))= m(]_[ et Ak): ijlm(Ak): z:lm(A)e 0.0}

Warning. Whenever the Axiom of Choice is used, measurability problems may arise.
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2. INTEGRATION

Aim. To define the integral of a suitable function with respect to a measure on a
measurable space.

Measurable Functions

Let (X,F) be a measurable space.

Notation. We use the following shorthand notation for sets: if f: X —[-o0,00] is a
function then

[ <t]={xex | flx)<t}
[ eB]={xex | f(x)e B}
l[a<f<b]l={xeX |a<f(x)<h}

etc.

Definition. Let (X,F) be a measurable space and f: X — [~,o0] a function. We say
that f is F -measurable if VteR, [f <t]e F .

Proposition. The following are all equivalent:
(1) f:X >R is F-measurable;

(2) VteR, [f>tle F;
(3) Va,beR, [a< f <ble F;
(4) VBeBR), f(B)e F and f™'(-o), f(x0)e F.

Proof. (1)= (2). Fix ¢. Then

[f>d=[r<f
:[Vn,f<t+§]

= [ <e+2]f
e F

since F is a o -algebra.
2)=0).

la< s <b]=[f>d]n]f<b]
=[f>a]nlf2b]
=[f>a]lnvn, f>b-1f
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[ >aln(O=, [ >6-2]f
e F

(3)= (4). Define C ={BeB(R) | f'(B)e F }. We show

(a) C contains all open sets;

(b) C isa o -algebra;

(c) B(R) is the smallest o -algebra containing the open sets, so C 2 B(]R), and we are
done once we check that /(= o0), (o) e F .

(a) (3) o f _1(1 ) e F for all open intervals / . By Lindelof, every open set U < R can be
written as U =U7_ I, , I, open intervals. Observe

)=
={xe X | f(x)e, forsomek }
:U‘::l{xeX | f(x)e]k}
= oljzlf_l(]k)
eF

(b) Exercise.

(c) (a) and (b) imply Be B(R)= f'(B)e F. We now need only check that f~(—co)
and f'(o0)e F:

fHe0)=f =]
=[Vn, f > n]
:ntzl[f>n]
e F

=[Vn, f <-n]
:ﬂle[f<_n]
eF

(4)= (1) is trivial.

Proposition. Suppose f,,..., f,: X = R are F -measurable. If
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{(fl(x),...,fn(x))eR" | xeX}gU

for some open set UCR" and if ¢:U ->R:(t,,....t,) #(t,,....t,) is continuous then
x> (f,(x).... £,(x)) is F -measurable.

Examples. (1) f, +...+ f, is F -measurable (take @(t,,...,2,)=1, +...+1,).
(2) fi.f5-.-f, 1s F -measurable.

(3) arcsinlog/ f; + f, /> +1 is F -measurable provided
(G AL A(K) e R | xe X < domain(p)

where @(t,,t,,,) = arcsin log /¢, +,t)> .

Proof. Suppose V' = R" is open. Then there is a countable collection of open boxes
C, = (al(k),bl(k))x cuX (a,(f),b,(lk))

such that ¥ =U%_,C, (prove this). Fix € R. We show that [¢(f,,..., f,)>t]e F . Since
¢ is continuous, V = {(sl,...,sn)e R"

#(s,,....s,)> t} is open. Find boxes {C, |7, such
that ' =U7_, C, . Now calculate
[¢(ﬁ,-~,ﬂ1)>t]={xeX|(ﬁ() NAQIE }
Z{xeXl S @)U C
{xeX|f )e(al(k, ),lgzﬁn}
=Uk i:l[ai <fi<bh z(k)]
eF
This shows that Vz e R, [¢(f,,.... f,)>t]e F.
]

Recall. For a sequence {an}::l , a limit point is the limit of a subsequence {ank }20:1 . The

limit superior is limsupa, = sup{limit points}: max{limit points}. The limit inferior is

n—»0

liminf a, =inf {limit points}: max{limit points}. The sequence converges if and only if

n—0

limsupa, = liminf a,. We also have the following formulae:

n—>0 n—0
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limsupa, = 1nf supa

no

n—o0 n>N
liminfa, =supinfa, .
n—o0 N nmN

Proposition. (Calculus of measurable functions.) If {f,}”

n=l1

are F -measurable functions
then the following functions are also F -measurable:

() f(x)=sup f,(x); f(x)=inf £,(x); (It is essential that sup and inf are taken over a

countable range of parameters.)

(2) f(x)=limsup f,(x); f(x)=liminf /,(x),

n—>0

3) f(x)= limfn(x) if the limit exists, ¢ otherwise;

(4) f z f lf the sum converges; f H f lf the product converges.

Proof. (1) Suppose f =sup f,. Then VieR,

[f <t]=[sup, 1, <1]
=[E|k s.t.Vn, f, <f__]
“Uz N[, <-4
eF

since [f <t——]ef and F is a o -algebra. Since this holds Ve R, f—supf s F-

measurable.

In the case of inf f,, observe that inf f, = —sup( /. ) If f is F -measurablesois — f, ,

thus the result follows from the above.

(2) Suppose that f =limsup f,. Recall that limsupa, =infsupa,. By (1), VNeN,

n—0 n—o n>N

X > sup fn( ) is JF -measurable. Again by (1), x> 1nf sup f, ( ) is JF -measurable. A

n>N n>N
similar proof shows that liminf f, is F -measurable.

n
n—»0

(3) We start by showing that [lim " (x)exists] e . This is because

n—>0

[lim,  f,(x)exists]=[lim,_, f,(x)does not exist]

= [limsupn_m f, >liminf __ f ]C

=[3¢ € Qs.t.limsup,  f,>qg>liminf,  f [

-30 -



MA359 MEASURE THEORY

= X \U, . ([limsup, . £, > g]~ [liminf, ,, £, <q])

and by (2) and the fact that F is a o -algebra. We now show that [f, <t]e F VreR.
Observe that

lim exists| [limsup, . f, <¢])U[limexists|” ¢ <z
1. <tl=
‘ [lim exists] [limsup, . f, <¢] c>t

In both cases [/, <t]e F .

(4) Exercise.

Examples of Measurable Functions

Definition. f: F — [— 0, + oo] is called Lebesgue (respectively Borel) measurable if it is
measurable with respect to the Lebesgue (respectively Borel) o -algebra.

Remarks. (1) Every Borel measurable function is Lebesgue measurable, since
B(R)c B,.
(2) Every continuous function f : [a,b] — R is Borel (and hence Lebesgue) since [ f< t]

is open for all 7, and open sets are Borel.
(3) Highly discontinuous functions can be Borel, too, such as the Dirichlet function:

D(x):{l xeQ

0 x¢Q
This is Borel (D =1, ) but is not continuous.

Definition. If A4 is a set the indicator function of A4 is

lA(x)={1 xed

0 xgd

Proposition. The indicator of A is Borel (respectively Lebesgue) measurable if and only
if A is Borel (respectively Lebesgue).
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Proof.
%) t<0
[1,<t]=14° o0<¢<1
R 1<t

Definition. Let (X ,F ) be a measurable space. A simple function is an f: X — R of the
form

f(XFZLI%IE,(X)
forsome neN, o, eR, E € F.

Warning. This is not the same as being a step function. A simple function is a step
function if and only if all the E, are intervals.

Theorem. (Basic Approximation) Let (X ,F ) be a measurable space. Then f: X > R is
bounded and measurable if and only if V& >0 there is a simple function ¢, : X - R

such that Vx e X, [f(x)- ¢g(x)| <¢g.

Proof. (<) Suppose f: X — R is the uniform limit of simple functions, i.e. VneN,
3¢, simple such that Vx e X, |f(x)—¢,(x) <1/n. Then

(1) f is measurable, because it is the limit of measurable functions.

(2) f is bounded, because |f(x)| < |¢l (x] +1< sup|¢1| +1<.

(=) Suppose f: X — R is bounded measurable.

-~

M-

220

v
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(Divide the y -axis evenly by ¢ -strips, project on to x -axis.)

By assumption, f is bounded, so M = sup| f | <. Fix £ >0 and choose n € N such that

L <& . Define

4,(x)= 2 Zg —‘%l[ﬁé./%%](x) + Z::_LMn ﬁ l[fsf<%](x ).

This is a simple function. For all x € X there is a unique & such that —| Mn |<k <[Mn|

and £ < f(x)< %2, and for this & f(x)e[£, 1], ¢ (x)=%, and so |f(x)—¢n(x)|<ﬁ<g.
]

Properties of Lebesgue Measurable Functions

Definition. Let (X ,F, ,u) be a measure space and let P be a property of points x e X .
We say that P holds u -almost everywhere (u -a.e.) if ,u({x eX | —|P(x) }) =0

Examples. (1) f, — f ae.iff u({xe X | £,(x)» f(x)})=0.
(2) f=g aeif uf=g])=0.

Proposition. I/ f: [a,b] — [— oo,oo] is Lebesgue measurable and finite m -a.e. then
Ve, 5 >0 3¢ eC'(a,b]R) such that m{x ela,b] | |f(x)—¢(x) > & }< 0.

Example. For the Dirichlet function D=1, take #(x)=0 since mUD—¢| > 0]= m(Q)
=0.

Proof. (1) First prove for indicators.

(2) Generalize to simple functions.

(3) Generalize to bounded measurable functions.

(4) Generalize to all a.e.-finite measurable functions.

Step 1 — Indicators. Suppose f =1, Eg[a,b] Lebesgue measurable. Using the
regularity of Lebesgue measure find K< EcU, K compact, U open, such that
m(U\K)<& for a given fixed §>0. By Urysohn’s Lemma there exists a continuous

function ¢ such that ¢| =19

UCEO-

If xeK then [1,(x)-g(x)=-1=0; if xeU® then [1,(x)-¢(x}=|0-0/=0.

Therefore,

mt, — g > el<mll, = gl<mU\K)< 5.
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Step 2 — Simple Functions. Let [ = Z; 2,1, . Find using Step 1 continuous functions ¢,

such that m[‘l £~ ¢l.‘ >¢g]<0,, where ¢,0, >0 will be determined later.

HZ Q, lEi - Z .,
i=1 i=1

>e}gg{\1ﬂ —(ﬁi‘>ﬁ:| ()

since if x € LHS then ‘ail E (x)-a,é (xx > £ for at least one i, for otherwise we would

have

n

ZailEi(x)—an:a[Q.(x){S§|al.”15i(x)—¢[(x)(<§:|ai

i=1 i=

& — E.
ey

n

Z ailE,- - Z a9,
i1

i=1

1

Therefore, if we choose ¢, =—£-, 5, =<, then

nley| ?

d

Step 3 — Bounded Measurable Functions. Suppose f 1s bounded measurable. By the

>g}sjm[\1@ _¢i\>i}

”|0‘,~|

n

Z ailE,- - Z ai¢i
i=1

i=1

>5}<5.

Basic Approximation Theorem there is a simple function ¢ such that | flx)-4¢ (x)| <g/2
for all x. Using Step 2 find a continuous ¢ such that mﬂ¢l - ¢| > ¢/ 2] <6 . Now note that

If 4> slcllf-a|>e/2)old - ¢ > ¢/2]
and so

mf —d|> e|<m|f -a|>e/2]+ m|g - 4| > ¢/2].

=0 <5

Step 4 — General Case. Suppose f :[a,b]— [~ o, 00] is finite a.e. and measurable. Define

otherwise

fM(x)={f () |r(xfm
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Note that [f;th]:Uf|>M]»LHf|=oo]. Since [f;tfl]g[a,b] has finite measure,
m[f;th]M—lomUﬂ:oo]:O. Now choose M so large that m[f:th]< 6/2 and use

Step 3 to obtain a continuous ¢ such that mﬂ S — ¢| > g] < 8/2 . The inclusion

If-d>elch -d>elolr = 1]

implies that ¢ provides a suitable approximation.
|

Theorem. (Egoroff’s Theorem) Suppose f,:E — R are Lebesgue measurable and that
E e B, has finite measure. Assume that f, — f a.e. in E. Then Ve>0 IKcCE

n—»0

compact such that m(E\K)< g and f, — f uniformly on K.

Proof. Define G, , ={er | |fk(x)—f(x)|>%}. Set
GV =Ul_ .G, ={xeE | k> Nst|f(x)-f(x)>1}.

Observe that {Gﬁ}“)}w

v 18 a decreasing sequence of sets and that

Nel Gz(\?)g[fk _/‘>f]

But f, = f ae.so m(Gl(\y))N_> m( N Gﬁ;’)):()_ Therefore, YneN, 3N, e N such that
m(Gj(V”n))< g/2"" . Now consider E'= E\U?, G . Then

n

m(E \ E’) < m( O::l Gi(\z,))< 2:;1 25*‘ = % :
If xe E' then x ¢ GI(\;’") and so

£> N, = [0 £(x) <2

and so f, — f uniformly on E’. Now apply the regularity of m to obtain a compact

K c E' with m(E'"\K)< g/2. Check that K still satisfies the requirements.
]

Theorem. (Lusin’s Theorem) If f:E — R is Lebesgue measurable and E € B, has
finite measure then Y& >0 there is a compact K E such that f|1< K—>R is

uniformly continuous and m(E \ K) <g.
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Proof. Exercise.

Exercise. What happens when f=D=1,?

The Lebesgue Integral
Whatis [ f(c)ds 2

The regulated integral:

(1) step functions ¢ = z;ail,[ ,a,€R, I, elnt:

Jo=2 allt)
(2) regulated functions f = uniform limit of step functions ¢, :
J 1 -timfe..
The Lebesgue integral:

(1) simple functions ¢ = 27:10‘1-15[ ,a,€R, E €B,:

j(,zﬁ => " am(E
(2) bounded measurable functions f =uniform limit of simple functions ¢, :
f-timfe..
To make these ideas rigorous we start by integrating simple functions:
f= Z;ailE[ , E eB,
Natural definition:

[ =2 amE NE)
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Problem. There are many representations of f of the form Z; a1, , for instance

1[0,2] + 1[1’3] = 1[0,1) + 2.1[1,2] + 1(2,3]
Solution. Choose a canonical representation such as

f(x): Zyef(]R)yl[./EY](x)

Example.

Hence sgn(x) =-1 .1(7w,0)(x)+ 0.1{0}(x)+ 1 .l(o,w)(x) )

Definition. If f is a (Lebesgue measurable) simple function and E € B, has finite
measure the integral of f over E with respect to m is

_[Efdm = Zyef(R)y'm(E M [f = y])
Remark. We require m(E ) < to prevent the following problem:

J.R sgn(x)dm(x) =-1 m((— 0, 0))+ O.m({O})Jr 1 .m((O, oo))

=00 —00

=undefined

Proposition. If f,g are simple functions, a,feR, E€B,, m(E ) <0, then
(1) linearity: IEOQ”+ﬁg = aIEf+/3IEg:'

(2) monotonicity: > g = jEf > IEg,‘

J-Ef SJ-E|f| d

() f=gae=[f=]g

(3) absolute value property:
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(5) E=EUE, EeB,=[ f=[ f+] /.

Proof. (1) We start by showing I . f+g= IE f+ IE g . By definition

[ r+e= (Z)(%;%(Eﬂ[f+g=y])
yelf+g)R

Y ymEn[f+g=y)

ve/(R)+g(R)

= Y ymEn[f+g=y)
rer(beele)

Geg(R)

= 2 ny()Z (Eﬁ[f=F,g=G])J

Y

Fef(R),Geg(R)
F+G=y

[ [f+g=y]= H[f—F,g—G]J

S (F+Gm(En[f=F]n[g=G)

ef(R g(R)

=y FZmEmf Fln[g=G) Z G Y mEn[f=F]n[g=G])
Fef( ) Geg(R) GegR Fe f(R
ZFmEm[f:F])+ > Gm(En[g=G)
Fef(R Geg(R)

—ff Ig

Now show that I . cf = cIE f.

(FNR)={ey | ye F(R)}
. [ o = EfZ(‘,RC)y-m(E Alr=y)=cf 1

) If f>g, f—g>0, so all values of f—g are non-negative, so jEf—gZO.

Together with (1), this implies that '[Ef - J.E g2>0,s0 .[Ef > ng .

@) =l f<lfloso [ A< r<]|f].s0]f

(4), (5). Exercises.
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We now integrate bounded measurable functions.

Proposition. Let f:E —R be bounded measurable, EeB,, m(E)<w. There exist
simple functions ¢, : E — R such that ¢, — f uniformly on E and

(1) {J.E @} always converges;
(2) its limit is independent of the choice of {¢n }

Definition. The integral of f over E with respect to m is _[E fdm=1lim IE @, dm .

Proof. The existence of ¢, — f is the content of the Basic Approximation Theorem.

(1) By assumption, ¢, — f uniformly on E so &, =sup,

P, —f| — 0. We check that

the sequence { IE ¢} 1s Cauchy:

[, -1,0|2 )10, - d] < m(E)sulg, 4.
But Vxe E,
6, (x)=4,(x} <[, ()= £ () +[£ (%) -4, (x) <&, + e,
So
[,8.-] &|sm(ENs, +5,) > 0.
(2) Exercise.

Proposition. (Properties of the integral.) If f,g are bounded measurable functions,
a,feR, EeB,, m(E)<w, then

(1) linearity: IEag‘ + fg = ajEf +ﬂng ;
(2) monotonicity: f>g = J-Ef > J.Eg;

[f=llr
4) VG eB,, jEf.1G :jmf;

’

(3) absolute value property:
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(5) =g ae :J.Ef:ng;
(0 E=EUE, EeB=[ f=[ r+[ f.

Proof. Let {¢n }, {%} be sequences of simple functions tending to f,g uniformly on E

as n—» 0.

(1) Clearly a¢, + pyv, — af + fg uniformly on E since

v, (x)-g(x).

(g, (x)+ B, (x))— (af (x)+ Be(x)) <|e|g, (x)- f(x)+|B
Thus

[ o +pg =] lim(ag, + By,)

=lim| ag,+ By,

=alim[ ¢, +plim| v,

=af f+h]
(2) Suppose f>g. Fix &£>0. By uniform convergence IN such that n>N =
supE|f—¢n ,supE|g—l//n < & . In particular, for n > N ,

g, >f-e2g—e>y, —2¢.

By Monotonicity for simple functions,

[.6.>] v, -28)= v,=2an(E)
= [, =1im][ ¢,>lm[ y,—2em(E)=[ g—2em(E)

Hn—»0

Pass to the limitas &4 0; J.EfZJ.Eg.

(3) Corollary of (2).

(4) First observe that this property holds for simple functions, since
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et e =[5 a1

=" am(ENE,NG)

= J.EﬁG Z i=l ailEi

Since ¢, — f uniformly on E, ¢ — f uniformly on ENG. So

IE Gf a /111—>ocIEmG¢"
—llmI o1,

n—»w0

=[ £,
(5) Let M :supEfvsupEg.T By (1),

[ r=] Fay g+ F 1,

But [ f.1.=0 since || Sl | <Mm(En[f#g])<Mm[f#g]=0.80
-[Ef - .[Ef'l[f'=g]
~Jerlr=e)
- IEm[f:g]g

Eﬁ[f:g]g - J. Eﬁ[f'¢g]g
- ,[E (g'l[/'=g] + g'l[fig])

-l

(6) Follows from (1) and (4).
|

Theorem. (Bounded Convergence Theorem) Suppose { £, }w are uniformly bounded

n=l1

measurable functions on E € B,, of finite measure, i.e. AM >0 such that Vxe E,ne N,

&)< M. IfvxeE, f,(x) > fx). then | f, > | 1.

" Shorthand notation: (a v b)(x) = max{a(x),b(x)}; (a A b)(x) = min{a(x),b(x)} .
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Proof. First note that JE f is well-defined because

(1) f is measurable, since it is the limit of measurable functions;
(2) f is bounded (by M ).

By Egoroff’s Theorem, Ve>0, IE eB,, E,cE, such that m(E\Eg)< ¢ and
supy, | £, — /] — 0. It follows that

<,
-I;

< suplf, = fln(E,)+ supl |+ supl £ £,

fy=1]
f=11+]

E\E,

Jot=1.1

=11

<sup|f, —f|.m(Eg)+ 2Me
E£

—0as n—o©

— 0.

n—>0

[ 1=].1 [

<2Meg 30 . Hence

So limsup
|

Exercise. Suppose f is continuous on [a,b]. Show that the Lebesgue and regulated
integrals of f agree, i.e.

J’[a’b]fdm = ij(x)dx.

We now proceed to integrate unbounded functions, and begin with the non-negative case
to prevent oo —oo problems such as with J.R sgndm .

Definition. Suppose f:E — [0, oo] is measurable and E € B, (not necessarily of finite
measure). Then the integral of f over E with respect to m is

jEfdmzsup{ jhdm
[

h#0]

hbdd. meas., m[h #0]<0,0<h< f1, } :

Proposition. (Properties of the integral.) If f,g:E — [0,00], a,p>0, Ee€B,, then
(1) linearity: ongf + fe = ajE f+ ﬂjE g;

(2) monotonicity: [ >g = jEf > .[Eg;
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3 VGeB,, [ fl,=] [

(4) f=g ae :J.Ef:ng.
Proof. All trivial apart from IE f+g= IE f+ IEg.

(>) Take 0<F<f1,, 0<G<gl, bounded measurable such that m[F = 0],
m|G # 0] < oo and

The function F+G is bounded measurable, satisfies 0<F+G<(f+g)l, and
m[F +G # 0] = m([F #0]U[G # 0]) < o . Therefore,

jEf+g2I[F+

F+G#0

- I [1E+G¢o] + j [gG;ﬁo]
=+ g

G#0]

2 1+ ,ee
Since ¢ >0 was arbitrary, IEf+g ZIEf+ng.

(<) We show that for every bounded measurable function 0 <4 < ( f+ g).l - such that
m[h¢0]<oo, J.[hhio]ﬁ IE f +IE g. We then pass to the supremum over all such # to

deduce ().

The idea is to “split” 4 into two lower bounds, one for f and one for g. Define
F=hnAf,G=h—-F .Note that

h=0=F=0,G=0;
O<h<sf=>F=h<f,G=0;
f<hsf+g=>F=f,G=h—-f<g.

Therefore, 0<F<f and 0<G<g, and since F,G<h<f1, we also have
0<F<f1,,0<G<gl,.Itis clear that F,G are bounded measurable, that [F # O],
[G#0]c[h#0] and that F+G =4 So
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LQ@szﬁﬁ%G
:j¢;f+ﬁgi]

<[/+]e

So jEf+gsjEf+ng.

Theorem. (Fatou’s Lemma) Suppose { fn}w are non-negative measurable functions on

n=1
EeB,. Then

liminf £, <liminf [ £,

E  now

Proof. It is enough to show that for every bounded measurable 0 </ <liminf f,.1, such

n—x0

that m[h # 0] < oo, I Jr<liminf J.E f, because we can take the supremum over all such % .

n—0

Define 4, =hn f,. For every £>0 3N =N(x) such that n> N(x)= f,(x)>h(x)-&
because /(x)<liminf f,(x) (¥). Therefore, /,(x)<liminf f,(x). But the 4, are bounded

measurable and m[h # 0]< o so IE h, < I . liminf f, .

Note that 4, =hA f, — h by (*). Since suph, <sup’ the Bounded Convergence

n—x0

Theorem tells us J‘E h, — J Eh .But 4, < f by construction. So

n—x0

[r=tim[ h,<liminf | f,.

n—>0 n—>0

Lemma. /f f:R — [0, OO] is measurable and .[Ef <o then f isa.e. finitein E.

Proof. Obviously, Vne N, n.1;,_,<f. By monotonicity, nm(E N [f = oo])g JE f and

so m(En[f=w)<if 1 — 0.0 m[f =0]=0.
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Corollary. Suppose fn:E—>[O,oo] are measurable. If liminf J‘ f, <o  then

n—o0

liminf f,(x)< o a.e. in E.

n—0

Remark. The following example may aid in remembering Fatou’s Lemma: consider
f, =V - liminf £, =0, 50 [ liminf f,=0; [ f,=1,s0 liminf [ f, =1.

n—>0 n—»0

Theorem. (Monotone Convergence Theorem) (1) If f =20 are measurable and
£.(x)< f..,(x) forall neN and all x € E € B, then

thmf —hmjf )dm(x).

n—>0 n—>»0

(2) If u, 20 are measurable then

J. ZM n dm an,[

G)IfE=U"_E, E eB,, thenforall f>0 measurable,

.[Ef - Zj:l.[E,,f'

Proof. (1) Define f(x)=1lim f,(x)e[0,00]. This is well-defined because {f,(x)}"

o 18
monotone. This f is a non-negative measurable function and so I f is well-defined.

Since f < f ., I f, < I /.., and so {j f.}>, is monotone. It follows that lim I f

n—x0

exists.

(<) Since f. < f, jEfnsjEf and so iingJ;sjEf.

(>) By Fatou’s Lemma, jEf :J'Eliminffn < liminf_[Efn and so 1iijfn > jEf.

n—»o0

(2) Follows from (1) with f, =u, +...+u, .

(3) Follows from (2) with u, = f.1,
|

We now proceed to the general case of integrating multi-signed unbounded functions.
Recall that the problem here is one of avoiding o —oo . For example,
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jisgnzjil+ i (—1):00—00.

—0

Note that we cannot solve this by simply taking limits of domains of integration because

J._ngn = ,lqi_I,l;J.n sgn=0=1= limJ._n:l sgn.

—n n—»0

Definition. Let f/ be a real-valued function. The positive part of f is f"=fvO0
= f ;5. The negative part of f is f~=-fA0=-f1;,,. (Note that both f* and

f~ are positive.)

Exercise. Verify that = f*— f~,

fl=r+f.
Definition. Let f:E —[-o0,0] be some function, E€B,. f is called absolutely
integrable on E if it is measurable and jE AR IE f <. f is called one-sided

integrable on E if at least one of IE f *,jE f~ is finite. In each of these cases define the

integral of f over E to be

Jo =l =1r

Exercise. Prove that a measurable function f is absolutely integrable on £ if and only if

IE|f|<oo,

Proposition. (Properties of the integral.) If f,g are absolutely integrable on E € B,,,
a,feR, then

(1) linearity: of +fig is absolutely integrable on E and | of +pg=a| f+B] g
(2) monotonicity: f>g=[ f>] g;

(3) VG eB,, jEf.lc :jmf;

(4) f=g ae =>fEf=ng;

() E=EIE, EcB,=[ f=[ f+] /.

Proof. As usual, everything is trivial except for .[E ( f+ g): .[E f +IE g . First note that

f+g is absolutely integrable since '[E|f+g|£IE|f|+|g|:jE|f|+jE|g|<w. By

definition,
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[ F+a)=] r+e) -] (r+e)

J-f+g .[f+g l[f f}*g g)>0]
f+g -/ g)
f +g')-(+g)

-[ f+g>f+g

J. f+g>f+g

Note that if F',G,F — G>0thenIF G)+ j-G IF G+G)=jF.Therefore,

[ (r+e) =] (r+g)-].

Eﬂ[_f++g+ >f’+g’]

(r+g).

ﬂ[f“rg* >f’+g’]

In the same way we obtain

jE(f"' g)_ = jEm[f++g+<f,+g,](f7 "‘<g7)_J.Eﬁ[f+g+<f,+g,](f+ + g+)-

Thus

[r+e)=] (f+e) -] (f+g)
e )
[l e e
=[.f+].e

Theorem. (Lebesgue’s Dominated Convergence Theorem) Let { /. }::1 be a sequence of

measurable functions such that f,(x ) f( ) for all xe E €B,. If |fn (xl < g(x), where

g is absolutely integrable on E, thenj hmf —hrnJ. £,

n—0

Proof. First note that f(x)=1lim f,(x) is absolutely integrable since

(1) it is a limit of measurable functions, and so is measurable;

@) [,\11=] gl <o since |f]=lim|7,] <g].

n—>0

We show that .[ . f, = IE f by proving
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[ r<timinf [ 1, <timsup{ f, <[ f,.

n—»0

Since |fn| < g wehave —g< f <g. Therefore, g+ f, 20 and by Fatou’s Lemma,

[ g+] =] (g+r)
-] tmint(e )
<liminf | (¢+/,)

<[ _g-+liminf | f,

n—0

Since IE| g| <o, J'E f <liminf IE f, - The functions g — f, are also non-negative.

[a=] =] (e-1)

= | liminf(g - f£,)

E  noow

<timin [,s~[,.)
= J,g~limsup | 1,

So IEf > limsupJ-Efn . Hence, .[Ef = }IEEJ.Eﬂ .
|

Exercise. Show that the Dominated Convergence Theorem implies both the Monotone
Convergence Theorem and the Bounded Convergence Theorem.

Summary. (1) If f is absolutely integrable then J.E f =IE fr= .[E f~, so calculating
IE f can be done by considering non-negative functions.

(2) Given a non-negative f we can find simple functions 0<#/ < f such that
h(x)T f(x). Simply take

2

h,(x)= Zzzofl[gg_f<%](x) :

By the Dominated Convergence Theorem, IE f=lm| h, .

n—wod E
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Remark. Although we worked in (]R,Bo,m) everything we did works almost verbatim

for a general o -finite measure space (X, F, u).
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3. PRODUCT MEASURES

Question. How can we measure the size of subsets of R"? More generally, given two
o -finite measure spaces (X ,C,y) and (Y ,D,v) we seek a construction of a measure
spaceon X xY .

Approach. (1) Define the measure of “basic sets” of the form CxD, CeC, DeD as
ACx D)= u(CW(D).

(2) Use the Carathéodory Extension Theorem to obtain a full measure out of this. (See
Assignment 2.)

Definition. A measurable rectangle is a set of the form CxD where CeC, DeD.
Denote by R the collection of all measurable rectangles.

Proposition. R is a semi-algebra.

Proof. (1) J,X xY € R obvious.
(2) Intersections: (Cx D) (C'xD')=(C~C")x(DND').
(3) Complements: (X xY)\(CxD)=((X\C)xD)LI(Cx(Y\D)).

|
Proposition. The algebra generated by R is
A(R):{HCZ, x D, ‘ C, eC,D eD,ne N}.
i=1
Proof. See Assignment 2.
|

Definition. 4: A(R)— [0,+ 0] is defined as

/1(]-[ i G X Di): 2ﬂ(ci)v(Di)

with the convention that Qoo =000 =0.

Proposition. This A is
(1) properly defined, i.e.

%, CxD, =1L, C/xD = Z; /u(Ci)V(Di) = Z; /U(Ct’)"(DII)

(2) o -additive on A(R)
(3) o -finite if u,v are o -finite.
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Proof. (1) Suppose [1”,C,xD, =I1",C/xD'. Then

n

21 21 )=1,, ., xy)

i=1

Fix y and integrate over all x w.r.t. x. By linearity,

Ian‘,ﬂ(Ci ), (v)= i‘,u(C M, (v)

Integrate over y w.r.t. v:

(2) Suppose I, C;xD, =115, 11", C ><D( ). Again

Jj=1

Now integrate over y w.r.t v. By the Monotone Convergence Theorem:

> ulC (D)= 33 () MD))

k=1 j=1

LHS= AI1", C,x D,

J=1 g

RHS =" A11", C%'x D%
k=1

= o -additivity on A(R).
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(3) (X,C,u) o-finite = 3X,eC st. X =17, X, and u(X,)<o. (Y,D,v) o -finite

1

= 3Y,eD st Y=II7,Y, and ,u(Yj)<oo. Then XxY =117, X,xY, where

J=17J
X;xY, eR and ﬂ,(Xl.ij):y(Xi)v(Yj)<oo.
|

Definition. The product o -algebra C® D is the minimal o -algebra containing the
collection {CxD | CeC,D e D}.

Theorem. Let (X ,C, ,u), (Y ,D,v) be two o -finite measure spaces. There exists a unique
measure, called the product measure, uxVv on (X xY,C® D) such that

(xv)CxD)=p(C(D)
forall CeC and D e D, and this measure is o -finite.

Proof. Apply the Carathéodory Extension Theorem to 4 : A(R)— [0,+ oo].
|

We would like to define the Lebesgue measure on R* as mxm on B, ® B, but we have
a technical problem:

The Completion Problem. Recall that a measure space (X ,F ,ﬂ) is complete if every
null set is measurable, a null set being an 4 — X such that 3F € F such that 4 — E and

H(E)=0.

The Lebesgue measure on R is complete, but mxm on B, ® B, is not complete: take
A [0,1] not Lebesgue-measurable and consider 4, = Ax {l}. This is a null set because
4, < [0,1]x {1}, which has measure zero, yet 4 ¢ B, ® B, .

Solution. The completion procedure:
Let (Q,]: ,ﬂ) be a measure space. Define u" :2% — [0,+00] by
@ (A)=inf{u(E) | ACEeF}.

Definition. The completion of (Q, F, u) is (Q, F,, ), where
(1) Fy={E,cQ | 3E e Fst. u'(EAE,) =0},
@) =4, -

-52 -



MA359 MEASURE THEORY

Exercise. Prove that (Q,}"O, ,uo) is a complete measure space.

Exercise. Show that (R,B,,m) is the completion of (R,B(R),m). (Hint: Show that
VE,eB, 3G =(;_U, suchthat U, open, E, c G, m(G\E0)= 0.

Definition. (Lebesgue’s Measure on R"). This is the measure space

(R",(B, ®...® B,),.(mx...xm),)

n n

i.e. the completion of the product space [17,(R,,,m).

Definition. Given a product space (XxY,C@D,yxv), EcXxY,xeX,yeY,
(1) the x-sectionof E is E,={yeY | (x,y)eE};
(2) the y -section of E is E* ={xe X | (x,y)e E }.

Exercise. Verify

(1) (4UB), =4, UB,;
(2) (AN B),=4,NB,;
(3) (), = (4,);

4) (4\B), = 4,\B,;

(5) (U},EA 4, )x = UﬂeA (A/I )x

etc. and similarly for y -sections.

Our aim is to prove that

EeC®D= [V(E)dulx)= [ ulE)av(y)

Y

Two problems:
()Is E. eD?Is E* eC?

(2)Is x> v(E,) C-measurable? Is y > ,u(E ! ) D -measurable?

Proposition. If E€C®D then forall xe X and yeY, E. €D and E" €C.
Proof. We only prove the result for x -sections: the proof for y -sections is analogous.

Recall that C®D is the minimal o -algebra containing the collection
R = {Cx D|CeC,De D}. It is, therefore, enough to show that
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F={EcC®D |VxeX,E D}
is a o -algebra containing R .
Step1: F OR.

Fix CxD e R . Then

and J,DeD.

Step 2: F is a o -algebra.

(a) D e F istrivial.
(b) Ec F = E € F since (EC)X =(E,)=Y\E eD.
(¢) {El.}w c F=>ULE €F since (ch’:l El.) Uz,(E) eD.

i=1 = e X

Remark. It is not true that £ € (C®D), = Vxe X,E eD.

Example. Take A4c(0,1) non-measurable. Then Ax{l}e(B,®B, )0 since
(mxm)Ax{1})=0,but (4x{1}) =4¢B,.

Proposition. Let (X,C,u), (Y,D,v) be two o -finite measure spaces. If E€C®D then
(1) x> v(E,) is C-measurable and j-X V(E, )du(x)=(uxv)E),

2) y—> ,u(Ey) is D -measurable and L ,u(Ey )dv(y) = (,u X V)(E)
Proof. Again, we prove (1) only.

Assume first that u(X)v(Y)<w. Define F={EeC®D |(1)holds}. We prove
F 2R and F isa o -algebra.

Step 1: F oR.

Fix CxD e R . Then
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Hence v((Cx D),)=v(D)1.(x). Obviously x> v((Cx D),) is measurable and

JA(C* D), )de)= D) 1 (<))
WMD)

,uxv)(CxD)

So (1) holds for Cx D.

Step 2: F is a o -algebra.

Suppose {Ei};il < F. We show that v((U,E,),)=v(U,(E,),) is measurable in x. If the

union were disjoint we could use o -additivity.

First attempt: Write U7, Ei:H;‘il(Ei\UHlEj) — but we can’t be sure that

Jj=

E, \Uj;l1 E, € F because we still don’t know that F is an algebra!

Second attempt: We show that F is a monotone class.
(a) D e F: trivial.

(b) E,e F,ETE=>EecF:if E,cF and E,TE then (E,), T E,. By the continuity

of measures, v((En )X)T V(Ex). It follows that x V(Ex) is measurable because it is the
limit of measurable functions.

By the Monotone Convergence Theorem,
JVE)=[limv(E,),)
=lim [v((E,),)

=lim(uxv)E,)

n—>0

= (uxv)E)
Thus E e F.

(c) E, e F,E, JE=EeF: Again (E), J E_, so by the continuity of measures and
since V((E,),)<v(Y)<w, v((E,),) = v(E,). It follows that x > v(E,) is measurable.

Note v((E,),)<v(E,) and I . v(Y)< 0. By the Dominated Convergence Theorem,
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[ AE)du(x)= [ limv(E,),)dulx)
= tim [ v((E,),)du(x)
=lim(uxv)E,)

n—0

=(uxv)E)
by the continuity of zxv and (uxv)E,)<(uxv )X xY)=u(X W(Y)<o.

This shows that F is a monotone class. By the Monotone Class Theorem F contains a
o -algebra containing R,so F 2C®D.

We now treat the o -finite case: assume (X,C,u), (Y,D,v) o-finite. 3X,eC s.t.
X =117, X, and pu(X,)<o0; 3Y, €D st. Y=117,7Y, and ,u(Yj)<oo.Deﬁne

i J

C.={EnX,|EeC}
=1,
D,=\EnY, |EcD}|

v, =V

D;

Exercise. Prove
(1) (Xi,Cl.,yl.), (Yj,Dj,vj) are finite measure spaces;
(2) C,®D, ={En(X,xY,)| E€C®D |;

3)VEeC®D, (,uxv)(E):Zi,j(,ui xv}.XEm(Xi ><Y1))

Now consider some set EcC®D.

E.NY)

X

<
—~
B!
~
Il
il agk
<
—

=3 >0, (eWlE A (X x7) )
=iilx[(x)vi(Ex m(Xl. xI{i)x)

C,;-measurable by o-finite case

Since C, c C every C,-measurable function is C -measurable. Therefore, since
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W(E)=Y D1, (W l(EA(x xx)) (*

j=l i=l1

x> Vv(E,) is C-measurable. Now integrate (*) over xe X . By the Monotone
Convergence Theorem,

[ V(E)dulx)=

1M
[Ms

~.
]
]

> ], v (2 (x, %)), )au(x)

(,uxv)(Em(Xiij))

XE)

Il
[M]s
NgE

i=

~.
X

<
<

The proof for y -sections is analogous.

Fubini’s Theorem: We want to show that
[, A )l Xe)=, ], s )av(s)aute).

Problems:
(HIs f (x,-) v -integrable for all x ?

2)Is x> L f(x,y)dv(y) M -integrable?

Theorem. (Fubini’s Theorem) Suppose (X ,C, y), (Y ,D, V) are o -finite measure spaces
and that f: X xY —[-o0,+ o] is C ® D -measurable with J-X Y|f|d(,uxv)<oo. Then

(1) Vxe X, y— f(x,y) is D-measurable; VyeY, x> f(x,y) is C -measurable;

(2) for p-ae. xeX, y—> f(x,y) is v-absolutely integrable; for v-ae yeY,
x> f (x, y) is u-absolutely integrable;

(3) x> JY f (x, y)d V(y) is C-measurable and u -absolutely integrable;

V> IX f (x, y)d,u(x) is D-measurable and v -absolutely integrable;
4)

| ]/ Gy)duaviy)=] | fley)d(uxviey)=] [ fxy)dv(y)du).

Proof. We prove this first for indicator functions, then simple functions, then non-
negative functions, then absolutely integrable functions.
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Indicators: Suppose f(x,y): lE(x,y), EeC®D. f(x,-)= 1, (). So, by the previous
proposition, f (x,-) is D-measurable since £ €D. [(1) done.] The same proposition
says that

[, G )dv()=v(E,)
is C -measurable. [(2) done.] Again, the previous proposition gives

[ ], 7)) = [ v(E, )dul)
= (uxv)E)
- IXfod(ﬂxv)

<o
[(3), (4) done.] The proof is the same for y -sections.
Simple Functions: Follows from the previous case (indicators) by linearity.

Non-negative Measurable Functions: Suppose f (x, y) >0 is C®D -measurable. There
exist simple functions 0<% (x,y)<#h, (x,y) such that 4 (x,y)T f(x,y). For instance,
take

nZ

hn(x: y) = Z%l[%g_)k%](x: y) .

k=1

f(x,-)=limh (x,-) so f(x,”) is D-measurable since the %, are D-measurable. [(1)

done.] Since 4, T £, by the Monotone Convergence Theorem,

[ £Ge)dv()=] timh,(x)dv()

Y n—w

=tim [, (x.-)av()

Since A, (x,y) simple, previous case shows x> thn(x,-)dv(-) is C-measurable, so
x|—>J- f dv) is C-measurable. [(2) done.] By the Monotone Convergence

Theorem, I d v T j f ) Again by the Monotone Convergence Theorem,
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jxjyfdvdy=j nmjyhndvdﬂ

X n—w

=lim | [ h,dvdu

n—0

=lim | b, d(uxv)

n—>0

= tlimh, d(uxv)

XxY n—owo

- IXfod()u % V)
[(3), (4) done.] Similarly for the other order of integration.

General Case: Suppose f is (,uxv)-absolutely integrable. Decompose f = /" — f~ and

apply the previous case to ", /.
|

Remark. Remember this trick of approximating a non-negative function by a monotone
sequence of simple functions.

Theorem. (Tonelli’s Theorem) Suppose (X ,C, ,u), (Y ,D,v) are o -finite measure spaces
and that f:XxY—)[—oo,+oo] is C®D -measurable. If '[XIY|f|dvdy<oo then

'[Xxy|f|d(/¢><v)<oo.

Proof. Since (X,C,u), (Y,D,v) are o-finite so is (XxY,C®D,uxv). So

3F € C®D with finite measure such that F, T X xY. Now define ¢, =1 F q f | /\n).
Check that IX . ¢ld(uxv)<o and that ¢ (x,y)7T | £, y)|. By the Monotone

Convergence Theorem,

J.XXY

fld(uxv)=| limg,d(uxv)
=lim [ ¢, d(uxv)

n—>0

= limjxjy¢n dvdu

n—>0

stjy|f|dvdy

<0

So f is (,uxv)—absolutely integrable.
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Corollary. (The Fubini-Tonelli Theorem) If one of the following integrals exists then all
three exist and are equal:

J,rauav. ], ratueo). ][, sivan
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4. I’ SPACES
Convexity Inequalities

Definition. A function ¢:[a,b] > R is called convex if Vx, y €|a,b], V¢ €[0,1],

Plex+(1=t)y) < 1g(x)+ (1= 1)p().

x y
Proposition. ¢ is convex in [a,b] iff forall a<x<y<z<w<b,

e npyarny

X—y - z-w

Proof. Enough to prove inequalities in the case y=z. Assume a <x<z<w<b. Solve
for ¢ in

z:tx+(1—t)w
z:t(x—w)+w

— =W
t= x—w

l_t — X=W—z+W _ x—Z

xX—w x-w

S
=
=
g
=
n
—
IA
S
=
=
g
NS
=
~
—
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Corollary. If ¢:[a,b] > R is C? then ¢ is convex on [a,b] iff ¢"(x)=0.

Examples. (1) 1 ¢ is convex on R..
(2) t 1 is convex [0,0) if & > 1, but not convex if & <1.

Proposition. (Supporting lines.) If ¢: [a,b] — R is convex then Vx, € [a,b] dm e R such
that Vx €[a,b]

¢(x) > ¢(x0)+ m(x - xo).

Proof. Fix x, [a,b]. Define n%(x):M for x # x,. This is increasing in x by the

X=X,

previous proposition. So the following numbers exist and are finite:

m* =1inf n%(x)

X>X0

m~ = sup r(x)

X<Xg

Also, m~ <m".Now choose m~ <m <m" and note that

( _xo)

x>x0:>M2m+2m:>¢(x) x
(¥ =x,)

= +m
+m

(xo)
(xo)

> ¢
x<x0:>%Sm_£m:>¢(x)2¢
|

Theorem. (Jensen’s Inequality) If (X ,F, ,u) is a measure space, Ee€F has finite
measure and [ :E — R is absolutely integrable, then for any convex function @,

ot ], S dn )<t [ 9o fdu

Proof. If x, :mlf;jE¢o Sfdu and m_ (x—x0)+ ¢(x0) is a supporting line for ¢ then for
all &,
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AN gl ), [ 1)+ 5ty [, S ).
So,
[ #o fduzg(x,)
At [, S )+ m ([, f A=ty [, £ )

~ sty [ u

Holder’s Inequality. Let (X ,F, ,u) be a measure space and suppose p,q >1,
Forevery f,g:X —[-w,+w] F -measurable,

J = (], 1) ([ ol ae)

(Here we take 00 =0.)
Proof. We first prove Young’s Inequality:
a,bZO:abS%ﬂ-b—;
ab= exp(l loga” +Llog bq)

<-exploga” +explogh?
=a’/p+b'/q

Ip
by the convexity of exp. By Young’s Inequality, if A:UX| f |p d,u) ,

/
:UX|g|q d,ujlq then Vxe X,

Integrating w.r.t. £ over X gives, by monotonicity,

[l fifan flefan

4 1 —1 —
(I‘/l‘pdﬂ)l/p(j‘g‘qdﬂ)/q - r J‘mﬁdﬂ q ﬂg\"dy » 1

—+

Q=
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Cauchy-Schwartz Inequality. [f (X ,F, ,u) is a measure space then for every
f.g: X [— 00,+00] F -measurable,

= (1 )

Proof. Holder with p=g =2.
|
Minkowski’s Inequality. Let (X ,F, ,u) be a measure space and p>1. Then for every

f.g: X > [— OO,+OO] F -measurable,

(s +elau) " <(J 1t a) " +(] Jet a)”

Vp Vp
Proof. Define A:UX|f|p dy) , BzUX|g|p dyj .Forevery xe X,

/() <(\/ Jole()

(4+BY A+B
= (AfB ) +45 ‘gB ‘
<l
by the convexity of 7+ ¢” . Integrate:
(f el du)” <_4 [irlau 5 [lal"du _

U‘f\pdy)/p(ﬂg\pdy)‘/p = A+B ﬂf‘pd/’ A+B J.\g\pdy

L’ and [ Spaces

Minkowski’s Inequality looks like a triangle inequality for a “norm™:

Il =(J 1t )

This suggests the following:

Definitions. Fix a measure space (X,F,x) and 1< p<o.
(1) For f:X—)[—oo,+00] define
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/p
171, :(J'me d,uj for 1< p<oo

I =int] sply (6] | = -

Q2) L2(X,F,u)={f:X —[-o0,+0] ‘ fisf—measurable,||f||p < oo},

Example. The Dirichlet function

p-1400)={ T52

has £° norm ||D||OO =0 because D=0 m -a.e.

Remark. || f ||w is sometimes called the essential supremum of f and thus denoted

esssup f .

Exercise. Show that if |f| <oo there is a bounded measurable function g such that

f=g ae.

Proposition. £’ (X ,F, ,u) is a vector space over R and ||||p is a seminorm on
E”(X,]—",,u). Le.

(1) ¥f e (X, F,p), |f], 20,

() vf eL(X.F, ). 2R, ], =271, -

3) Vf g LXFop), |1+, <71, +el,

Note. ||||p i1s not a norm since EIfeL"(X,]—",,u) such that ||f||p =0 but f#0, for
instance f(x)=1 {0}(x).

Proof. D”(X, f,ﬂ) is a vector space since Vf,g € L’p(X,}",,u), a, € R, Minkowski’s
Inequality says

o+ ], = J e+ el )

<(f Jrt )" +(f, el )
=le|l1, + Bllel, <=

Up
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Properties (1) and (2) are trivial. Property (3) is Minkowski’s Inequality.

Proposition. ||f—g||p =0& f=gu-ae.
Proof. p=o0 iseasy,solet 1< p<oo.

(<)If f=g ae. then |/ —g|" =0 a.e. and so
p
Ir e, =([,lr~sl"au) " =o0.

(=) Suppose ||f—g||p =0. Then IX|f—g|p du=0. Observe that

allf gl #01= Y ulf - gl > 1] (+)

Now,

/J[If—glp>1/n]Sf[ nlf gl du

|/~gl">1/n]

because the integrand is >1 on [| f- g|p >1/n]. Therefore,
ulf -l >yni<n[ |f g du=n|f-g’ =0.

By (). f=g ae.

This suggests that we consider f,g € £’ with || f- g||p =0 as equivalent.
Define arelation ~ on £7(X,F,u) by f~g iff f=g p-ae. Gff|f - g”p =0).

Exercise. Prove that ~ is an equivalence relation.

Define [f]={ge£" | f~g}.

Definition. The 17 -space of (X, F,u) is

rFu)={lr] e (X, F.u)|
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with the operations

[1+1g]=[f+¢g]
Ar=1ar]
7N, =17,

Proposition. This is a proper definition that makes L’ (X ,F ,,u) into a normed vector
space over R.

Proof. (1) Addition well-defined: Suppose [ ~ f',g~g'.Show f+g=f"+g u-ae.

plf+g= fr+gl<ulf = f+ulg=g]=0

(2) Multiplication well-defined: Exercise.

(3) Norm well-defined: Suppose f ~ f". Then |f|" =| " u-a.e. So

fl

17, =) = (e ) =1r1,

(4) L7 avector space: By Minkowski’s Inequality.
) |, anorm: |[f]-[e], =0=|[r 2], =0=]r-g|, =0=f =gae.=[r]=[e]
|

Remark. It is traditional to drop the | | and refer to L7 -elements as “functions™:

(1) L' -functions are not functions;
(2) L’ -functions cannot be evaluated at a point;
(3) L’ -functions can be integrated against other functions, since if ' ~ f', fg = fg a..,

and so IEfgdy :_[Ef'gd,u.

L’ Convergence

Definition. Let { f. }nw:l be a sequence of L” -functions. We say that f, converges in L’

17
to f,and write f, — f,if
n—»o0

I _f”p njoo'

Remarks. (1) There is an analogous notion for £’ .
(2) L' -convergence neither implies nor is implied by convergence almost everywhere.
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LP
Examples. Take f, =1, 1€ L’(R,B,,m). f(x)—>0 for all xeR, but f, + 0

n—>0 n—»o

n+l

/
because ||fn||p :( a’x)l ’ =1 so ||fn _0",, -+ 0.

However, consider the following array:

fl,o = 1[0,1]
fz,o = 1[0,1/2]a fz,l = 1[1/2,1]
fs,o = 1[0,1/3]a f3,1 = 1[1/3,2/3]a f3,2 = 1[2/3,1]

f;t,k = 1[k/n,(k+l)/n] for k = 0917' <N -1
Let {gn} be the sequence f,, f; ¢, /215 f5.05---- Then for all x

liminf g (x)=0, limsupg,(x)=1

=% n—>o0

but ||gn||p — 0 for 1< p <o because

X |=

P

ok

» Hllk/n,(k+1)/,.] - 0.

Definitions. Let (V, ||) be a normed vector space.

— 0.

m,n—»0

(1) A Cauchy sequence in V is a {vn}::l c V such that ||vm -V,
@ (.

(3) A complete normed vector space (V,

. ||) is complete if every Cauchy sequence converges in norm to some vel .

||) is called a Banach space.

Theorem. (Riesz-Fischer) If (X,F,u) is o -finite then I’(X,F,u) is complete with
respect to || . ||p, 1< p<Loo.

Proof. We only consider the 1< p <oo case as the p=o case is easy and left as an

is Cauchy, i.e. ||fm - £l — 0.

P m,n—w

exercise. Suppose { /. }w

n=l1

The idea is first to find a candidate for a limit, then show that this limit lies in ”, then
establish convergence.

Consider the following identity:
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fo. = fo, A = fu )+t U, = o)

This suggests the “formula”:
“llci—l;ngk - fNo + Z::l(ka _fNH )”

The sum on the RHS is, in general, divergent. We find N, T oo such that this sum

converges absolutely a.e.. Choose N so large that

1

m,nZNi':>||fm—fn

L <1/2

We force the sequence to be increasing by setting N, = max N, . Now,

1<j<i
Up
J dﬂ)

p
y du) by Fatou

)ﬂ d,ujl/p = (I%ggﬂfm ‘ + ZZ:1
stim{ [+ X0 A,
‘fNO“" ZZ:] ka _ka—l

n
fNo p+2k:l ka _ka—l
» +Zk:1‘ka _kafl

(1l

2

fzvk - ka,l

ka - fN,H

=1lim

n—»0
< lim(‘

Nn—»0
S,

<0

P

) by Minkowski
p

P

Therefore, the integrand ‘ fNO‘Jr z:zl

norm would be oo. This proves that

In, = fNH‘ must be finite a.e., for otherwise its L”

S (x)=lim £, (x)

k—o

1s well-defined a.e. This is our candidate.

This is an L’ function (i.e. the norm is finite) because

Yp
P
')

Slhninf(ij&Jpjvp

k—o

= liminf| £,, |
k—o© kllp

|71, = f1im

k—o
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and {|f,, Hp} is bounded.

Our sequence converges to f in norm:

|7 =], = im(r, - 1)

<li fH -
iminf|fy, — /.|

If n>N, then for k>I, |fy —f| <1/2". So n>N=|f-f] <1/2". So
P
f;l_fpn::oo.

Ir
Corollary. If f, — f then 3N, oo such that S, = f ae.

Corollary. z; fn”p <o = {Z’L fn}i_1 converges in L". (The limit is denoted by

Z::lf;“'

Exercise. Reconcile the first corollary with the second example above.

The Case p =2

Suppose (X ,F, ,u) is o -finite. We can define an inner product on L’ (X ,F, y) via
(f.8)=] fedu.

This is well-defined:

(H)If f=f"ae. and g=g" ae. then fg = fg' a.e. and so Ifg=jf[g'.

(2) fg is absolutely integrable since

J el ([ VT du ) [ Jef da) =111, ], <o

and it is related to the > norm in the right way: ||f||2 = (f, f)l/z.
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Definition. A complete inner product space (V,(-,-)) is called a Hilbert space.

Definition. A bounded linear functional on I’ is a linear function ¢:L> — R such that
34> 0 such that |§(f) < 4| /], forall feL’.

Example. If g, e’ is fixed then ?., ( f ):( f, go):jX Jfg,du is a bounded linear
functional.

Proof. It is clear that ¢, ( f ) is independent of the choice of representative. It is also clear

that ¢, is linear. It is bounded because the Cauchy-Schwarz Inequality says

. (1)< [ [zl e =17 2ol -

The converse to this is the Riesz Representation Theorem:

Theorem. (Riesz Representation Theorem) /f (X ,F, ,u) is o -finite then every bounded
linear functional on LZ(X F ,,U) is of the form fi> IX fedu for some fixed

ge (X, F,u).
Absolute Continuity

Basic Example. Let (X ,F ,V) be a o -finite measure space and suppose f: X - R is
non-negative and measurable. Define x: F — R by ,u(E )= I . fdv.

Exercise. (1) Prove that 4 is a measure.
(2) Show that (X, F,u) is o -finite.

Definition. Let z,v be two o -finite measures on (X ,F ) We say that u is absolutely
continuous with respect to v, and write 1 <<v ,if V(E)=0= u(E)=0.

Examples. (1) If ,u(E): jEde forall Ee F then u<<v.

(2) Let v be Lebesgue measure on R, let Q:{ n}::l be an enumeration of QQ, and

define

HE)=2" F1.(q,).

Exercise. (1) Show that 4 is a finite measure.
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(2) Show that x is not absolutely continuous with respect to v. (Hint: calculate ,u(@)
and v(Q).)

Theorem. (Radon-Nikodym) Let w,v be two o -finite measures on (X ,F ) If u<<v
then there exists a non-negative measurable function f:X — R such that for all u-
absolutely integrable functions g,

J.ng’u - J.ngdv'
Moreover, [ is unique up to i -null sets.

Definition. In this case we write du=fdv, f=%, and call f=4% the Radon-

Nikodym derivative of u with respectto v .

Proof. We only treat the finite measure case (X ),v(X)< co; the general case is handled
in the standard way by breaking X into ¥, pieces of finite (u + V)-measure.

Define A= +v andlet ¢: *(X,F,1) >R be the functional
#r)=] fau.

We need to show that ¢ is a well-defined bounded linear functional:

¢ 1s well defined, for suppose f, = f, 4-a.e. Then
0=2alf,# fl=ulf = L+ vlf = L]z il = 1]

It follows that f, = f, u-a.e.and so ¢(f)= jXﬁ du = '[sz du = §(f,). The linearity of

@ is clear. To see that it is bounded use the Cauchy-Schwarz Inequality:

#(r) < [|fldu < [| Aaa< [ 2 aa [[|1 dz = a0 1], <0

By the Riesz Representation Theorem, 3he (X, F,2) such that Vf e I’(X,F,2),
#(1)=(f.h). Le, for fe’(X,F,2),

[fdu=[mdi=]mdu=+|mdv
= [r=h)du=[ mav (+)
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This suggests (1 - h)dy =hdv,and so du =% dv . We make this manipulation rigorous:

Claim. 0<h<1 A-ae.

Proof. We start by noting that VE € F, 1, € I*(X,F,A), and so

uE)=¢(1,)=] hdz (A)
v(E)=ME)= w(E)=[ (1-h)d2 (B)
Now
(A)= 0> J‘[M]hd/i = ulh <0k =0
- j[h<0]h dA=0
= Alh<0]=0

Exercise. Prove the last implication.

(B)= 0> _[[1121](1 —h)dA=v[h=1]20
— V[h > 1] =0

Since 2 <<v, u[h>1]=0 as well, so A[A>1]=0. Hence 0< k<1 A-a.c. This proves
the claim.

Since A(X)< oo, every indicator function is in I*(X,F, 1), and so (x) implies that for
each Ee F, .[15 ‘(l—h)d,u = J-IE -hdv . By linearity, for all simple functions f,

[£-(=h)du=fndv.

If f is non-negative measurable then choose simple 0< ¢, T . Note that 0< @.h T,
0<¢,-(1-h)T f-(1—h). Then

[f-(1=h)du=1im [ g, -(1—h)du by MCT
=lim .[ ¢,hdv since ¢, simple
= j fhdv by MCT

This proves that for />0 measurable,
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[r-(=r)du={ mav. (+%)

But if f is non-negative measurable then so is f -4 . Therefore, by (* *),

[fdu=[&-(=h)du
= [hdv
= [ fit5dv

for all f non-negative measurable.

Exercise. Generalize to all u -absolutely integrable functions f'= /" — .
|

Exercise. Show the Radon-Nikodym derivative is unique modulo A. (Hint: suppose
Ifgi du= Ifgi dv for i =1,2 and evaluate j(sgn(gl -g, ))(g1 —gz)dv )

Signed Measures

Imagine that electric charge is distributed in space. It makes sense to define ,u(E ) to be
the total charge within the region £. However, this g is not a measure because it is not,
in general, non-negative.

Definition. Let (X,F) be a measurable space. A signed measure is a set function
12 F — [~o0,+o] such that

(1) p attains at most one of the values oo}

(2) u(@)=0;

(3) o -additivity: if E=117, E, with E; e F then u(E)=)"" u(E,), where

(a)if | y(E )| =oo then the convergence of zzl ,u(El.) to y(E ) is meant,

(b) if | ,u(E ] < oo then the absolute convergence of zzl y(E ) to y(E ) is meant.

1

Remarks. (1) was added to prevent the existence of two disjoint sets 4, B € F such that
1(A)=+o0, 1(B)=—0, for in this case p(AI]B)=c0—c0.
(3) was strengthened to make sure all sums converge.

Definitions. Let (X F, ,U) be a signed measure space.
(1) Ee F is called a null set if VE' — E measurable, ,u(E’): 0. (This is stronger than

saying y(E) =0.)
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(2) E € F is positive if VE' < E measurable, u( )

>0.
(3) E € F is positive if VE' < E measurable, ,u( )S 0.

Lemma. (Exhaustion Lemma) Let (X ,F, ,Ll) be a signed measure space. Every E e F
with 0 < u(E ) < oo contains a subset which is a positive set of strictly positive measure.
Proof. Define E, = E and set

M= sup{|,u(A)| | A c E, is measurable and ,u(A) <0 }

Now choose 4, ¢ E, measurable such that

,u(Al)S—l if g =+
w(A4)< )2 i g < +o0.

Define E, = E\\ 4, = E\ 4,. Set
My = sup{|,u(A)| | A c E, is measurable and ,u(A)S 0 }
(Note that if g <o then g, < ,/2.) Choose 4, < E, measurable such that

#(4)< =1 if p, = +o0,
ﬂ(Az)Sﬂz/z if g1, <+o0.

Proceed by induction. Suppose 4,,...4, already defined. Set
My = sup{|y(A] | AC E, is measurableand 1(4)< 0 }
Choose 4,,,  E,,, measurable such that

n+l

/’I(An+1)< 1 lflu _+007
Iu(ArHl)— /un+1/2 lf /’ln+1 <0

We obtain in this way {Aj}fi1 pairwise disjoint. Define £ = E\[I7, 4.. We show that E

is positive and ,u( )> 0.

Step 1. u, > 0.
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Proof. First note that 3N € N such that y, <+oo, for otherwise Vne N, u =+o0 and so
,u(An ) <-1. Hence,

0<IU(E):/J(EH( L;O:IAi)): IU(E +ZZI/‘(A1'):_OO’

€[00, +0)

which is a contradiction. By the definition of g, u,, <py/2, so for n>N,
U, S,uN/Z”’N — 0.

n—0
Step 2. E is positive.

Proof. E'c E is measurable. By definition, E'c E, = E\11"7 4., so if u(E')<0 then

| y(E ')| <u, = 0. Thus, all subsets of E with non-positive measure have measure zero,
n—>0

so E is positive.

Step 3. 1(E)>0.

8

Proof. 0 < ,u(E): ,u(E)+z

Theorem. (Hahn’s Decomposition Theorem) Let (X ,F, ,u) be a signed measure space.
There exist sets X* e F such that X = X" 11 X", X" is positive and X~ is negative. If
X =X, X, is another such decomposition then X" A X, and X~ A X, are null sets.

Proof. Assume without loss of generality that # omits the value +oo (else pass to — ).
Define m={u(E) | E € Fis positive }. This is finite because x omits the value + .
Choose E, € F positive such that z(E,) — m.Set X" =U"E,, X =X\ X".

Exercise. Show that a countable union of positive sets is positive.

So X7 is positive. X~ is negative because otherwise there exists £’ X~ measurable
such that x(E')>0. In this case X" [[E’ is a positive set with measure m + u(E')>m ,
which contradicts the maximality of m .

This proves the existence of a Hahn decomposition. We now prove uniqueness. Let
X =X, I X; be another Hahn decomposition.

Suppose E < X" A X, . Since
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XAX =(x\x oy \xt)cxrux;,
u(E')>0 since X" U X, is positive. But we also have
X AX =(x nx))olx; X)X, uX,
so #(E')<0 since X; U X" is negative. So #(E')=0. Since E' was arbitrary, X" A X,
is null. The proof for X~ A X| is similar.

Definition. Let z,v be two measures on (X ,F ) We say u,v are mutually singular amd
write g Lv if X =X 11X, where ,u(XV):V(X# =0. (Le. u# “liveson” X, v “lives
on” X,, X NnX, =0).

Exercise. Show that if ¢/ <<v then x and v are not mutually singular.

Theorem. (Jordan’s Decomposition Theorem) Let (X ,F, ,u) be a signed measure space.
There exists a unique decomposition = —u where u',u  are (proper) measures

and " 1Ly .
Proof. Let X = X" [ X be a Hahn decomposition. Define two measures ", 1~ by

w(E)=ulEnx),
p(E)=—plE~x").

Exercise. Show ", 4~ are measures.

To see that these measures are mutually singular take X o= X', X - X~ and observe

that u=pu" —u .

Suppose g =4 —u is another Jordan decomposition. Let X =X,I1X, be a

decomposition such that g (X[ ):,uf (Xl+ ):0. We claim that this is a Hahn
decomposition.

To see that X, is positive: VE'c X/, u(E')=p (E')—u (E')=u(E')>0. The
negativity of X, is shown similarly.
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By the uniqueness part of the Hahn Decomposition Theorem, both X" A X, and
X~ AX, arenull sets. Therefore, for every E € F,

' (E)= i (En X! )= (Enx7)
= ulE~x7)
= ,u(E mX*)since XAX] null
=i (Enx?)
= 4" (E)

Similarly for g ,u .
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