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0. INTRODUCTION 
 
Problem. We wish to assign a numerical size ( )Eµ  to subsets E  of a given space X . 
 
Geometry: 2R=X ; ( ) ( )EE Area=µ . 
 
Mechanics: == 2RX model for thin sheet of metal with density ( )yx,ρ ; ( ) =Eµ mass of 
E . 
 
Probability Theory: =X  sample space, collection of possible outcomes; XE ⊆  an 
“event”; ( ) =Eµ probability that E  happens. 
 
However, there are problems. For instance, what is the area of this? 
 

 
 
“Magnification” doesn’t help. We encounter similar problems with the idea of mass – 
what is the mass of, say, a sponge? Or, in the case of probability, imagine picking a real 
number “at random” – what is the probability that the number chosen is rational? 
 
What would we like to have for R ? 
 
Idea. (1) A function µ  with domain R2  and range [ ]∞+,0 ; ( ) 0=∅µ , ( ) ∞=Rµ . 
(2) Translation-invariance: ( ) ( )EEx µµ =+  for all R∈x , R⊆E . 
(3) “Consistency”: 
 (i) Monotonicity: ( ) ( )BABA µµ ≤⇒⊆ ; 
 (ii) ( ) ( ) ( )BABA µµµ +=C ; 
 (iii) σ -additivity: ( ) ( )∑ ∈∈ = NN i iii AA µµ C ; 

 (iv) ( ) 0=∅µ ; 
 
Sad Fact. These requirements are not self-consistent! 
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Condition (1) is very strong because there are too many subsets: 
 

NR =ℵ>>>>= ℵℵ

0
2 0

0 222  
 
σ -additivity is also asking for a lot because limits are involved. 
 
The standard choice is to relax (1) and keep σ -additivity for the sake of practicality and 
an easy life. Relaxing (1) means that the domain for µ  should only be a subcollection F  
of subsets of X . We would like F  to have the following properties: 
(1) F∈∅ X, ; 
(2) FF ∈∩∪⇒∈ C,\,,, ABABABABA ; 
(3) { }∞=1iiA  in FF ∈⇒ ∞

=
∞
= iiii AA 11 ,IU . 

 
We do not require that F  be closed under arbitrary unions and intersections, simply 
countable ones. 
 
Definition. Let X  be a set. A σ -algebra of subsets of X  is a collection of subsets of X  
that contains ∅  and is closed under complementation and countable unions of its 
members. 
 
Exercise. Prove that a σ -algebra satisfies the properties given above. 
 
Definition. A measurable space is a pair ( )F,X , where X  is a set and F  is a σ -
algebra of subsets of X . Elements of F  are called F -measurable, or simply 
measurable. 
 
Definition. Let ( )F,X  be a measurable space. A measure on ( )F,X  is a function 

[ ]∞+→ ,0:Fµ  such that 
(1) ( ) 0=∅µ ; 
(2) µ  is σ -additive, i.e. if F∈iA  are pairwise disjoint then ( ) ( )∑ ∈∈ = NN i iii AA µµ C . 

The triple ( )µ,,FX  is called a measure space. 
 
Proposition. (Basic properties of measures.) Let ( )µ,,FX  be a measure space. 

(1) Additivity: F∈nAA ,,1 K  pairwise disjoint ( ) ( )∑ == =⇒
n

i ii
n
i AA

11 µµ C ; 

(2) Monotonicity: ( ) ( )BABABA µµ ≤⇒⊆∈ ,, F ; 
(3) Inclusion-Exclusion Principle: if F∈BA,  and ( ) ∞<∩ BAµ  then 
 

( ) ( ) ( ) ( )BABABA ∩−+=∪ µµµµ  
 
(4) Difference Formula: if F∈BA, , BA⊆ , ( ) ∞<Aµ  then ( ) ( ) ( )ABAB µµµ −=\ . 
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Proof. (1) Define 
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By σ -additivity, 
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(2) ( ) ( )( ) ( ) ( ) ( )AABAABAB µµµµµ ≥+== \\C . 
 
(4) ( ) ( ) ( )ABAB \µµµ += . If ( ) ∞<Aµ  as given we can subtract ( )Aµ  from both sides 
to get ( ) ( ) ( )ABAB \µµµ =− . 
 
(3) 
 

( ) ( )( )
( ) ( )
( ) ( )( )
( ) ( ) ( )BABA

BABA
ABA

ABABA

∩−+=
∩+=

+=
=∪

µµµ
µµ
µµ

µµ

\
\

\C

 

 
 
Definition. (Monotone sequences of sets.) We say that a sequence { }∞=1iiE  increases 
(respectively decreases) to a set E  if 
 

N∈∀i , 1+⊆ ii EE  and EEii =∞
=1U , 

 
and write EEi ↑  (respectively 
 

N∈∀i , 1+⊇ ii EE  and EEii =∞
=1I , 

 
and write EEi ↓ ). 
 
Proposition. (Continuity of measures.) Let ( )µ,,FX  be a measure space and let 
{ } F⊆∞

=1iiE . 

(1) If EEi ↑  then ( ) ( )ii
EE µµ

∞→
= lim . 
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(2) If EEi ↓  and 0i∃  such that ( ) ∞<
0i

Eµ  then ( ) ( )ii
EE µµ

∞→
= lim . 

 
Proof. (1) Assume first that ( ) ∞<iEµ  for all i . We claim that 
 

( )1211 \ −
∞
=

∞
= == iiiii EEEEE CCU . 

 
Indeed, RHSLHS⊆  since if Ex∈  then there is a minimal i  such that iEx∈ . By 
minimality, 1−∉ iEx , so RHS\ 1 ⊆∈ −ii EEx . LHSRHS⊆  is trivial. 
 
To see that the union on the RHS is pairwise disjoint suppose ji < . Then 

ijjj EEEE \\ 1 ⊆−  since jjii EEEE ⊆⊆⊆⊆ −+ 11 K . So, since C
1\ ijj EEE ⊆−  and 

iii EEE ⊆−1\ , ( ) ( ) ∅=∩ −− 11 \\ iijj EEEE . 
 
We now use the σ -additivity of µ  to calculate ( )Eµ : 
 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )( )
( )nn

nnn

i
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∞
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This proves (1) under the assumption that ( ) ∞<iEµ  for all i . If 0i∃  such that ( ) ∞=

0i
Eµ  

then by Monotonicity ( ) ∞=⇒≥ iEii µ0  and ( ) ( ) ∞=≥ iEE µµ , hence 
 

( ) ( )iii
EE µµ

∞→∞→
=∞=∞= limlim , 

 
thus proving (1). 
 
(2) By de Morgan, 
 

( )iiiiiiii EEEE \\
0000 1

∞
+=

∞
= = UI  

 
and 
 

( ) ( )iiiiii EEEE ∞
=↑

000
\\ I  

 
by (1). So 
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( ) ( ) ( )
( )

( )
( ) ( )iii

iii

iiii

iiiiiii

EE

EE

EE

EEE

µµ

µ

µ

µµµ

∞→

∞→

∞
=

∞
=

∞
=

−=

=

=

=−

lim

\lim

\

\

0

0

00

0000

U

II
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∞
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We observe that iiiii EE ∞

=
∞
= = 10

II . 
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1. LEBESGUE’S MEASURE 
 
Aim. Define a measure m  on R  such that 
(1) ( ) ( )intervallengthinterval =m ; 
(2) translation-invariance, i.e. ( ) ( )EmExm =+ . 
 
Strategy. ‘Do what we must.’ 
(1) Define the measure on certain basic sets for which the definition is obvious – the 
intervals. 
(2) Extend the definition to all sets by approximating them by countable unions of basic 
sets. 
(3) Restrict to a σ -algebra to get σ -additivity. 
 

Step 1 – Defining the Measure on Intervals 
 
We begin with some notation and definitions. 
 
An interval is a set of the form ( )ba, , ( ]ba, , [ )ba, , [ ]ba,  where ba ≤ . We also allow 
∅ , R , ( )∞,a , [ )∞,a , ( )b,∞− , ( ]b,∞− . We shall use ba,  to represent all the 
possibilities above. 
 

{ }intervalan  is Int EE R⊆=  
 
Let X  be a set. A collection X2⊆S  is called a semi-algebra (of subsets of X ) if 
(1) S∈∅ X, ; 
(2) SS ∈∩⇒∈ BABA, ; 
(3) S∈∀A , CA  can be written as a finite union of pairwise disjoint elements of S . 
 
Proposition. Int  is a semi-algebra of subsets of R  (but is not a σ -algebra). 
 
Proof. (1) ( )0,0=∅ , ( )∞+∞−= ,R . 
(2) The intersection of two intervals is empty, an interval, or a point [ ]aa, . 
(3) The complement of an interval is empty, an interval, or the union of two disjoint 
intervals. 

 
 
Definition. Let [ ]∞→ ,0Int:l  be the length function given by 
 

( ) abba −=,l . 
 
Is l  σ -additive on Int ? I.e. if kk II ∞

== 1C , where Int, ∈kII , does it follow that 
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( ) ( )∑∞

=
=

1k kII ll ? 

 
Lemma. (1) l  is finitely additive: for Int, ∈kII , 
 

( ) ( )∑ == =⇒=
N

k kk
N
k IIII

11 llC . 

 
(2) l  is σ -sub-additive: for Int, ∈kII , 
 

( ) ( )∑∞

=
∞
= ≤⇒=

11 k kkk IIII llU . 

 
Proof. (1) If I  is not bounded then ( ) ∞=Il . In this case at least one of the kI , jI  say,  
must be unbounded (because a finite union of bounded sets is bounded). Thus, 
 
 ( ) ( ) ( )∑ =

≤=∞=
N

k kj III
1
lll

⇒  ( ) ( )∑ =
=∞=

N

k kII
1
ll  

 
From now on, assume kII ,  are bounded; baI ,= , kkk baI ,= . Re-order so that 

Naaa <<< K21 . Observe that 
 
(i) k∀ , 1+≤ kk ab  since if not there would be an overlap, ( ]ε+⊇∩ +++ 111 , kkkk aaII  would 
be non-empty; 
(ii) 1−≤∀ Ni , 1+= kk ab  since if not there would be a gap, ( )1, +kk ab , yet I  can have no 
gaps. 
 
By (ii), 
 

( ) ( )

( ) ( )
( ) ( )

1

1

1

1 1

11

ab
abaa

abaa

abI

N

NNN

NN
N

k kk

N

k kk
N

k k

−=
−+−=

−+−=

−=

∑
∑∑

−

= +

==
l

 

 
Since the ka  were ordered, bbN =  and aa =1 , so 
 

( ) ( ) abII N

k k −==∑ =1
ll . 

 
(2) Case 1: I  is a compact interval [ ]ba, . 
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Write iii baI ,= , fix 0>ε  and set ( )11 2,2 ++ +−= i
i

i
ii baJ εε . { }∞=1iiJ  is an open cover 

of the compact interval I . Therefore, by the Heine-Borel Theorem, there exists a finite 
subcover; fix N  and re-order so that i

N
i JI 1=⊆ U . Write 

 
12 +−= i

ii a εα  
12 ++= i

ii b εβ  
 

i
N
i JIa 1=⊆∈ U  so 1i∃  such that 

111 iii aJa βα <<⇔∈ . If 
1i

JI ⊆  we stop. If not, Ii ∈1
β  

and so 2i∃  such that 
2122 iiiiJa ββα <<⇔∈ . If 

21 ii JJI ∪⊆  we stop. If not, Ii ∈2
β  and 

so 3i∃  such that 
3233 iiiiJa ββα <<⇔∈ . Continue this process; this process stops 

eventually and gives us Nii ′,,1 K , NN ≤′ , such that 
 

ki
N
k JI ′
=⊆ 1U , 

11 ii a βα << , 
11 ++

<<
kkk iii ββα , 

NN ii b
′′

<< βα . 
 

 
 
Therefore, because of overlaps, 
 

( ) [ ]( ) ( )IbaJN

k ik
lll =≥∑ ′

=
,

1
. 

 
Thus, 
 

( ) ( )
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( )( )
( )

( ) ε

ε

ε
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∑
∑
∑

∞
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∞
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∞

=

∞

=

∞

=

′

=

+

1
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i i

N
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i
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Since 0>ε  was arbitrary, ( ) ( )∑∞

=
≤

1i iII ll . Thus, Case 1 is proved. 

 
Case 2: I  is a bounded interval, kI  arbitrary intervals. 
 
If kI  bounded for all k  we are in Case 1. If not k∃  such that ( ) ∞=kIl  and 
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( ) ( ) ( )∑∞

=
≤=∞<

1i kk III lll . 

 
Case 3: General case. 
 
Write baI ,= , ba,  possibly infinite. Choose aak ↓ , bbk ↑ , kk ba ≤ . Clearly 
 

[ ] kkkkkk Ibaba ∞
=⊆⊆ 1,, U . 

 
By Case 2, [ ]( ) ( )∑∞

=
≤

1
,

k kkk Iba ll . But [ ]( ) ( )Iabba
kkkkk ll

∞→
→−=, , so ( ) ( )∑∞

=
≤

1i kII ll . 
 

 
Tricks. (1) i2ε  trick – we need summable errors. 
(2) Approximating sets from within by compact sets. 
 
We need to check that l  is σ -additive on Int  otherwise we have no chance of getting a 
measure out of l . 
 
Proposition. [ ]∞→ ,0Int:l  is σ -additive on Int . I.e., if Int, ∈kII  and kk II ∞

== 1C  then 

( ) ( )∑∞

=
=

1k kII ll . 

 
Proof. (≤ ) This follows from σ -sub-additivity. 
 
(≥ ) It is enough to prove that ( ) ( )∑ =

≥
N

k kII
1
ll  for each N , since we can then pass to the 

limit ∞→N . The idea is to show that k
N
k II 1\ =U  is a finite pairwise disjoint union of 

intervals. This will do because if 
 

 
( ) ( )iM

ik
N
k JII 11 === CCC , 

with Int∈iJ  
( )∗

 
then the finite additivity of l  on Int  would imply 
 

( ) ( ) ( ) ( )∑∑∑ =

≥

==
≥+=

N

k k
M

i i
N

k k IJII
1

0

11
l

43421
lll . 

 
To prove ( )∗  we can use the properties of Int  as a semi-algebra. We claim that 
 

CC
2

C
1Morgan de1\ Nk

N
k IIIIII ∩∩∩∩== KU  

 
is a finite disjoint union of intervals and prove this by induction on N . 



MA359 MEASURE THEORY 

 - 12 - 

 
Case 1=N : Since Int  is a semi-algebra k

n
k JI 1

C
1 ==C  for some Int∈kJ . Therefore, 

k
n
k JIII ∩=∩ =1

C
1 C , but Int∈∩ kJI . 

 
Induction Step: Assume k

n
kN JIIII 1

CC
2

C
1 ==∩∩∩∩ CK  with Int∈kJ . Since Int  is a 

semi-algebra, i
m
iN KI 1

C
1 =+ =C , Int∈iK . So, 

 
( ) ( )

( )ik

nk
mi

i
m
ik

n
kN

KJ

KJIIII

∩=

∩=∩∩∩∩

≤≤
≤≤

==+

1
1

11
C

1
C
2

C
1

C

CCK

 

 
Exercise. Check that this union is pairwise disjoint. 
 
Since Int  is a semi-algebra, ( )∗  is proved, and so is the proposition. 

 
 
Exercise. Modify the proof of (≥ ) to obtain the stronger statement: If Int, ∈jII  and 

jj II ∞
=⊇ 1U  then ( ) ( )∑∞

=
≥

1j jII ll . 

 
Step 2 – Outer Measures 

 
Or, “Approximating the measure of an arbitrary set from above”. 
 
We want to bound the measure of a general set from above. We do this by considering 
countable covers by basic sets. 
 
Definition. Lebesgue’s outer measure is the function [ ]∞→ ,02:* Rm  given by 
 

( ) ( )








∈⊆=
∞

=

∞

=
∑ Int ,

11

*
k

k
k

k
k IIAIAm Ul . 

 
Definition. In general, given a set X , an outer measure on X  is a function 

[ ]∞→ ,02:* Xµ  such that 
(1) ( ) 0* =∅µ ; 
(2) monotonicity: ( ) ( )BABA ** µµ ≤⇒⊆ ; 

(3) σ -sub-additivity: ( ) ( )∑∞

=
∞
= ≤

1
*

1
*

i iii AA µµ U . 

 
Remark. An outer measure is not, in general, a measure. 
 
Proposition. Lebesgue’s outer measure is an outer measure. 
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Proof. (1) ii I∞

=⊆∅ 1U  where ( ) ∅== 1,1iI , and so ( ) 00
1

* =≤∅ ∑∞

=i
m . Obviously 

( ) 0* ≥Am  R⊆∀A  so ( ) 0* =∅m . 
 
(2) Fix 0>ε  and find { } Int1 ⊆

∞
=iiI  for which 

 
ii IB ∞

=⊆ 1U , 

( ) ( ) ε+≤∑∞

=
BmI

i i
*

1
l . 

 
(The cover exists by the definition of infimum.) Since ii IBA ∞

=⊆⊆ 1U  we must also have 
 

( ) ( ) ( ) ε+≤≤∑∞

=
BmIAm

i i
*

1
* l , 

 
but 0>ε  is arbitrary so ( ) ( )BmAm ** ≤ . 
 
(3) Let 0>ε . For each i  find ( ){ } Int

1
⊆

∞

=j
i

jI  such that 

 
( )i
jji IA ∞

=⊆ 1U , 
( )( ) ( ) i

ij
i

j AmI 2*
1

ε+≤∑∞

=
l . 

 
Clearly, 
 

( )( )i
jjiii IA ∞

=
∞
=

∞
= ⊆ 111 UUU . 

 
The collection ( ){ }N∈jiI i

j ,  is countable and so 
 

( ) ( )( )
( )( )
( ) ε

ε

+=

+≤

≤

∑
∑
∑ ∑

∞

=

∞

=

∞

=

∞

=
∞
=

1
*

1
*

1 11
*

2

i i

i
i

i

i j
i

jii

Am

Am

IAm lU

 

 
So *m  is σ -sub-additive. 

 
 
Question. Is it true that [ ]∞→ ,02:* Rm  is an extension of the length function, i.e. 

Int∈∀I , ( ) ( )IIm l=* ? 
 



MA359 MEASURE THEORY 

 - 14 - 

Proposition. The Lebesgue outer measure of an interval is its length. Moreover, if 

ki IA ∞
== 1C , Int∈kI , then ( ) ( )∑∞

=
=

1
*

k kIAm l . 

 
Proof. (≤ ) ki IA ∞

=⊆ 1C  so ( ) ( )∑∞

=
≤

1
*

k kIAm l . 

(≥ ) Fix 0>ε  and let { }∞=1iiJ  be a cover of kk I∞
=1C  by ∈iJ Int  such that 

 
( ) ( ) ε+≤ ∞

=
∞

=∑ kki i ImJ 1
*

1
Cl . 

 
Since iikk JI ∞

=
∞
= ⊆ 11 UC , kiik IJI ∩⊆ ∞

=1U  N∈∀k . Since Int  is closed under 
intersections, the sets ki IJ ∩  are intervals. Therefore, since l  is σ -sub-additive on Int , 
 

( ) ( )∑∞

=
∩≤

1i kik IJI ll  N∈∀k . 

 
Sum over all N∈k : 
 

( ) ( ) ( )∑ ∑∑ ∑∑ ∞

=

∞

=

∞

=

∞

=

∞

=
∩=∩≤

1 11 11 i k kik i kik k IJIJI lll  

 
By assumption the kI  are pairwise disjoint, so kiki IJJ ∩⊇ ∞

=1C . By the earlier exercise, 

( ) ( )∑∞

=
∩≥

1k kii IJJ ll . It follows that 

 
( ) ( )

( ) ε+≤

≤
∞
=

∞

=

∞

= ∑∑
kk

i ik k

Im

JI

1
*

11

C

ll
 

 
Since 0>ε  was arbitrary, the proposition follows. 

 
 
Example. What is ( )Q*m ? 
(1) Direct method: enumerate { }∞== 1kkxQ . Choose intervals 
 

( )11 2,2 ++ +−= k
k

k
kk xxI εε  

 
for a fixed 0>ε . { }∞=1kkI  is a cover of Q . 
 

( ) 020
011 →

∞

=

∞

=
→==≤ ∑∑ ε

εε
k

k
k kIl  

 
(2) By σ -sub-additivity: 
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( ) { }( ) [ ]( ) 0,

11
** =≤= ∑∞

=
∞
= k kkkk xxxmm lUQ  

 
Exercise. (1) Show that every countable set in R  has zero outer measure. 
(2) Show that a countable union of sets with outer measure zero also has outer measure 
zero. 
 
Summary. We have extended [ ]∞→ ,0Int:l  to [ ]∞→ ,02:* Rm ; *m  is defined for all 
subsets of R ; *m  is σ -sub-additive on R2 ; *m  is not σ -additive on R2  and so is not a 
measure. 
 

Step 3 – Obtaining a Measure from *m  by Restricting its Domain 
 
Definition. A set R⊆E  is called Lebesgue measurable if it satisfies the condition 
 

R⊆∀T , ( ) ( ) ( )C*** ETmETmTm ∩+∩= . 
 
This condition is called Carathéodory’s criterion. 
 
Remarks. (1) T  is often called a “test set”. 
(2) Carathéodory’s criterion is symmetric with respect to E , so if E  is Lebesgue 
measurable so is CE . 
(3) The inequality 
 

( ) ( ) ( )C*** ETmETmTm ∩+∩≤  
 
is always true by the σ -sub-additivity of *m . 
 
Notation. { }measurable Lebesgue is 0 EE R⊆=B . 
 
We aim to prove: 
(1) 0B  is a σ -algebra; 

(2) [ ]∞→ ,0: 0
*

0
B

B
m  is σ -additive; 

(3) Int0 ⊇B . 
 

Given these, 






0

*
0 ,,

B
B mR  will be a measure space. 

 
Proposition. Let { }measurable Lebesgue is 0 EE R⊆=B . Then 
(1) 0, B∈∅ R ; 
(2) 0

C
0 BB ∈⇒∈ EE ; 
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(3) 0212121021 \,,, BB ∈∪∩⇒∈ EEEEEEEE . 
 
Proof. (1) 0B∈∅  since ( ) ( ) ( ) ( )TmTmTmTm *C*** 0 +=∅∩+∅∩= ; similarly for R . 
 
(2) If E  is Lebesgue measurable then R⊆∀T , 
 

( ) ( ) ( ) ( )( ) ( )C*CC*C*** ETmETmETmETmTm ∩+∩=∩+∩=  
 
(3) Let 021, B∈EE . Then 
 

( )( ) ( )( )( )
( ) ( )( )C

12
*

1
*

C
121

*
21

*

EETmETm

EEETmEETm

∩∩+∩≤

∩∩=∪∩ C
 

( )( ) ( )( )
( )( )
( ) ( )2

C
1

*C
1

*

C
2

C
1

*

C
2

C
1

*C
21

*

EETmETm

EETm

EETmEETm

∩∩−∩=

∩∩=

∩∩=∪∩

 

 
because if we apply Carathéodory’s criterion for 2E  using the test set C

1ET ∩  we get 
 

( ) ( ) ( )( )C
2

C
1

*
2

C
1

*C
1

* EETmEETmETm ∩∩+∩∩=∩  
 
Adding these estimates gives 
 

( )( ) ( )( ) ( ) ( ) ( )TmETmETmEETmEETm *C
1

*
1

*C
21

*
21

* =∩+∩≤∪∩+∪∩  
 
The reverse inequality is always true (see the remark above) so 021 B∈∪ EE . The 
remainder (intersections, differences, etc.) follow from that already shown and de 
Morgan’s laws. 

 
 
Lemma. *m  is finitely additive on 0B . 
 
Proof. We require that given 01 ,, B∈nEE K  pairwise disjoint, ( ) ( )∑ == =

n

i ii
n
i EmEm

1
*

1
* C . 

Apply Carathéodory’s criterion for nE  with test set i
n
i ET 1==C : 

 
( ) ( ) ( )

( ) ( )
( )∑ =

−
=

=

+=

∩+∩=

n

i i

i
n
in

nn

Em

EmEm

ETmETmTm

1
*

1
1

**

C***

C  
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and the result follows by induction. 
 

 
Exercise. Prove that if 01 ,, B∈nEE K  are pairwise disjoint then R⊆∀T , 
 

( ) ( )∑ == ∩=∩
n

i ii
n
i ETmETm

1
*

1
* C . 

 
Proposition. 0B  is a σ -algebra. 
 
Proof. We already know that 0B  is an algebra so we need only check that given { }∞=1iiE  

in 0B  the union 01 B∈∞
= ii EU . 

 
Step 1: It is possible to assume without loss of generality that this collection of sets is a 
collection of pairwise disjoint sets. 
 
Proof: Let j

i
jii EEE 1

1\ −
==′ U . These are in 0B  because we know that 0B  is closed under 

finite unions and set differences. Also, iiii EE ′= ∞
=

∞
= 11 UU  and ∅=′∩′ ji EE  for ji ≠ . 

 
So we can assume that the iE  are pairwise disjoint. 
 
Step 2: R⊆∀T , ( ) ( ) ( )iiii ETmETmTm ∞

=
∞
= +∩= 1

*
1

** \CC . 
 
Proof: (≤ ) follows from the σ -sub-additivity of *m . 
 
(≥ ) N∈∀N , 01 B∈= i

N
i EC  since 0B  is an algebra of sets. Therefore, R⊆∀T , 

 
( ) ( ) ( )

( ) ( )
( ) ( )ii

N

i i

i
N
i

N

i i

i
N
ii

N
i

ETmETm

ETmETm

ETmETmTm

∞
==

==

==

+∩≥

+∩=

+∩=

∑
∑

1
*

1
*

1
*

1
*

1
*

1
**

\

\

\

C

C

CC

 

 
So for each N∈N , ( ) ( ) ( )ii

N

i i ETmETmTm ∞
==

+∩≥∑ 1
*

1
** \C . Passing to the limit as 

∞→N : 
 

( ) ( ) ( )
( ) ( )iiii

iii i

ETmETm

ETmETmTm
∞
=

∞
=

∞
=

∞

=

+∩≥

+∩≥∑
1

*
1

*

1
*

1
**

\

\

CC

C
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Proposition. *m  is σ -additive on 0B . 
 
Proof. We need to show that if { }∞=1iiE  in 0B  are pairwise disjoint then 
 

( ) ( )∑∞

=
∞
= =

1
*

1
*

i iii EmEm C . 

 
(≤ ) is the σ -sub-additivity of *m . 
 
(≥ ) By monotonicity, N∈∀N , ( ) ( )iN

iii EmEm 1
*

1
*

=
∞
= ≥ CC , which equals ( )∑ =

N

i iEm
1

*  by 

finite additivity. Since this holds for all N , ( ) ( )∑∞

=
∞
= ≥

1
*

1
*

i iii EmEm C . 
 

 
Proposition. Intervals are Lebesgue measurable. 
 
Proof. Let Int∈I . We need to show that R⊆∀T , 
 

( ) ( ) ( )C*** ITmITmTm ∩+∩= . 
 
(≤ ) is always true. 
 
(≥ ) Fix 0>ε  and let { }∞=1kkI  be a cover of T  by intervals kI  such that 

( ) ( ) ε−≥∑∞

=1
*

k kITm l . Then 

 
( ) ( ) ( )∑∞

=
∞
= ∩≤∩≤∩

1
*

1
**

k kkk IImIImITm U  

( ) ( )∑∞

=
∩≤∩

1
C*C*

k k IImITm  

 
So 
 

( ) ( ) ( ) ( )( )∑∞

=
∩+∩≤∩+∩

1
C**C**

k kk IImIImITmITm . 

 
If we knew that ( ) ( ) ( )kkk ImIImIIm *C** =∩+∩  then we would have 
 

( ) ( ) ε+≤≤∑∞

=
TmIm

k k
*

1
*RHS  

 
Passing to the limit as 0→ε  would prove (≤ ). So we need only prove that N∈∀k , 
 

( ) ( ) ( )kkk ImIImIIm *C** =∩+∩ . 
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Int  forms a semi-algebra and so Int∈∩ IIk , i
n
i JII 1

C
==∩ C  with Int∈iJ . It follows 

that 
 

( ) ( ) ( ) ( )
( ) ( )( )
( )
( )k

k

i
n
ik

n

i ikkk

Im

I

JII

JIIIImIIm

*

1

1
C**

=

=

∩=

+∩=∩+∩

=

=∑

l

CCl

ll

 

 
 
Theorem. There exists a σ -algebra 0B  of subsets of R  and a set function 

[ ]∞→ ,0: 0Bm  such that 
(1) Int0 ⊇B ; 
(2) m  is σ -additive; 
(3) ( ) ( )IIm l=  for Int∈I . 
 
Notation and Terminology. (1) 

0

*

B
mm =  is called Lebesgue measure. 

(2) 0B  is the σ -algebra of Lebesgue measurable subsets. 
(3) ( )m,, 0BR  is Lebesgue’s measure space (on R ). 
 

Properties of Lebesgue Measure 
 
Proposition. (Translation-invariance) If 0B∈E  and R∈x  then ( ) ( )ExmEm += . 
 
Proof. It is obvious that [ ]∞→ ,0Int:l  is translation-invariant. It follows that *m  is 
translation-invariant. We would like to now say that 

0

*

B
mm =  is also translation-

invariant. However, we don’t know that 00 BB ∈+⇒∈ ExE . Let R⊆T . 
 

( )( ) ( )( ) ( )( )( ) ( )( )( )
( )( ) ( )( )
( )
( )Tm

Txm
ETxmETxm

ETxxmETxxmExTmExTm

*

*

C**

C**** \

=

+−=

∩+−+∩+−=

∩+−++∩+−+=+++∩

 

 
So m  is translation-invariant. 

 
 
Definition. A measure space ( )µ,,FX  is called σ -finite if F∈∃ iF  such that 

ii FX ∞
== 1U  and ( ) ∞<iFµ . 
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A measure space ( )µ,,FX  is called a probability space if ( ) 1=Xµ . 
 
Proposition. ( )m,, 0BR  is σ -finite. 
 
Proof. Take 
 

[ )
[ )



+=+−−
=+

=
121,

21,
knkk

knkk
Fn  

 
 
Definition. Let ( )µ,,FX  be a measure space. XA⊆  is called µ -negligible (or µ -null) 
if ( ){ } 0inf =∈⊆ FEAEµ . ( )µ,,FX  is called complete if every µ -null set is in F . 
 
Proposition. ( )m,, 0BR  is complete. 
 
Proof. Suppose A  is a null set. Fix 0>ε  and find an 0B∈E  such that EA⊆  and 

( ) 2εµ <E . Since 
0

*

B
mm =  there must exist a cover of E  by a countable collection of 

intervals { }∞=1kkI  such that 
 

( ) ( ) εε <+≤∑∞

=
2*

1
EmI

k kl . 

 
Clearly EA⊆  is covered by kk I∞

=1U  as well. So 
 

( ) ( ) ε<≤∑∞

=1
*

k kIAm l  

 
Since 0>ε  was arbitrary, ( ) 0* =Am . This implies that 0B∈A  because 
 

( ) ( ) ( )
( ) ( )
( )Tm

TmAm
ATmATmTm

*

**

*** \

=

+≤

+∩≤

 

 
and so ( ) ( ) ( )ATmATmTm \*** =∩= . 

 
 
We will now work towards the following result: 
 
Proposition. Open and closed subsets of R  are Lebesgue measurable. 
 



MA359 MEASURE THEORY 

 - 21 - 

Lemma. (Lindelöf’s Lemma) Every open subset of R  is a countable union of open 
intervals. 
 
Proof. Fix an open set R⊆U . Every Ux∈  has a neighbourhood such that 
( ) Uxx xx ⊆+− εε , . Choose xxxx xxx εβαε +<<<<−  such that Q∈xx βα , . Clearly 

( )xxxU βα ,Q∈= U . The cardinality of the cover ( ){ } Uxxx ∈βα ,  is at most 0ℵ=×QQ . 
 

 
Definition. The smallest σ -algebra of subsets of R  containing all open sets is called the 
Borel σ -algebra and is denoted ( )RB . Elements of ( )RB  are called Borel sets. 
 
Remark. Assignment 1 proves that the smallest σ -algebra containing a given collection 
actually exists. 
 
Lemma. All intervals, open sets and closed sets are Borel sets. 
 
Proof. Open sets are Borel because, by Lindelöf’s Lemma, they are countable unions of 
open intervals. Closed sets are complements of open sets, and so are Borel. Intervals 
( )ba,  and [ ]ba,  are Borel because they are open and closed respectively. 
 

( ] ( ) [ ]bccaba ,,, ∪=  for any ( )bac ,∈  
 
so ( ]ba,  is Borel. Similarly for [ )ba, . 

 
 
Note. We can define the Borel σ -algebra for any topological space ( )T,X : simply close 
T  under complementation. 
 
Proposition. ( ) 0BB ⊆R ; i.e., every Borel set is Lebesgue measurable. 
 
Proof. Define ( ){ }0BBF ∈∈= EE R . We prove that ( )RBF ⊇  by showing 
(1) F  contains the open sets; 
(2) F  is a σ -algebra. 
The proposition then follows, since ( )RB  is the smallest σ -algebra contains the open 
sets. 
 
(1) Suppose R⊆U  is open. By Lindelöf’s Lemma there are open intervals { }∞=1kkI  such 

that kk IU ∞
== 1U . Intervals are Lebesgue measurable and 0B  is a σ -algebra. So 0B∈U . 

( ) { }setsopen ⊇RB  so ( )RB∈U  so F∈U . 
 
(2) F∈∅  is trivial. 
 



MA359 MEASURE THEORY 

 - 22 - 

FF ∈⇒∈ CEE  since 
 

( )
( )
F

BB

BBF

∈⇔

∈∈⇔

∈∈⇔∈

C
0

C
0

,

,

E

EE

EEE

R
R

 

 
{ } FF ∈⇒⊆ ∞

=
∞
= iiii EE 11 U  because 

 
{ } ( )

( )
F

BB

BBF

∈⇒

∈∈⇒

∈∈∀⇔⊆

∞
=

∞
=

∞
=

∞
=

ii

iiii

iiii

E

EE

EEiE

1

011

01

,

,,

U

UU R
R

 

 
 
Theorem. (Regularity Theorem) If 0B∈E , then 0>ε  there are sets UEF ⊆⊆  such 
that F  is closed, U  is open, and ( ) ε<FUm \ . Moreover, if ( ) ∞<Em  then F  can be 
chosen to be compact. 
 
Remark. Informally, this says that every measurable set is approximately open and 
approximately closed. 
 
Proof. Step 1: Constructing U . Define [ )1, += nnEn  for Z∈n . By definition, 
( ) ( )nn EmEm *= , so for every 0>nε  there is a countable cover of nE  by intervals 
( ) ( )n

k
n

k ba ,  such that 
 

( ) ( )( ) ( ) nnk
n

k
n

k Emba ε+≤∑∞

=
*

1
,l . 

 
If ( ) ( ) ( )( )11 2,2 ++ +−= k

n
n

k
k

n
n

k
n

k baI εε  then ( )n
kkn IE ∞

=⊂ 1U  and 
 

( ) ( )( )( )
( )( ) nk
n

k

nk
n

kn

I

IEm k
n

ε

εε

2

2

1

1 2 1

−=

−−≥

∑
∑

∞

=

∞

= +

l

l
. 

 
Define ( )n

kkn IU ∞
== 1U  and nn UU Z∈= U . Note that EU ⊇  and that 

 
( ) ( )

( )
( ) ( )( )∑

∑
∑

∈

∈

∈

−=

≤

≤

Z

Z

Z

n nn

n nn

n n

EmUm

EUm

EUmEUm

\

\\
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( )( ) ( )

∑
∑
∑ ∑

∈

∈

∈

∞

=

=

≤

−≤

Z

Z

Z

n n

n n

n k n
n

k EmI

ε

ε

2

2
1
l

 

 
Now choose 102 += n

n εε  to obtain 
 

( ) ( ) ( ) 222\ 8
1

8
1

1 2
1

0 2
1

1010 εεε =+<+≤ ∑∑ ∞

=

∞

= ++ nn nnEUm  

 
This shows that 0B∈∀E , 0>∀ε , U∃  open, such that EU ⊇  and ( ) 2\ ε<EUm . 
 
Step 2: Constructing F . Apply Step 1 to CE  to obtain an open set CEV ⊇  such that 
( ) 2\ C ε<EVm . Then CVF =  satisfies F  closed, EF ⊆  and  

 
( ) ( ) ( ) 2\\ C ε<=∩= EVmVEmFEm . 

 
Taken together, Steps 1 and 2 give UEF ⊆⊆  such that 
 

( ) ( ) ( )

ε
εε

=
+<

+≤
22

\\\ FEmEUmFUm
 

 
Step 3: Compact Lower Bound. Suppose ( ) ∞<Em . Use Steps 1 and 2 to obtain F  
closed such that ( ) 2\ ε<FEm . For each n  set [ ]nnFFn ,−∩= . This set is closed and 
bounded, hence compact. We also have FFn ↑ , so FEFE n \\ ↓ . By assumption, 
( ) ∞<Em , so ( ) ( )FEmFEm n \\ →  as ∞→n , and ( ) ∞<< 2\ εFEm . It follows that 

we can choose n  large enough so that ( ) ε<nFEm \ . nF  is our suitable compact set. 
 

 
Corollary. (Structure of Lebesgue Measurable Sets) If 0B∈E  then there is a ( )RB∈B  
and a null set N  such that ( ) ( )BNNBNBE \\ ∪=∆= . 
 
Proof. Take EUn ⊇  open such that ( ) nEUm n 1\ <  and consider nn UB ∞

== 1I . Then 
( )EBBE \\= , B  is Borel, and EB \  is null. 

 
Alternatively, take EFn ⊆  closed such that ( ) nFEm n 1\ <  and consider nn UB ∞

== 1U . 
 

 
Sets that are not Lebesgue Measurable 
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Theorem. (Vitali’s Theorem) There exists a subset of [ ]1,0  that is not Lebesgue 
measurable. 
 
Idea. Show that [ ]1,0  can be written as a countable pairwise disjoint union 
[ ] kk A∞

== 11,0 C  of sets kA  such that if 1A  is measurable then all kA  are measurable and 
have the same measure as 1A . This implies that 1A  is not measurable because otherwise 
 

[ ]( ) ( ) ( ) ( ) ( ) KC ++==== ∑∞

=
∞
= 11111,01 AmAmAmAmm

k kkk  

 
which is impossible since  if ( ) 01 >Am  the RHS is infinite, and if ( ) 01 =Am  then RHS is 
0. We construct a suitable 1A  using the translation-invariance of 0B  and m . 
 
Proof. Define a binary operation on [ )1,0  by 
 

[ )




≥+−+
∈++

=⊕
11
1,0

yxyx
yxyx

yx  

 
Step 1. [ )( )⊕,1,0  is an Abelian group. 
 
Proof. yx⊕  is determined by the two conditions [ )1,0∈⊕ yx  and ( ) iyixyxi eee πππ 222 =⊕ . 
 
Commutativity: 
 

( )

( )xyi

ixiy

iyixyxi

e
ee
eee

⊕

⊕

=

=

=

π

ππ

πππ

2

22

222

 

 
Associativity: 
 

( )( ) ( )
( )

( )( )zyxi

iziyix

iziyixzyxi

e
eee

eeee

⊕⊕

⊕⊕

=

=

=

π

πππ

ππππ

2

222

2222

 

 
The neutral element is 0  and the inverse of x , xx −=− 1 . 
 
Step 2. 0B  and m  are ⊕ -invariant. 
 
Proof. Write 21 AAA C=  where [ )xAA −∩= 1,01 , [ )1,12 xAA −∩= . If 0B∈A  then 

021, B∈AA  and 
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( )

( ) ( )
( ) ( )( )21

21

21

1 AxAx
AxAx

AAxAx

+−+=
⊕⊕=

⊕=⊕

C

C

C

 

 
Since 0B  is + -invariant, ( ) 021 1, B∈+−+ AxAx  and so 0B∈⊕ Ax . Since m  is + -
invariant, ( ) ( ) ( ) ( )AmAmAmAxm =+=⊕ 21 . 
 
Step 3. Obtain a partition by defining an equivalence relation on [ )1,0  by 

Q∈−⇔ yxyx ~  (it is easy to see ~  is an equivalence relation). Let 
 

[ ] [ ){ }yxyx ~1,0∈=  
 
be the equivalence class of ~  containing x . 
 
We wish to choose a representative from each class. Formally, let [ ] [ ){ }1,0∈= xxE  be 
the collection of equivalence classes. Using the Axiom of Choice find a choice function 

[ )1,0: →Ef  such that [ ]( ) [ ]xxf ∈  ( f  is our law that “chooses” a representative). 
 
Define [ ]( ) [ ){ }=∈= 1,0xxfA the collection of representatives, and enumerate 

[ )1,0∩Q  as { }∞=1kkq . We claim that if AqA kk ⊕=  then [ ) kk A∞
== 11,0 C , i.e. 

(1) [ ) kk A∞
== 11,0 U ; 

(2) ∅=∩⇒≠ ji AAji . 
 
Proof of (1). It is enough to show that [ ) kk A∞

=⊆ 11,0 U . Suppose [ )1,0∈y . y  is equivalent 
to the representative of its class, whence [ ]( ) Q∈′=− qxfy . 
 
If [ )1,0∈′q  set qq ′=  and observe that [ ]( ) [ ]( ) Aqyfqyfqy ⊕∈⊕=+= .  
 
If not then [ ]( ) ( )0,1−∈−=′ yfyq . In this case define [ )1,01 ∩∈+′= Qqq  and note that 

[ ]( ) [ ]( ) Aqyfqyfqy ⊕∈⊕=−+= 1 . In either case, [ )1,0∩∈∃ Qq  such that Aqy ⊕∈ . 
By definition, k∃  such that kqq =  and kk AAqy =+∈ . 
 
Proof of (2). Suppose ji AAy ∩∈ . Then [ ]( ) [ ]( )yfqyyfq ji ⊕==⊕ . Add [ ]( )yf−1  
mod 1 to both sides to obtain ji qq = , i.e. ji = . 
 
This argument implies that K,,, 21 AAA  are all non-measurable since if one of them were 
measurable then by Step 1 all would be measurable with equal measure. This contradicts 
σ -additivity because we have 
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[ )( ) ( ) ( ) ( ) { }∞∈==== ∑∑ ∞

=

∞

=
∞
= ,01,01

111 kk kkk AmAmAmm C  
 

 
Warning. Whenever the Axiom of Choice is used, measurability problems may arise. 
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2. INTEGRATION 
 
Aim. To define the integral of a suitable function with respect to a measure on a 
measurable space. 
 

Measurable Functions 
 
Let ( )F,X  be a measurable space. 
 
Notation. We use the following shorthand notation for sets: if [ ]∞∞−→ ,: Xf  is a 
function then 
 

[ ] ( ){ }txfXxtf <∈=<  
[ ] ( ){ }BxfXxBf ∈∈=∈  

[ ] ( ){ }bxfaXxbfa ≤≤∈=≤≤  
 
etc. 
 
Definition. Let ( )F,X  be a measurable space and [ ]∞∞−→ ,: Xf  a function. We say 
that f  is F -measurable if R∈∀t , [ ] F∈< tf . 
 
Proposition. The following are all equivalent: 
(1) R→Xf :  is F -measurable; 
(2) R∈∀t , [ ] F∈> tf ; 
(3) R∈∀ ba, , [ ] F∈<< bfa ; 
(4) ( )RB∈∀B , ( ) F∈− Bf 1  and ( ) ( ) F∈∞∞− −− 11 , ff . 
 
Proof. (1)⇒ (2). Fix t . Then 
 

[ ] [ ]
[ ]

[ ]( )
F∈

+<=

+<∀=
≤=>

∞
=

C1
1

1

C

 ,

nn

n

tf

tfn
tftf

I
 

 
since F  is a σ -algebra. 
 
(2)⇒ (3). 
 

[ ] [ ] [ ]
[ ] [ ]
[ ] [ ]C1

C

 , nbfnaf

bfaf

bfafbfa

−>∀∩>=

≥∩>=

<∩>=<<

 



MA359 MEASURE THEORY 

 - 28 - 

[ ] [ ]( )
F∈

−>∩>= ∞
=

C1
1 nn bfaf I  

 
(3)⇒ (4). Define ( ) ( ){ }FBC ∈∈= − BfB 1R . We show 
(a) C  contains all open sets; 
(b) C  is a σ -algebra; 
(c) ( )RB  is the smallest σ -algebra containing the open sets, so ( )RBC ⊇ , and we are 
done once we check that ( ) ( ) F∈∞∞− −− 11 , ff . 
 
(a) ( ) ( ) F∈⇔ − If 13  for all open intervals I . By Lindelöf, every open set R⊆U  can be 
written as kk IU ∞

== 1U , kI  open intervals. Observe 
 

( ) ( )
( ){ }

( ){ }
( )

F∈

=

∈∈=

∈∈=

=

−∞
=

∞
=

∞
=

−−

kk

kk

k

kk

If

IxfXx

kIxfXx

IfUf

1
1

1

1
11

 somefor  

U

U

U

 

 
(b) Exercise. 
 
(c) (a) and (b) imply ( ) ( ) FB ∈⇒∈ − BfB 1R . We now need only check that ( )∞−−1f  
and ( ) F∈∞−1f : 
 

( ) [ ]
[ ]

[ ]
F∈

>=

>∀=
∞==∞

∞
=

−

nf
nfn

ff

n 1

1

 ,
I

 

 
( ) [ ]

[ ]
[ ]

F∈

−<=

−<∀=
−∞==∞−

∞
=

−

nf
nfn

ff

n 1

1

 ,
I

 

 
(4)⇒ (1) is trivial. 

 
 
Proposition. Suppose R→Xff n :,,1 K  are F -measurable. If  
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( ) ( )( ){ } UXxxfxf n
n ⊆∈∈R,,1 K  

 
for some open set nU R⊆  and if ( ) ( )nn ttttU ,,,,:: 11 KaK φφ R→  is continuous then 

( ) ( )( )xfxfx n,,1 Ka φ  is F -measurable. 
 
Examples. (1) nff ++K1  is F -measurable (take ( ) nn tttt ++= KK 11 ,,φ ). 
(2) nfff K21  is F -measurable. 

(3) 1logarcsin 21
321 ++ fff  is F -measurable provided 

 
( ) ( ) ( )( ){ } ( )φdomain,, 3

321 ⊆∈∈ Xxxfxfxf R  
 
where ( ) 21

321321 logarcsin,, tttttt +=φ . 
 
Proof. Suppose nV R⊆  is open. Then there is a countable collection of open boxes 
 

( ) ( )( ) ( ) ( )( )k
n

k
n

kk
k babaC ,, 11 ××= K  

 
such that kk CV ∞

== 1U  (prove this). Fix R∈t . We show that ( )[ ] F∈> tff n,,1 Kφ . Since 

φ  is continuous, ( ) ( ){ }tssssV n
n

n >∈= ,,,, 11 KK φR  is open. Find boxes { }∞=1kkC  such 

that kk CV ∞
== 1U . Now calculate 

 
( )[ ] ( ) ( )( ){ }

( ) ( )( ){ }
( ) ( ) ( )( ){ }

( ) ( )[ ]
F∈

<<=

≤≤∈∈=

∈∈=

∈∈=>

∞
=

∞
=

∞
=

∞
=

k
ii

k
iik

k
i

k
iik

kkn

nn

bfa

nibaxfXx

CxfxfXx

VxfxfXxtff

11

1

11

11

1 ,,

,,

,,,,

IU

U

UK

KKφ

 

 
This shows that R∈∀t , ( )[ ] F∈> tff n,,1 Kφ . 

 
 
Recall. For a sequence { }∞=1nna , a limit point is the limit of a subsequence { }∞

=1knk
a . The 

limit superior is { } { }pointslimit maxpointslimit supsuplim ==
∞→

n
n

a . The limit inferior is 

{ } { }pointslimit maxpointslimit infinflim ==
∞→ nn

a . The sequence converges if and only if 

nnn
n

aa
∞→∞→

= inflimsuplim . We also have the following formulae: 
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n
NnNn

n
aa

>∞→
= supinfsuplim , 

NNnN
nn

aa
>∞→

= infsupinflim . 

 
Proposition. (Calculus of measurable functions.) If { }∞=1nnf  are F -measurable functions 
then the following functions are also F -measurable: 
(1) ( ) ( )xfxf n

n
sup= ; ( ) ( )xfxf nn

inf= ; (It is essential that sup and inf are taken over a 

countable range of parameters.) 
(2) ( ) ( )xfxf n

n ∞→
= suplim ; ( ) ( )xfxf nn ∞→

= inflim ; 

(3) ( ) ( )xfxf nnc ∞→
= lim  if the limit exists, c  otherwise; 

(4) ( ) ( )∑∞

=
=

1n n xfxf  if the sum converges; ( ) ( )∏∞

=
=

1n n xfxf  if the product converges. 

 
Proof. (1) Suppose n

n
ff sup= . Then R∈∀t , 

 
[ ] [ ]

[ ]
[ ]

F∈

−<=

−<∀∃=
<=<

∞
=

∞
= knnk

kn

nn

tf

tfnk
tftf

1
11

1 , s.t. 
sup

IU
 

 
since [ ] F∈−< kn tf 1  and F  is a σ -algebra. Since this holds R∈∀t , n

n
ff sup=  is F -

measurable. 
 
In the case of nn

finf , observe that ( )n
n

nn
ff −−= supinf . If nf  is F -measurable so is nf− , 

thus the result follows from the above. 
 
(2) Suppose that n

n
ff

∞→
= suplim . Recall that n

NnNn
n

aa
>∞→

= supinfsuplim . By (1), N∈∀N , 

( )xfx n
Nn>

supa  is F -measurable. Again by (1), ( )xfx n
NnN >

supinfa  is F -measurable. A 

similar proof shows that nn
f

∞→
inflim  is F -measurable. 

 
(3) We start by showing that ( )[ ] F∈∞→ exists lim xfnn . This is because 

 
( )[ ] ( )[ ]

[ ]
[ ]C

C

C

inflimsuplim s.t. 

inflimsuplim

existnot  does limexists lim

nnnn

nnnn

nnnn

fqfq

ff

xfxf

∞→∞→

∞→∞→

∞→∞→

>>∈∃=

>=

=

Q
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[ ] [ ]( )qfqfX nnnnq <∩>= ∞→∞→∈ inflimsuplim\ QU  
 
and by (2) and the fact that F  is a σ -algebra. We now show that [ ] F∈< tfc  R∈∀t . 
Observe that 
 

[ ] [ ] [ ]( ) [ ]
[ ] [ ]




≥<∩
<∪<∩

=<
∞→

∞→

tctf
tctftf

nn

nn
c suplimexists lim

exists limsuplimexists lim C

 

 
In both cases [ ] F∈< tfc . 
 
(4) Exercise. 

 
 

Examples of Measurable Functions 
 
Definition. [ ]∞+∞−→ ,: Ef  is called Lebesgue (respectively Borel) measurable if it is 
measurable with respect to the Lebesgue (respectively Borel) σ -algebra. 
 
Remarks. (1) Every Borel measurable function is Lebesgue measurable, since 
( ) 0BB ⊆R . 

(2) Every continuous function [ ] R→baf ,:  is Borel (and hence Lebesgue) since [ ]tf <  
is open for all t , and open sets are Borel. 
(3) Highly discontinuous functions can be Borel, too, such as the Dirichlet function: 
 

( )




∉
∈

= Q
Q

x
x

xD
0
1

 

 
This is Borel ( Q1=D ) but is not continuous. 
 
Definition. If A  is a set the indicator function of A  is 
 

( )




∉
∈

=
Ax
Ax

xA 0
1

1  

 
Proposition. The indicator of A  is Borel (respectively Lebesgue) measurable if and only 
if A  is Borel (respectively Lebesgue). 
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Proof.  
 

[ ]








<
≤≤

≤∅
=<

t
tA

t
tA

1
10

0
C

R
1  

 
 
Definition. Let ( )F,X  be a measurable space. A simple function is an R→Xf :  of the 
form 
 

( ) ( )∑ =
=

n

i Ei xxf
i1

1α  

 
for some N∈n , R∈iα , F∈iE . 
 
Warning. This is not the same as being a step function. A simple function is a step 
function if and only if all the iE  are intervals. 
 
Theorem. (Basic Approximation) Let ( )F,X  be a measurable space. Then R→Xf :  is 
bounded and measurable if and only if 0>∀ε  there is a simple function R→X:εφ  
such that Xx∈∀ , ( ) ( ) εφε <− xxf . 
 
Proof. (⇐ ) Suppose R→Xf :  is the uniform limit of simple functions, i.e. N∈∀n , 

nφ∃  simple such that Xx∈∀ , ( ) ( ) nxxf n 1<−φ . Then 
(1) f  is measurable, because it is the limit of measurable functions. 
(2) f  is bounded, because ( ) ( ) ∞<+<+≤ 1sup1 11 φφ xxf . 
 
(⇒ ) Suppose R→Xf :  is bounded measurable. 
 

bε

M
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(Divide the y -axis evenly by ε -strips, project on to x -axis.) 
 
By assumption, f  is bounded, so ∞<= fM sup . Fix 0>ε  and choose N∈n  such that 

ε<n
1 . Define 
 

( ) [ ]( ) 
[ ]( )

 ∑∑ −

−= <≤= <≤ ++ +=
1

0 11 Mnk fn
kMn

k fn
k

n xxx
n

k
n
k

n
k

n
k 11φ . 

 
This is a simple function. For all Xx∈  there is a unique k  such that    MnkMn <≤−  
and ( ) n

k
n
k xf 1+<≤ , and for this k  ( ) [ ]n

k
n
kxf 1, +∈ , ( ) n

k
n x =φ , and so ( ) ( ) εφ <<− nn xxf 1 . 

 
 

Properties of Lebesgue Measurable Functions 
 
Definition. Let ( )µ,,FX  be a measure space and let P  be a property of points Xx∈ . 
We say that P  holds µ -almost everywhere (µ -a.e.) if ( ){ }( ) 0=¬∈ xPXxµ  
 
Examples. (1) ffn →  a.e. iff ( ) ( ){ }( ) 0=→/∈ xfxfXx nµ . 
(2) gf =  a.e. if [ ]( ) 0=≠ gfµ . 
 
Proposition. If [ ] [ ]∞∞−→ ,,: baf  is Lebesgue measurable and finite m -a.e. then 

0, >∀ δε  [ ]( )R,,1 baC∈∃φ  such that [ ] ( ) ( ){ } δεφ <>−∈ xxfbaxm , . 
 
Example. For the Dirichlet function Q1=D  take ( ) 0≡xφ  since [ ] ( )QmDm =>− 0φ  

0= . 
 
Proof. (1) First prove for indicators. 
(2) Generalize to simple functions. 
(3) Generalize to bounded measurable functions. 
(4) Generalize to all a.e.-finite measurable functions. 
 
Step 1 – Indicators. Suppose Ef 1= , [ ]baE ,⊆  Lebesgue measurable. Using the 
regularity of Lebesgue measure find UEK ⊆⊆ , K  compact, U  open, such that 
( ) δ<KUm \  for a given fixed 0>δ . By Urysohn’s Lemma there exists a continuous 

function φ  such that 1≡
K

φ , 0C ≡U
φ . 

 
If Kx∈  then ( ) ( ) 011 =−=− xxE φ1 ; if CUx∈  then ( ) ( ) 000 =−=− xxE φ1 . 
Therefore, 
 

[ ] [ ] ( ) δφεφ <≤≠≤>− KUmmm EE \11 . 
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Step 2 – Simple Functions. Let ∑ =
=

n

i Ei i
f

1
1α . Find using Step 1 continuous functions iφ  

such that iiiEi
m δεφ <>− ][1 , where 0, >ii δε  will be determined later. 

 

 U
n

i i
iE

n

i
ii

n

i
Ei nii

111 === 










>−⊆








>−∑∑ α

εφεφαα 11 ( )∗

 
since if LHS∈x  then ( ) ( ) niiEi xx

i

εφαα >−1  for at least one i , for otherwise we would 
have 
 

( ) ( ) ( ) ( ) εαφαφαα α
ε =<−≤− ∑∑∑∑

====

n

i
ni

n

i
iEi

n

i
ii

n

i
Ei iii

xxxx
1111

11 . 

 
By ( )∗ , 
 

∑∑∑
=== 











>−≤








>−

n

i i
iE

n

i
ii

n

i
Ei n

mm
ii

111 α
εφεφαα 11  

 
Therefore, if we choose 

ini α
εε = , ni

δδ = , then 

 

δεφαα <







>−∑∑

==

n

i
ii

n

i
Ei i

m
11

1 . 

 
Step 3 – Bounded Measurable Functions. Suppose f  is bounded measurable. By the 
Basic Approximation Theorem there is a simple function 1φ  such that ( ) ( ) 21 εφ <− xxf  

for all x . Using Step 2 find a continuous φ  such that [ ] δεφφ <>− 21m . Now note that 
 

[ ] [ ] [ ]22 11 εφφεφεφ >−∪>−⊆>− ff  
 
and so 
 

[ ] [ ] [ ]
44 344 2144 344 21

δ

εφφεφεφ
<=

>−+>−≤>− 22 1

0

1 mfmfm . 

 
Step 4 – General Case. Suppose [ ] [ ]∞∞−→ ,,: baf  is finite a.e. and measurable. Define 
 

( ) ( ) ( )


 ≤

=
otherwise0

Mxfxf
xfM  

 



MA359 MEASURE THEORY 

 - 35 - 

Note that [ ] [ ] [ ]∞=↓>=≠ fMfff M . Since [ ] [ ]baff ,1 ⊆≠  has finite measure, 

[ ] [ ] 0=∞=→≠
∞→

fmffm
MM . Now choose M  so large that [ ] 2δ<≠ Mffm  and use 

Step 3 to obtain a continuous φ  such that [ ] 2δεφ <>−Mfm . The inclusion 
 

[ ] [ ] [ ]MM ffff ≠∪>−⊆>− εφεφ  
 
implies that φ  provides a suitable approximation. 

 
 
Theorem. (Egoroff’s Theorem) Suppose R→Efn :  are Lebesgue measurable and that 

0B∈E  has finite measure. Assume that ff
nn ∞→
→  a.e. in E . Then 0>∀ε  EK ⊆∃  

compact such that ( ) ε<KEm \  and ff
nn ∞→
→  uniformly on K . 

 
Proof. Define ( ) ( ){ }nkkn xfxfExG 1

, >−∈= . Set 
 

( ) ( ) ( ){ }nkkn
n

Nk
n

N xfxfNkExGG 1
,1  s.t. >−>∃∈≡= +=U . 

 
Observe that ( ){ }∞=1N

n
NG  is a decreasing sequence of sets and that 

 
( ) [ ]ffG k
n

NN →/⊆∞
=1I . 

 
But ffk →  a.e. so ( )( ) ( )( ) 01 =→ ∞

=∞→

n
NNN

n
N GmGm I . Therefore, N∈∀n , N∈∃ nN  such that 

( )( ) 12 +< nn
Nn

Gm ε . Now consider ( )n
Nn n

GEE ∞
==′ 1\U . Then 

 
( ) ( )( ) 21 21 1\ εε =<≤′ ∑∞

=
∞
= +n

n
Nn nn

GmEEm U . 

 
If Ex ′∈  then ( )n

Nn
Gx∉  and so 

 
( ) ( ) nkn xfxfNk 1≤−⇒>  

 
and so ffn →  uniformly on E′ . Now apply the regularity of m  to obtain a compact 

EK ′⊆  with ( ) 2\ ε<′ KEm . Check that K  still satisfies the requirements. 
 

 
Theorem. (Lusin’s Theorem) If R→Ef :  is Lebesgue measurable and 0B∈E  has 
finite measure then 0>∀ε  there is a compact EK ⊆  such that R→Kf

K
:  is 

uniformly continuous and ( ) ε<KEm \ . 
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Proof. Exercise. 

 
 
Exercise. What happens when Q1== Df ? 
 

The Lebesgue Integral 
 

What is ( )∫
1

0
dttf ? 

 
The regulated integral: 
 
(1) step functions ∑ =

=
n

i Ii i1
1αφ , R∈iα , Int∈iI : 

 
( )∑∫ =

=
n

i ii I
1
lαφ . 

 
(2) regulated functions =f uniform limit of step functions nφ : 
 

∫∫ ∞→
= nn

f φlim . 

 
The Lebesgue integral: 
 
(1) simple functions ∑ =

=
n

i Ei i1
1αφ , R∈iα , 0B∈iE : 

 
( )∑∫ =

=
n

i ii Em
1
αφ . 

 
(2) bounded measurable functions =f uniform limit of simple functions nφ : 
 

∫∫ ∞→
= nn

f φlim . 

 
To make these ideas rigorous we start by integrating simple functions: 
 

∑ =
=

n

i Ei i
f

1
1α , 0B∈iE  

 
Natural definition: 
 

( )∑∫ =
∩=

n

i iiE
EEmf

1
α  
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Problem. There are many representations of f  of the form ∑ =

n

i Ei i1
1α , for instance 

 
[ ] [ ] [ ) [ ] ( ]3,22,11,03,12,0 .2 11111 ++=+  

 
Solution. Choose a canonical representation such as 
 

( ) [ ]( )( )∑ ∈ == Rfy yf xyxf 1  

 
Example. 
 

( )




=
≠

=
00
0

sgn
x
xxx

x  

( ) { }1,0,1sgn −=R  
[ ] ( )0,1sgn ∞−=−=  

[ ] { }00sgn ==  
[ ] ( )∞== ,01sgn  

 
Hence ( ) ( )( ) { }( ) ( )( )xxxx ∞∞− ++−= ,000, .1.0.1sgn 111 . 
 
Definition. If f  is a (Lebesgue measurable) simple function and 0B∈E  has finite 
measure the integral of f  over E  with respect to m  is 
 

[ ]( )( )∑∫ ∈
=∩= RfyE

yfEmydmf . . 

 
Remark. We require ( ) ∞<Em  to prevent the following problem: 
 

( ) ( ) ( )( ) { }( ) ( )( )

undefined

,0.10.00,.1sgn

=
∞−∞=

∞++∞−−=∫ mmmxdmx
R

 

 
Proposition. If gf ,  are simple functions, R∈βα , , 0B∈E , ( ) ∞<Em , then 

(1) linearity: ∫∫∫ +=+
EEE

gfgf βαβα ; 

(2) monotonicity: ∫∫ ≥⇒≥
EE

gfgf ; 

(3) absolute value property: ∫∫ ≤
EE

ff ; 

(4) gf =  a.e. ∫∫ =⇒
EE

gf ; 
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(5) 21 EEE C= , ∫∫∫ +=⇒∈
21

0 EEEi fffE B . 

 
Proof. (1) We start by showing ∫∫∫ +=+

EEE
gfgf . By definition 

 
[ ]( )

( )( )

[ ]( )
( ) ( )

[ ]( )
( ) ( )

[ ]( )
( ) ( )( ) ( )

[ ] [ ]
( ) ( )

( ) [ ] [ ]( )
( ) ( )

[ ] [ ]( )
( )( )

[ ] [ ]( )
( )( )

[ ]( )
( )

[ ]( )
( )

∫∫

∑∑

∑ ∑∑ ∑

∑

∑ ∑

∑

∑

∑∫

+=

=∩+=∩=

=∩=∩+=∩=∩=

=∩=∩+=
















====+
















==∩=

=+∩=

=+∩=

=+∩=+

∈∈

∈ ∈∈ ∈

∈∈

=+
∈∈

+∈
=+
∈∈

=+
∈∈

+∈

+∈

EE

gGfF

gG fFfF gG

gGfF

yGF
gGfF

gfy
yGF
gGfF

yGF
gGfF

gfy

gfy
E

gf

GgEmGFfEmF

GgFfEmGGgFfEmF

GgFfEmGF

GgFfygf

GgFfEmy

ygfEmy

ygfEmy

ygfEmygf

RR

R RR R

RR

RR

RR RR

RR

RR

R

..

,

,

.

.

.

 ,

 ,

 ,

 ,

CQ

 

 
Now show that ∫∫ =

EE
fccf . 

 
 ( )( ) ( ){ }RR fycycf ∈=  

⇒  [ ]( )
( )

∫∑∫ ==∩=
∈

E
fy

E
fcyfEmcycf

R
.

 
(2) If gf ≥ , 0≥− gf , so all values of gf −  are non-negative, so 0≥−∫E

gf . 

Together with (1), this implies that 0≥− ∫∫ EE
gf , so ∫∫ ≥

EE
gf . 

 

(3) fff ≤≤− , so ∫∫∫ ≤≤−
EEE

fff , so ∫∫ ≤
EE

ff . 

 
(4), (5). Exercises. 
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We now integrate bounded measurable functions. 
 
Proposition. Let R→Ef :  be bounded measurable, 0B∈E , ( ) ∞<Em . There exist 
simple functions R→En :φ  such that f

nn ∞→
→φ  uniformly on E  and 

(1) }{∫E nφ  always converges; 

(2) its limit is independent of the choice of { }nφ . 
 
Definition. The integral of f  over E  with respect to m  is ∫∫ ∞→

=
E nnE

dmdmf φlim . 

 
Proof. The existence of fn →φ  is the content of the Basic Approximation Theorem. 
 
(1) By assumption, f

nn ∞→
→φ  uniformly on E  so 0sup

∞→
→−=

nnEn fφε . We check that 

the sequence }{∫E nφ  is Cauchy: 

 

( ) nm
EE nmE nE m Em φφφφφφ −≤−≤− ∫∫∫ sup . 

 
But Ex∈∀ , 
 

( ) ( ) ( ) ( ) ( ) ( ) nmnmnm xxfxfxxx εεφφφφ +≤−+−≤− . 
 
So 
 

( )( ) 0
∞→

→+≤− ∫∫ nnmE nE m Em εεφφ . 

 
(2) Exercise. 

 
 
Proposition. (Properties of the integral.) If gf ,  are bounded measurable functions, 

R∈βα , , 0B∈E , ( ) ∞<Em , then 

(1) linearity: ∫∫∫ +=+
EEE

gfgf βαβα ; 

(2) monotonicity: ∫∫ ≥⇒≥
EE

gfgf ; 

(3) absolute value property: ∫∫ ≤
EE

ff ; 

(4) 0B∈∀G , ∫∫ ∩
=

GEE G ff 1. ; 
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(5) gf =  a.e. ∫∫ =⇒
EE

gf ; 

(6) 21 EEE C= , ∫∫∫ +=⇒∈
21

0 EEEi fffE B . 

 
Proof. Let { } { }nn ψφ ,  be sequences of simple functions tending to gf ,  uniformly on E  
as ∞→n . 
 
(1) Clearly gf

nnn βαβψαφ +→+
∞→

 uniformly on E  since 

 
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )xgxxfxxgxfxx nnnn −+−≤+−+ ψβφαβαβψαφ . 

 
Thus 
 

( )

∫∫
∫∫

∫
∫∫

+=

+=

+=

+=+

∞→∞→

∞→

∞→

EE

E nnE nn

E nnn

E nnnE

gf

gf

βα

ψβφα

βψαφ

βψαφβα

limlim

lim

lim

 

 
(2) Suppose gf ≥ . Fix 0>ε . By uniform convergence N∃  such that ⇒> Nn  

εψφ <−− nEnE gf sup,sup . In particular, for Nn > , 
 

εψεεφ 2−>−≥−> nn gf . 
 
By Monotonicity for simple functions, 
 
 ( ) ( )Em

E nE nE n εψεψφ 22 ==−> ∫∫∫  

⇒  ( ) ( )EmgEmf
EE nnE nnE

εεψφ 22limlim −=−≥= ∫∫∫∫ ∞→∞→
 

 
Pass to the limit as 0↓ε ; ∫∫ ≥

EE
gf . 

 
(3) Corollary of (2). 
 
(4) First observe that this property holds for simple functions, since 
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( )
( )

∫ ∑
∑
∫ ∑∫ ∑

∩ =

=

= ∩=

=

∩∩=

=

GE

n

i Ei

n

i ii

E

n

i GEiE G
n

i Ei

i

ii

GEEm

1

1

11

1

111

α

α

αα

 

 
Since fn →φ  uniformly on E , fn →φ  uniformly on GE ∩ . So 
 

∫
∫
∫∫

=

=

=

∞→

∩∞→∩

E G

E Gnn

GE nnGE

f

f

1

1

.

lim

lim

φ

φ

 

 
(5) Let gfM EE supsup ∨= .† By (1), 
 

[ ] [ ]∫∫∫ ≠= +=
E gfE gfE

fff 11 .. . 

 

But [ ] 0. =∫ ≠E gff 1  since [ ] [ ]( ) [ ] 0... =≠≤≠∩≤∫ ≠ gfmMgfEmMf
E gf1 . So 

 

[ ]

[ ]

[ ]

[ ] [ ]

[ ] [ ]( )

∫
∫

∫∫
∫
∫
∫∫

=

+=

+=

=

=

=

≠=

≠∩=∩

=∩

=∩

=

E

E gfgf

gfEgfE

gfE

gfE

E gfE

g

gg

gg

g

f

ff

11

1

..

.

 

 
(6) Follows from (1) and (4). 

 
 
Theorem. (Bounded Convergence Theorem) Suppose { }∞=1nnf  are uniformly bounded 

measurable functions on 0B∈E  of finite measure, i.e. 0>∃M  such that N∈∈∀ nEx , , 

( ) Mxfn ≤ . If Ex∈∀ , ( ) ( )xfxf
nn ∞→
→ , then ∫∫ ∞→

→
EnE n ff . 

 
                                                 
† Shorthand notation: ( )( ) ( ) ( ){ }xbxaxba ,max=∨ ; ( )( ) ( ) ( ){ }xbxaxba ,min=∧ . 
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Proof. First note that ∫E
f  is well-defined because 

(1) f  is measurable, since it is the limit of measurable functions; 
(2) f  is bounded (by M ). 
 
By Egoroff’s Theorem, 0>∀ε , 0B∈∃ εE , EE ⊆ε , such that ( ) εε <EEm \  and 

0sup
∞→

→−
nnE ff

ε
. It follows that 

 

( ) ( )

( ) εε

εε

ε

ε

εε

MEmff

EEmffEmff

ffff

ffff

n

n
E

n
EE

n
E

EE nE n

E nEE n

2.sup

\supsup.sup

 as 0

\

+−≤







 ++−≤

−+−=

−≤−

∞→→

∫∫
∫∫∫

44 344 21

 

 

So 02suplim
0↓∞→

→≤− ∫∫ ε
εMff

EE n
n

. Hence 0
∞→

→− ∫∫ nEE n ff . 

 
 
Exercise. Suppose f  is continuous on [ ]ba, . Show that the Lebesgue and regulated 
integrals of f  agree, i.e. 
 

[ ]
( )∫∫ =

b

aba
dxxfdmf

,
. 

 
We now proceed to integrate unbounded functions, and begin with the non-negative case 
to prevent ∞−∞  problems such as with ∫R dmsgn . 

 
Definition. Suppose [ ]∞→ ,0: Ef  is measurable and 0B∈E  (not necessarily of finite 
measure). Then the integral of f  over E  with respect to m  is 
 

[ ]
[ ]













≤≤∞<≠= ∫∫
≠

E
h

E
fhhmhdmhdmf 1.0 ,0 meas., bdd. sup

0

. 

 
Proposition. (Properties of the integral.) If [ ]∞→ ,0:, Egf , 0, >βα , 0B∈E ,  then 

(1) linearity: ∫∫∫ +=+
EEE

gfgf βαβα ; 

(2) monotonicity: ∫∫ ≥⇒≥
EE

gfgf ; 
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(3) 0B∈∀G , ∫∫ ∩
=

GEE G ff 1. ; 

(4) gf =  a.e. ∫∫ =⇒
EE

gf . 

 
Proof. All trivial apart from ∫∫∫ +=+

EEE
gfgf . 

 
(≥ ) Take EfF 1.0 ≤≤ , EgG 1.0 ≤≤  bounded measurable such that [ ]0≠Fm , 
[ ] ∞<≠ 0Gm  and 

 

[ ] 20
ε−≥ ∫∫ ≠ EF

fF , 

[ ] 20
ε−≥ ∫∫ ≠ EG

gG . 

 
The function GF +  is bounded measurable, satisfies ( ) EgfGF 1.0 +≤+≤  and 
[ ] [ ] [ ]( ) ∞<≠∪≠=≠+ 000 GFmGFm . Therefore, 

 

[ ]

[ ] [ ]

[ ] [ ]

ε−+≥

+=

+=

+≥+

∫∫
∫∫
∫∫

∫∫

≠≠

≠+≠+

≠+

EE

GF

GFGF

GFE

gf

GF

GF

GFgf

00

00

0

 

 
Since 0>ε  was arbitrary, ∫∫∫ +≥+

EEE
gfgf . 

 
(≤ ) We show that for every bounded measurable function ( ) Egfh 1.0 +≤≤  such that 
[ ] ∞<≠ 0hm , 

[ ] ∫∫∫ +≤
≠ EEh

gfh
0

. We then pass to the supremum over all such h  to 

deduce (≤ ). 
 
The idea is to “split” h  into two lower bounds, one for f  and one for g . Define 

fhF ∧= , FhG −= . Note that 
 

0,00 ==⇒= GFh ; 
0,0 =≤=⇒≤< GfhFfh ; 

gfhGfFgfhf ≤−==⇒+≤< , . 
 
Therefore, fF ≤≤0  and gG ≤≤0 , and since EfhGF 1., ≤≤  we also have 

EfF 1.0 ≤≤ , EgG 1.0 ≤≤ . It is clear that GF ,  are bounded measurable, that [ ]0≠F , 
[ ] [ ]00 ≠⊆≠ hG  and that hGF =+ . So 
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[ ] [ ]

[ ] [ ]

∫∫
∫∫

∫∫

+≤

+=

+=

≠≠

≠≠

EE

hh

hh

gf

GF

GFh

00

00

 

 
So ∫∫∫ +≤+

EEE
gfgf . 

 
 
Theorem. (Fatou’s Lemma) Suppose { }∞=1nnf  are non-negative measurable functions on 

0B∈E . Then 
 

∫∫ ∞→∞→
≤

E nnE nn
ff infliminflim . 

 
Proof. It is enough to show that for every bounded measurable Enn

fh 1.inflim0
∞→

≤≤  such 

that [ ] ∞<≠ 0hm , ∫∫ ∞→
≤

E nnE
fh inflim  because we can take the supremum over all such h . 

 
Define nn fhh ∧= . For every 0>ε  ( )xNN =∃  such that ( ) ( ) ( ) ε−>⇒> xhxfxNn n  
because ( ) ( )xfxh nn ∞→

≤ inflim  ( )∗ . Therefore, ( ) ( )xfxh nnn ∞→
≤ inflim . But the nh  are bounded 

measurable and [ ] ∞<≠ 0hm  so ∫∫ ∞→
≤

E nnE n fh inflim . 

 
Note that hfhh

nnn ∞→
→∧=  by ( )∗ . Since hhn supsup ≤  the Bounded Convergence 

Theorem tells us ∫∫ ∞→
→

EnE n hh . But nn fh ≤  by construction. So 

 

∫∫∫ ∞→∞→
≤=

E nnE nnE
fhh inflimlim . 

 
 
Lemma. If [ ]∞→ ,0:Rf  is measurable and ∞<∫E

f  then f  is a.e. finite in E . 

 
Proof. Obviously, N∈∀n , [ ] fn f ≤∞=1. . By monotonicity, [ ]( ) ∫≤∞=∩

E
ffEmn.  and 

so [ ]( ) 01
∞→

→≤∞=∩ ∫ nEn ffEm . So [ ] 0=∞=fm . 
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Corollary. Suppose [ ]∞→ ,0: Efn  are measurable. If ∞<∫∞→ E nn
finflim  then 

( ) ∞<
∞→

xfnn
inflim  a.e. in E . 

 
Remark. The following example may aid in remembering Fatou’s Lemma: consider 

[ )1, += nnnf 1 . 0inflim ≡
∞→ nn

f , so 0inflim =∫ ∞→R nn
f ; 1≡∫R nf , so 1inflim =∫∞→ R nn

f . 

 
Theorem. (Monotone Convergence Theorem) (1) If 0≥nf  are measurable and 
( ) ( )xfxf nn 1+≤  for all N∈n  and all 0B∈∈Ex  then 

 
( ) ( ) ( ) ( )∫∫ ∞→∞→

=
E nnE nn

xdmxfxdmxf limlim . 

 
(2) If 0≥nu  are measurable then 
 

( ) ( ) ( ) ( )∑ ∫∫ ∑
∞

=

∞

=
=

11 n E nE n n xdmxuxdmxu . 

 
(3) If nn EE ∞

== 1C , 0B∈nE , then for all 0≥f  measurable, 
 

∑ ∫∫
∞

=
=

1n EE n

ff . 

 
Proof. (1) Define ( ) ( ) [ ]∞∈=

∞→
,0lim xfxf nn

. This is well-defined because ( ){ }∞=1nn xf  is 

monotone. This f  is a non-negative measurable function and so ∫E
f  is well-defined. 

Since 1+≤ nn ff , ∫∫ +≤
E nE n ff 1  and so ∞

=∫ 1}{ nE nf  is monotone. It follows that ∫∞→ E nn
flim  

exists. 
 
(≤ ) Since ffn ≤ , ∫∫ ≤

EE n ff  and so ∫∫ ≤
∞→ EE nn

fflim . 

 
(≥ ) By Fatou’s Lemma, ∫∫∫ ∞→∞→

≤=
E nnE nnE

fff infliminflim  and so ∫∫ ≥
∞→ EE nn

fflim . 

 
(2) Follows from (1) with nn uuf ++= K1 . 
 
(3) Follows from (2) with 

nEn fu 1.= . 
 

 
We now proceed to the general case of integrating multi-signed unbounded functions. 
Recall that the problem here is one of avoiding ∞−∞ . For example, 
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( ) ∞−∞=−+= ∫∫∫
∞

∞−

∞

∞−

∞

∞−
11sgn . 

 
Note that we cannot solve this by simply taking limits of domains of integration because 
 

∫∫∫
+

−∞→−∞→

∞

∞−
=≠==

1
sgnlim10sgnlimsgn

n

nn

n

nn
. 

 
Definition. Let f  be a real-valued function. The positive part of f  is 0∨=+ ff  

[ ]0. ≥= ff 1 . The negative part of f  is [ ]0.0 <
− −=∧−= ffff 1 . (Note that both +f  and 

−f  are positive.) 
 
Exercise. Verify that −+ −= fff , −+ += fff . 
 
Definition. Let [ ]∞∞−→ ,: Ef  be some function, 0B∈E . f  is called absolutely 

integrable on E  if it is measurable and ∞<∫∫ −+

EE
ff , . f  is called one-sided 

integrable on E  if at least one of ∫∫ −+

EE
ff ,  is finite. In each of these cases define the 

integral of f  over E  to be 
 

∫∫∫ −+ −=
EEE

fff . 

 
Exercise. Prove that a measurable function f  is absolutely integrable on E  if and only if 

∞<∫E
f . 

 
Proposition. (Properties of the integral.) If gf ,  are absolutely integrable on 0B∈E , 

R∈βα , , then 
(1) linearity: gf βα +  is absolutely integrable on E  and ∫∫∫ +=+

EEE
gfgf βαβα ; 

(2) monotonicity: ∫∫ ≥⇒≥
EE

gfgf ; 

(3) 0B∈∀G , ∫∫ ∩
=

GEE G ff 1. ; 

(4) gf =  a.e. ∫∫ =⇒
EE

gf ; 

(5) 21 EEE C= , ∫∫∫ +=⇒∈
21

0 EEEi fffE B . 

 
Proof. As usual, everything is trivial except for ( ) ∫∫∫ +=+

EEE
gfgf . First note that 

gf +  is absolutely integrable since ∞<+=+≤+ ∫∫∫∫ EEEE
gfgfgf . By 

definition, 
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( ) ( ) ( )∫∫∫ −+ +−+=+

EEE
gfgfgf  

 
( ) ( ) ( ) ( )[ ]

( )[ ]
( ) ( )( )[ ]∫

∫
∫∫

−−++

−−++

−+−+

+>+∩

−−++

+>+∩

−−++

>−+−

+

+−+=

−−+=

+=+

gfgfE

gfgfE

E ggffE

gfgf

gfgf

gfgf 0.1

 

 
Note that if 0,, >−GFGF  then ( ) ( ) ∫∫∫∫ =+−=+− FGGFGGF . Therefore, 
 

( ) ( )[ ] ( )[ ]∫∫∫ −−++−−++ +>+∩

−−

+>+∩

+++ +−+=+
gfgfEgfgfEE

gfgfgf . 

 
In the same way we obtain 
 

( ) ( )[ ] ( )[ ]∫∫∫ −−++−−++ +<+∩

++

+<+∩

−−− +−+=+
gfgfEgfgfEE

gfgfgf . 

 
Thus 
 

( ) ( ) ( )

( ) ( )

∫∫
∫∫∫∫

∫∫
∫∫∫

+=

−+−=

+−+=

+−+=+

−+−+

−−++

−+

EE

EEEE

EE

EEE

gf

ggff

gfgf

gfgfgf

 

 
 
Theorem. (Lebesgue’s Dominated Convergence Theorem) Let { }∞=1nnf  be a sequence of 

measurable functions such that ( ) ( )xfxf
nn ∞→
→  for all 0B∈∈Ex . If ( ) ( )xgxfn ≤ , where 

g  is absolutely integrable on E , then ∫∫ ∞→∞→
=

E nnE nn
ff limlim . 

 
Proof. First note that ( ) ( )xfxf nn ∞→

= lim  is absolutely integrable since 

(1) it is a limit of measurable functions, and so is measurable; 
(2) ∞<≤ ∫∫ EE

gf  since gff nn
≤=

∞→
lim . 

 
We show that ∫∫ ∞→

→
EnE n ff  by proving 
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∫∫∫∫ ≤≤≤
∞→∞→ E nE n

nE nnE
ffff supliminflim . 

 
Since gfn ≤  we have gfg n ≤≤− . Therefore, 0≥+ nfg  and by Fatou’s Lemma, 
 

( )

( )

( )

∫∫
∫

∫
∫∫∫

∞→

∞→

∞→

+≤

+≤

+=

+=+

E nnE

E nn

E nn

EEE

fg

fg

fg

fgfg

inflim

inflim

inflim
 

 
Since ∞<∫E

g , ∫∫ ∞→
≤

E nnE
ff inflim . The functions nfg −  are also non-negative. 

 
( )

( )

∫∫
∫∫

∫
∫∫∫

∞→

∞→

∞→

−=






 −≤

−=

−=−

E n
nE

E nEn

E nn

EEE

fg

fg

fg

fgfg

suplim

inflim

inflim
 

 
So ∫∫

∞→
≥

E n
nE

ff suplim . Hence, ∫∫ ∞→
=

E nnE
ff lim . 

 
 
Exercise. Show that the Dominated Convergence Theorem implies both the Monotone 
Convergence Theorem and the Bounded Convergence Theorem. 
 
Summary. (1) If f  is absolutely integrable then ∫∫∫ −+ −=

EEE
fff , so calculating 

∫E
f  can be done by considering non-negative functions. 

(2) Given a non-negative f  we can find simple functions fhn ≤≤0  such that 
( ) ( )xfxhn ↑ . Simply take 

 
( ) [ ]( )∑ = <≤ +=

2

10

n

k fn
k

n xxh
n

k
n
k1 . 

 
By the Dominated Convergence Theorem, ∫∫ ∞→

=
E nnE

hf lim . 
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Remark. Although we worked in ( )m,, 0BR  everything we did works almost verbatim 
for a general σ -finite measure space ( )µ,,FX . 
 
 



MA359 MEASURE THEORY 

 - 50 - 

3. PRODUCT MEASURES 
 
Question. How can we measure the size of subsets of nR ? More generally, given two 
σ -finite measure spaces ( )µ,,CX  and ( )ν,,DY  we seek a construction of a measure 
space on YX × . 
 
Approach. (1) Define the measure of “basic sets” of the form DC × , C∈C , D∈D  as 
( ) ( ) ( )DCDC νµλ =× . 

(2) Use the Carathéodory Extension Theorem to obtain a full measure out of this. (See 
Assignment 2.) 
 
Definition. A measurable rectangle is a set of the form DC ×  where C∈C , D∈D . 
Denote by R  the collection of all measurable rectangles. 
 
Proposition. R  is a semi-algebra. 
 
Proof. (1) R∈×∅ YX,  obvious. 
(2) Intersections: ( ) ( ) ( ) ( )DDCCDCDC ′∩×′∩=′×′∩× . 
(3) Complements: ( ) ( ) ( )( ) ( )( )DYCDCXDCYX \\\ ××=×× C . 

 
 
Proposition. The algebra generated by R  is 
 

( )








∈∈∈×=
=

NnDCDC ii

n

i
ii ,,

1

DCRA C . 

 
Proof. See Assignment 2. 

 
 
Definition. ( ) [ ]∞+→ ,0: RAλ  is defined as 
 

( ) ( ) ( )∑
=

= =×
n

i
iiii

n
i DCDC

1
1 νµλ C  

 
with the convention that 000 =∞=∞ . 
 
Proposition. This λ  is 
(1) properly defined, i.e. 
 

( ) ( ) ( ) ( )∑∑ ′

==

′
== ′′=⇒′×′=×

n

i ii
n

i iiii
n
iii

n
i DCDCDCDC

1111 νµνµCC  

 
(2) σ -additive on ( )RA  
(3) σ -finite if νµ ,  are σ -finite. 
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Proof. (1) Suppose DCDC i

n
iii

n
i ′×′=× ′

== 11 CC . Then 
 

( ) ( ) ( ) ( ) ( )yxyxyx
ii

n
iiiii DC

n

i
DC

n

i
DC ,

1
11

×

′

=
′′

=
=

≡≡∑∑ C
11111  

 
Fix y  and integrate over all x  w.r.t. µ . By linearity, 
 

( ) ( ) ( ) ( )∑∑
′

=
′

=

′=
n

i
Di

n

i
Di yCyC

ii
11

11 µµ . 

 
Integrate over y  w.r.t. ν : 
 

( ) ( ) ( ) ( )∑∑
′

==

′′=
n

i
ii

n

i
ii DCDC

11
νµνµ  

 
(2) Suppose ( ) ( )k

j
k

jjkii
n
i DCDC ×=× ∞

=
∞
== 111 CCC . Again 

 

( ) ( ) ( ) ( ) ( ) ( )∑∑∑
∞

=

∞

==

≡
1 11 k j

DC

n

i
DC yxyx k

j
k

jii
1111 . 

 
Integrating over x  w.r.t. µ  we have 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )∑∑

∑∫∑

∫∑∑∑

∞

=

∞

=

∞

=

∞

=

∞

=

∞

==

=

=

=

1 1

1 1

1 11

k j
D

k
j

k X j
DC

X k j
DC

n

i
Di

yC

xdyx

xdyxyC

k
j

k
j

k
j

k
j

k
ji

1

11

111

µ

µ

µµ

 

 
Now integrate over y  w.r.t ν . By the Monotone Convergence Theorem: 
 

( ) ( ) ( )( ) ( )( )∑∑∑
∞

= ==

=
1 11 k

n

j

k
j

k
j

n

i
ii

k

DCDC νµνµ  

ii
n
i DC ×= =1LHS Cλ  

( ) ( )∑
∞

=
= ×=

1
1RHS

k

k
j

k
j

n
j DCkCλ  

 
⇒  σ -additivity on ( )RA . 
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(3) ( )µ,,CX  σ -finite ⇒  C∈∃ iX  s.t. ii XX ∞

== 1C  and ( ) ∞<iXµ . ( )ν,,DY  σ -finite 

⇒  D∈∃ jY  s.t. jj YY ∞
== 1C  and ( ) ∞<jYµ . Then jiji YXYX ×=× ∞

=1,C  where 
R∈× ji YX  and ( ) ( ) ( ) ∞<=× jiji YXYX νµλ . 

 
 
Definition. The product σ -algebra DC ⊗  is the minimal σ -algebra containing the 
collection { }DC ∈∈× DCDC , . 
 
Theorem. Let ( )µ,,CX , ( )ν,,DY  be two σ -finite measure spaces. There exists a unique 
measure, called the product measure, νµ ×  on ( )DC ⊗× ,YX  such that 
 

( )( ) ( ) ( )DCDC νµνµ =××  
 
for all C∈C  and D∈D , and this measure is σ -finite. 
 
Proof. Apply the Carathéodory Extension Theorem to ( ) [ ]∞+→ ,0: RAλ . 

 
 
We would like to define the Lebesgue measure on 2R  as mm×  on 00 BB ⊗  but we have 
a technical problem: 
 
The Completion Problem. Recall that a measure space ( )µ,,FX  is complete if every 
null set is measurable, a null set being an XA⊂  such that F∈∃E  such that EA⊂  and 
( ) 0=Eµ . 

 
The Lebesgue measure on R  is complete, but mm×  on 00 BB ⊗  is not complete: take 

[ ]1,0⊂A  not Lebesgue-measurable and consider { }10 ×= AA . This is a null set because 
[ ] { }11,00 ×⊂A , which has measure zero, yet 00 BB ⊗∉A . 

 
Solution. The completion procedure: 
 
Let ( )µ,,FΩ  be a measure space. Define [ ]∞+→Ω ,02:*µ  by 
 

( ) ( ){ }F∈⊆= EAEA µµ inf* . 
 
Definition. The completion of ( )µ,,FΩ  is ( )00 ,, µFΩ , where 
(1) ( ){ }0 s.t. 0

*
00 =∆∈∃Ω⊆= EEEE µFF , 

(2) 
0

*
0 F

µµ = . 
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Exercise. Prove that ( )00 ,, µFΩ  is a complete measure space. 
 
Exercise. Show that ( )m,, 0BR  is the completion of ( )( )m,, RR B . (Hint: Show that 

00 B∈∀E  nn UG ∞
==∃ 1I  such that nU  open, GE ⊆0 , ( ) 0\ 0 =EGm .) 

 
Definition. (Lebesgue’s Measure on nR ). This is the measure space 
 

))(,)(( 0000 43421 K
4434421

K
nn

n mm, ××⊗⊗ BBR  

 
i.e. the completion of the product space ( )mn

i ,, 01 BR=∏ . 
 
Definition. Given a product space ( )νµ ×⊗× ,, DCYX , YXE ×⊆ , Xx∈ , Yy∈ , 
(1) the x -section of E  is ( ){ }EyxYyEx ∈∈= , ; 
(2) the y -section of E  is ( ){ }EyxXxE y ∈∈= , . 
 
Exercise. Verify 
(1) ( ) xxx BABA ∪=∪ ; 
(2) ( ) xxx BABA ∩=∩ ; 

(3) ( ) ( )CC
xx AA = ; 

(4) ( ) xxx BABA \\ = ; 
(5) ( ) ( )xx AA λλλλ Λ∈Λ∈ = UU  
etc. and similarly for y -sections. 
 
Our aim is to prove that 
 

( ) ( ) ( ) ( )∫∫ =⇒⊗∈
Y

y

X
x ydExdEE νµµνDC  

 
Two problems: 
(1) Is D∈xE ? Is C∈yE ? 
(2) Is ( )xEx νa  C -measurable? Is ( )yEy µa  D -measurable? 
 
Proposition. If DC ⊗∈E  then for all Xx∈  and Yy∈ , D∈xE  and C∈yE . 
 
Proof. We only prove the result for x -sections: the proof for y -sections is analogous. 
 
Recall that DC ⊗  is the minimal σ -algebra containing the collection 

{ }DCR ∈∈×= DCDC , . It is, therefore, enough to show that 
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{ }DDCF ∈∈∀⊗∈= xEXxE  ,  
 
is a σ -algebra containing R . 
 
Step 1: RF ⊇ . 
 
Fix R∈×DC . Then 
 

( )




∉∅
∈

=×
Cx
CxD

DC x  

 
and D∈∅ D, . 
 
Step 2: F  is a σ -algebra. 
 
(a) F∈∅  is trivial. 
(b) FF ∈⇒∈ CEE  since ( ) ( ) D∈== xxx EYEE \CC . 

(c) { } FF ∈⇒⊆ ∞
=

∞
= iiii EE 11 U  since ( ) ( ) D∈= ∞

=
∞
= xiixii EE 11 UU . 

 
 
Remark. It is not true that ( ) DDC ∈∈∀⇒⊗∈ xEXxE  ,0 . 
 
Example. Take ( )1,0⊂A  non-measurable. Then { } ( )0001 BB ⊗∈×A  since 

( ) { }( ) 01 =×× Amm , but { }( ) 0
11 B∉=× AA . 

 
Proposition. Let ( )µ,,CX , ( )ν,,DY  be two σ -finite measure spaces. If DC ⊗∈E  then 
(1) ( )xEx νa  is C -measurable and ( ) ( ) ( )( )ExdE

X x νµµν ×=∫ ; 

(2) ( )yEy µa  is D -measurable and ( ) ( ) ( )( )EydE
Y

y νµνµ ×=∫ . 

 
Proof. Again, we prove (1) only. 
 
Assume first that ( ) ( ) ∞<YX νµ , . Define { }holds (1)DCF ⊗∈= E . We prove 

RF ⊇  and F  is a σ -algebra. 
 
Step 1: RF ⊇ . 
 
Fix R∈×DC . Then 
 

( )




∉∅
∈

=×
Cx
CxD

DC x  
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Hence ( )( ) ( ) ( )xDDC Cx 1νν =× . Obviously ( )( )xDCx ×νa  is measurable and 
 

( )( ) ( ) ( ) ( ) ( )

( ) ( )
( )( )DC

DC

xdxDxdDC
X

C
X

x

××=
=

=× ∫∫

νµ
νµ

µνµν 1

 

 
So (1) holds for DC × . 
 
Step 2: F  is a σ -algebra. 
 
Suppose { } F⊆∞

=1iiE . We show that ))(())(( xiixii EE UU νν =  is measurable in x . If the 
union were disjoint we could use σ -additivity. 
 
First attempt: Write ( )j

i
jiiii EEE 1

111 \ −
=

∞
=

∞
= = UCU  – but we can’t be sure that 

F∈−
= j

i
ji EE 1

1\U  because we still don’t know that F  is an algebra! 
 
Second attempt: We show that F  is a monotone class. 
 
(a) F∈∅ : trivial. 
 
(b) FF ∈⇒↑∈ EEEE nn , : if F∈nE  and EEn ↑  then xxn EE ↑)( . By the continuity 
of measures, ( ) ( )xxn EE νν ↑)( . It follows that ( )xEx νa  is measurable because it is the 
limit of measurable functions. 
 
By the Monotone Convergence Theorem, 
 

( ) ( )

( )
( )( )

( )( )E

E

E

EE

nn

xnn

xnnx

νµ

νµ

ν

νν

×=

×=

=

=

∞→

∞→

∞→

∫
∫∫

lim

)(lim

)(lim

 

 
Thus F∈E . 
 
(c) FF ∈⇒↓∈ EEEE nn , : Again xxn EE ↓)( , so by the continuity of measures and 
since ( ) ( ) ∞<≤ YE xn νν )( , ( ) ( )xnxn EE νν

∞→
→)( . It follows that ( )xEx νa  is measurable. 

 
Note ( ) ( )xxn EE νν ≤)(  and ( ) ∞<∫X

Yν . By the Dominated Convergence Theorem, 
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( ) ( ) ( ) ( )

( ) ( )
( )( )

( )( )E

E

xdE

xdExdE

nn

X xnn

X xnnX x

νµ

νµ

µν

µνµν

×=

×=

=

=

∞→

∞→

∞→

∫
∫∫

lim

)(lim

)(lim

 

 
by the continuity of νµ ×  and ( )( ) ( )( ) ( ) ( ) ∞<=××≤× YXYXE νµνµνµ 1 . 
 
This shows that F  is a monotone class. By the Monotone Class Theorem F  contains a 
σ -algebra containing R , so DCF ⊗⊇ . 
 
We now treat the σ -finite case: assume ( )µ,,CX , ( )ν,,DY  σ -finite. C∈∃ iX  s.t. 

ii XX ∞
== 1C  and ( ) ∞<iXµ ; D∈∃ jY  s.t. jj YY ∞

== 1C  and ( ) ∞<jYµ . Define 
 

{ }CC ∈∩= EXE ii  

i
i C

µµ =  

{ }DD ∈∩= EYE jj  

j
j D

νν =  

 
Exercise. Prove 
(1) ( )iiiX µ,,C , ( )jjjY ν,,D  are finite measure spaces; 
(2) ( ){ }DCDC ⊗∈×∩=⊗ EYXE jiji ; 

(3) DC ⊗∈∀E , ( )( ) ( ) ( )( )∑ ×∩×=×
ji jiji YXEE

,
νµνµ . 

 
Now consider some set DC ⊗∈E . 
 

( ) ( )

( ) ( )( )

( ) ( )( )∑∑

∑∑

∑

∞

=

∞

=

∞

=

∞

=

∞

=

×∩=

×∩=

∩=

1 1
case finite-by  measurable-

1 1

1

j i
xjixiX

j i
xjixX

j
jxx

i

i

i

YXEx

YXEx

YEE

444 3444 21
σ

ν

ν

νν

C

1

1  

 
Since CC ⊆i  every iC -measurable function is C -measurable. Therefore, since 
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 ( ) ( ) ( )( )( )∑∑
∞

=

∞

=

×∩=
1 1j i

xjiiXx YXExE
i

νν 1 , ( )∗

 
( )xEx νa  is C -measurable. Now integrate ( )∗  over Xx∈ . By the Monotone 

Convergence Theorem, 
 

( ) ( ) ( )( )( ) ( )

( ) ( )( )
( )( )E

YXE

xdYXExdE

j i
ji

j i
X xjiiX x

i

νµ

νµ

µνµν

×=

×∩×=

×∩=

∑∑

∑∑∫∫
∞

=

∞

=

∞

=

∞

=

1 1

1 1

 

 
The proof for y -sections is analogous. 

 
 
Fubini’s Theorem: We want to show that 
 

( ) ( )( ) ( ) ( ) ( )∫ ∫∫ =×
× X YYX

xdydyxfyxdyxf µννµ ,,, . 

 
Problems: 
(1) Is ( )⋅,xf  ν -integrable for all x ? 
(2) Is ( ) ( )∫Y ydyxfx ν,a  µ -integrable? 

 
Theorem. (Fubini’s Theorem) Suppose ( )µ,,CX , ( )ν,,DY  are σ -finite measure spaces 
and that [ ]∞+∞−→× ,: YXf  is DC ⊗ -measurable with ( ) ∞<×∫ ×YX

df νµ . Then 

(1) Xx∈∀ , ( )yxfy ,a  is D -measurable; Yy∈∀ , ( )yxfx ,a  is C -measurable; 
(2) for µ -a.e. Xx∈ , ( )yxfy ,a  is ν -absolutely integrable; for ν -a.e. Yy∈ , 

( )yxfx ,a  is µ -absolutely integrable; 
(3) ( ) ( )∫Y ydyxfx ν,a  is C -measurable and µ -absolutely integrable; 

( ) ( )∫X
xdyxfy µ,a  is D -measurable and ν -absolutely integrable; 

(4)  
 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫∫∫ ∫ =×=
× X YYXY X

xdydyxfyxdyxfydxdyxf µννµνµ ,,,, . 

 
Proof. We prove this first for indicator functions, then simple functions, then non-
negative functions, then absolutely integrable functions. 
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Indicators: Suppose ( ) ( )yxyxf E ,, 1= , DC ⊗∈E . ( ) ( )⋅=⋅
xExf 1, . So, by the previous 

proposition, ( )⋅,xf  is D -measurable since D∈xE . [(1) done.] The same proposition 
says that 
 

( ) ( ) ( )xY
Edxf νν =⋅⋅∫ ,  

 
is C -measurable. [(2) done.] Again, the previous proposition gives 
 

( ) ( ) ( ) ( ) ( )
( )( )

( )
∞<

×=

×=

=⋅⋅

∫

∫∫ ∫

×YX

X xX Y

df

E

xdExddxf

νµ

νµ

µνµν,

 

 
[(3), (4) done.] The proof is the same for y -sections. 
 
Simple Functions: Follows from the previous case (indicators) by linearity. 
 
Non-negative Measurable Functions: Suppose ( ) 0, ≥yxf  is DC ⊗ -measurable. There 
exist simple functions ( ) ( )yxhyxh nn ,,0 1+≤≤  such that ( ) ( )yxfyxhn ,, ↑ . For instance, 
take 
 

( ) [ ]( )∑
=

<≤ +=
2

1

1
,,

n

k
fn

k
n yxyxh

n
k

n
k1 . 

 
( ) ( )⋅=⋅

∞→
,lim, xhxf nn

 so ( )⋅,xf  is D -measurable since the nh  are D -measurable. [(1) 

done.] Since fhn ↑ , by the Monotone Convergence Theorem, 
 

( ) ( ) ( ) ( )

( ) ( )∫
∫∫

⋅⋅=

⋅⋅=⋅⋅

∞→

∞→

Y nn

Y nnY

dxh

dxhdxf

ν

νν

,lim

,lim,
 

 
Since ( )yxhn ,  simple, previous case shows ( ) ( )∫ ⋅⋅

Y n dxhx ν,a  is C -measurable, so 

( ) ( )∫ ⋅⋅
Y

dxfx ν,a  is C -measurable. [(2) done.] By the Monotone Convergence 

Theorem, ( ) ( ) ( ) ( )∫∫ ⋅⋅↑⋅⋅
YY n dxfdxh νν ,, . Again by the Monotone Convergence Theorem, 
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( )

( )

( )∫
∫
∫
∫ ∫

∫ ∫∫ ∫

×

× ∞→

×∞→

∞→

∞→

×=

×=

×=

=

=

YX

YX nn

YX nn

X Y nn

X Y nnX Y

df

dh

dh

ddh

ddhddf

νµ

νµ

νµ

µν

µνµν

lim

lim

lim

lim

 

 
[(3), (4) done.] Similarly for the other order of integration. 
 
General Case: Suppose f  is ( )νµ × -absolutely integrable. Decompose −+ −= fff  and 
apply the previous case to −+ ff , . 

 
 
Remark. Remember this trick of approximating a non-negative function by a monotone 
sequence of simple functions. 
 
Theorem. (Tonelli’s Theorem) Suppose ( )µ,,CX , ( )ν,,DY  are σ -finite measure spaces 
and that [ ]∞+∞−→× ,: YXf  is DC ⊗ -measurable. If  ∞<∫ ∫X Y

ddf µν  then 

( ) ∞<×∫ ×YX
df νµ . 

 
Proof. Since ( )µ,,CX , ( )ν,,DY  are σ -finite so is ( )νµ ×⊗× ,, DCYX . So 

DC ⊗∈∃ nF  with finite measure such that YXFn ×↑ . Now define ( )nf
nFn ∧⋅= 1φ . 

Check that ( ) ∞<×∫ ×YX n d νµφ  and that ( ) ( )yxfyxn ,, ↑φ . By the Monotone 

Convergence Theorem, 
 

( ) ( )

( )

∞<

≤

=

×=

×=×

∫ ∫
∫ ∫
∫

∫∫

∞→

×∞→

× ∞→×

X Y

X Y nn

YX nn

YX nnYX

ddf

dd

d

ddf

µν

µνφ

νµφ

νµφνµ

lim

lim

lim

 

 
So f  is ( )νµ × -absolutely integrable. 
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Corollary. (The Fubini-Tonelli Theorem) If one of the following integrals exists then all 
three exist and are equal: 
 

∫ ∫Y X
ddf νµ , ( )∫ ×

×
YX

df νµ , ∫ ∫X Y
ddf µν . 
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4. pL  SPACES 
 

Convexity Inequalities 
 
Definition. A function [ ] R→ba,:φ  is called convex if [ ]bayx ,, ∈∀ , [ ]1,0∈∀t , 
 

( )( ) ( ) ( ) ( )ytxtyttx φφφ −+≤−+ 11 . 
 

x y

φ

 
 
Proposition. φ  is convex in [ ]ba,  iff for all bwzyxa ≤<≤<≤ , 
 

( ) ( ) ( ) ( )
wz

wz
yx

yx
−
−

−
− ≤ φφφφ . 

 
Proof. Enough to prove inequalities in the case zy = . Assume bwzxa <<<< . Solve 
for t  in 
 

( )wttxz −+= 1  
( ) wwxtz +−=  

wx
wzt −

−=  

wx
zx

wx
wzwxt −

−
−

+−− ==−1  
 
Observe, 
 
 ( )( ) ( ) ( ) ( )wtxtwttx φφφ −+≤−+ 11  
⇔  ( ) ( ) ( ) ( )wtxtz φφφ −+≤ 1  
⇔  ( ) ( )( ) ( ) ( ) ( )( )zwtzxt φφφφ −−+−≤ 10  
⇔  ( ) ( )( ) ( ) ( )( )zwzx wx

zx
wx
wz φφφφ −+−≤ −

−
−
−0  

⇔  ( ) ( ) ( )( ) ( ) ( ) ( )( )zwzxzxwz φφφφ −−+−−≥0
⇔  ( ) ( ) ( ) ( )

wz
zw

zx
zx

−
−

−
− +≥ φφφφ0  

Q 
( )wttxz −+= 1 , 

( )( ) ( ) ( ) ( )wtxtwttx φφφ −+≤−+ 11  
⇔  ( ) ( ) ( ) ( )

zw
zw

zx
zx

−
−

−
− ≤ φφφφ  
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Corollary. If [ ] R→ba,:φ  is 2C  then φ  is convex on [ ]ba,  iff ( ) 0≥′′ xφ . 
 
Examples. (1) tet a  is convex on R . 
(2) αtt a  is convex [ )∞,0  if 1≥α , but not convex if 1<α . 
 
Proposition. (Supporting lines.) If [ ] R→ba,:φ  is convex then [ ]bax ,0 ∈∀  R∈∃m  such 
that [ ]bax ,∈∀  
 

( ) ( ) ( )00 xxmxx −+≥ φφ . 
 

φ

 
 
Proof. Fix [ ]bax ,0 ∈ . Define ( ) ( ) ( )

0

0ˆ xx
xxxm −

−= φφ  for 0xx ≠ . This is increasing in x  by the 
previous proposition. So the following numbers exist and are finite: 
 

( )xmm
xx

ˆinf
0>

+ =  

( )xmm
xx

ˆsup
0<

− =  

 
Also, +− ≤ mm . Now choose +− ≤≤ mmm  and note that 
 

( ) ( ) ( ) ( ) ( )000 0

0 xxmxxmmxx xx
xx −+≥⇒≥≥⇒> +

−
− φφφφ  

( ) ( ) ( ) ( ) ( )000 0

0 xxmxxmmxx xx
xx −+≥⇒≤≤⇒< −

−
− φφφφ  

 
 
Theorem. (Jensen’s Inequality) If ( )µ,,FX  is a measure space, F∈E  has finite 
measure and R→Ef :  is absolutely integrable, then for any convex function φ , 
 

( ) ( ) ∫∫ ≤






EEEE dfdf µφµφ µµ o11 . 

 
Proof. If ( ) ∫=

EE dfx µφµ o1
0  and ( ) ( )000

xxxmx φ+−  is a supporting line for φ  then for 

all ξ , 
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( )( ) ( ) ( ) ( ) 




 ++≥ ∫EEx dffmxf µξφξφ µ

1
0 0

. 

 
So, 
 

( ) ( )

( ) ( ) ( )

( ) 




=






 −+





=

≥

∫

∫∫∫

∫

EE

EEEExEE

EE

df

dfdfmdf

xdf

µφ

µµµφ

φµφ

µ

µµµ

µ

1

111

0
1

0

o

 

 
 
Hölder’s Inequality. Let ( )µ,,FX  be a measure space and suppose 1, >qp , 111 =+ qp . 
For every [ ]∞+∞−→ ,:, Xgf  F -measurable, 
 

q

X

q
p

X

p

X
dgdfdfg

11












≤ ∫∫∫ µµµ . 

 
(Here we take 00 =∞ .) 
 
Proof. We first prove Young’s Inequality: 
 

q
b

p
a qpabba +≤⇒≥ 0,  

 
( )

qbpa

ba

baab

qp

q
q

p
p

q
q

p
p

+=

+≤

+=

logexplogexp

loglogexp
11

11

 

 

by the convexity of exp . By Young’s Inequality, if 
p

X

p dfA
1






= ∫ µ , 

q

X

q dgB
1






= ∫ µ  then Xx∈∀ , 

 
( ) ( ) ( ) ( )

q

q

p

p

b
xg

qA
xf

pB
xg

A
xf 11 +≤  

 
Integrating w.r.t. µ  over X  gives, by monotonicity, 
 

( ) ( ) 11111
11 =+=

∫
∫+

∫
∫≤

∫∫
∫

qpdg

dg

qdf

df

pdgdf

dfg
q

q

p

p

qqpp µ

µ

µ

µ

µµ

µ
 

 



MA359 MEASURE THEORY 

 - 64 - 

 
Cauchy-Schwartz Inequality. If ( )µ,,FX  is a measure space then for every 

[ ]∞+∞−→ ,:, Xgf  F -measurable, 
 

21
2

21
2












≤ ∫∫∫ XXX

dgdfdfg µµµ . 

 
Proof. Hölder with 2== qp . 

 
Minkowski’s Inequality. Let ( )µ,,FX  be a measure space and 1≥p . Then for every 

[ ]∞+∞−→ ,:, Xgf  F -measurable, 
 

p

X

p
p

X

p
p

X

p dgdfdgf
111






+





≤





 + ∫∫∫ µµµ . 

 

Proof. Define 
p

X

p dfA
1






= ∫ µ , 

p

X

p dgB
1






= ∫ µ . For every Xx∈ , 

 
( ) ( )
( )

( ) ( )( )
( ) ( )( )
( ) ( )

p

p

p

p

p

p

B
xg

BA
B

A
xf

BA
A

p

B
xg

BA
B

A
xf

BA
A

p

BA
xgxf

BA

xgxf

++

++

+
+

+

+

+≤

+=

≤

 

 
by the convexity of ptt a . Integrate: 
 

( )
( ) ( ) 111

1

=
∫
∫+

∫
∫≤

∫∫
∫

++

+

µ

µ

µ

µ

µµ

µ

dg

dg

BA
B

df

df

BA
A

dgdf

dgf
p

p

p

p

pppp

pp

 

 
 

pL  and pL  Spaces 
 
Minkowski’s Inequality looks like a triangle inequality for a “norm”: 
 

p

X

p

p
dff

1






= ∫ µ . 

 
This suggests the following: 
 
Definitions. Fix a measure space ( )µ,,FX  and ∞≤≤ p1 . 
(1) For [ ]∞+∞−→ ,: Xf  define 
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p

X

p

p
dff

1






= ∫ µ  for ∞<≤ p1  

( )






 =′′=

∈
∞

a.e.- supinf µffxff
Xx

 

 
(2) ( ) [ ] } ,measurable- is ,:{,, ∞<∞+∞−→=

p
p ffXfX FFL µ . 

 
Example. The Dirichlet function 
 

( ) ( )




∉
∈

== Q
Q

Q x
x

xxD
0
1

1  

 
has ∞L  norm 0=

∞
D  because 0=D  m -a.e. 

 
Remark. 

∞
f  is sometimes called the essential supremum of f  and thus denoted 

fsupess . 
 
Exercise. Show that if ∞<

∞
f  there is a bounded measurable function g  such that 

gf =  a.e. 
 
Proposition. ( )µ,,FL Xp  is a vector space over R  and 

p
⋅  is a seminorm on 

( )µ,,FL Xp . I.e. 
(1) ( )µ,,FL Xf p∈∀ , 0≥

p
f ; 

(2) ( )µ,,FL Xf p∈∀ , R∈λ , 
pp

ff λλ = ; 

(3) ( )µ,,, FL Xgf p∈∀ , 
ppp

gfgf +≤+ . 

 
Note. 

p
⋅  is not a norm since ( )µ,,FL Xf p∈∃  such that 0=

p
f  but 0≡/f , for 

instance ( ) { }( )xxf 01= . 
 
Proof. ( )µ,,FL Xp  is a vector space since ( )µ,,, FL Xgf p∈∀ , R∈βα , , Minkowski’s 
Inequality says 
 

∞<+=






+





≤






 +=+

∫∫

∫

pp

p

X

p
p

X

p

p

X

p

p

gf

dgdf

dgfgf

βα

µβµα

µβαβα

11

1
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Properties (1) and (2) are trivial. Property (3) is Minkowski’s Inequality. 
 

 
Proposition. a.e.- 0 µgfgf

p
=⇔=−  

 
Proof. ∞=p  is easy, so let ∞<≤ p1 . 
 
(⇐ ) If gf =  a.e. then 0=− pgf  a.e. and so 
 

0
1

=




 −=− ∫

p

X

p

p
dgfgf µ . 

 
(⇒ ) Suppose 0=−

p
gf . Then 0=−∫X

p dgf µ . Observe that 

 

 ∑
∞

=

>−≤≠−
1

]1[]0[
n

pp ngfgf µµ ( )∗

 
Now, 
 

∫ >−
−≤>−

]1[
]1[

ngf

pp
p dgfnngf µµ  

 
because the integrand is 1≥  on ]1[ ngf p >− . Therefore, 
 

0]1[ =−=−≤>− ∫
p

pX

pp gfndgfnngf µµ . 

 
By ( )∗ , gf =  a.e. 

 
 
This suggests that we consider pgf L∈,  with 0=−

p
gf  as equivalent. 

 
Define a relation ~  on ( )µ,,FL Xp  by gf ~  iff gf =  µ -a.e. (iff 0=−

p
gf ). 

 
Exercise. Prove that ~  is an equivalence relation. 
 
Define [ ] { }gfgf p ~L∈= . 
 
Definition. The pL -space of ( )µ,,FX  is 
 

( ) [ ] ( ){ }µµ ,,,, FLF XffXL pp ∈=  



MA359 MEASURE THEORY 

 - 67 - 

 
with the operations 
 

[ ] [ ] [ ]gfgf +=+  
[ ] [ ]ff λλ =  

[ ]
pp

ff =  

 
Proposition. This is a proper definition that makes ( )µ,,FXLp  into a normed vector 
space over R . 
 
Proof. (1) Addition well-defined: Suppose ggff ′′ ~,~ . Show gfgf ′+′=+  µ -a.e. 
 

[ ] [ ] [ ] 0=′≠+′≠≤′+′≠+ ggffgfgf µµµ  
 
(2) Multiplication well-defined: Exercise. 
(3) Norm well-defined: Suppose ff ′~ . Then pp ff ′=  µ -a.e. So 
 

( ) ( )
p

pppp

p
ffff ′=′== ∫∫

11
. 

 
(4) pL  a vector space: By Minkowski’s Inequality. 
(5) 

p
⋅  a norm: [ ] [ ] [ ] [ ] [ ]gfgfgfgfgf

ppp
=⇒=⇒=−⇒=−⇒=− a.e. 000 . 

 
 
Remark. It is traditional to drop the [ ]  and refer to pL -elements as “functions”: 
(1) pL -functions are not functions; 
(2) pL -functions cannot be evaluated at a point; 
(3) pL -functions can be integrated against other functions, since if ff ′~ , gffg ′=  a.e., 
and so ∫∫ ′=

EE
dgfdfg µµ . 

 
pL  Convergence 

 
Definition. Let { }∞=1nnf  be a sequence of pL -functions. We say that nf  converges in pL  

to f , and write ff
pL

nn ∞→
→ , if 0

∞→
→−

npn ff . 

 
Remarks. (1) There is an analogous notion for pL . 
(2) pL -convergence neither implies nor is implied by convergence almost everywhere. 
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Examples. Take [ ] ( )mLf p
nnn ,, 01, BR∈= +1 . ( ) 0

∞→
→

nn xf  for all R∈x , but 0
pL

n
nf

∞→
→/  

because 1
/11
=





= ∫

+ pn

npn dxf  so 00
∞→

→/−
npnf . 

 
However, consider the following array: 
 

[ ]1,00,1 1=f  

[ ]21,00,2 1=f , [ ]1,211,2 1=f  

[ ]31,00,3 1=f , [ ]32,311,3 1=f , [ ]1,322,3 1=f  
M  

( )[ ]nknkknf 1,, += 1  for 1,,1,0 −= nk K  
 
Let { }ng  be the sequence K,,,, 0,31,20,20,1 ffff . Then for all x  
 

( ) 0inflim =
∞→

xgnn
, ( ) 1suplim =

∞→
xgn

n
 

 
but 0

∞→
→

npng  for ∞<≤ p1  because 

 

( )[ ] 01
1,, ∞→+ →==

nnpnknkpknf 1 . 

 
Definitions. Let ( )⋅,V  be a normed vector space. 

(1) A Cauchy sequence in V is a { } Vv nn ⊆∞
=1  such that 0

, ∞→
→−
nmnm vv . 

(2) ( )⋅,V  is complete if every Cauchy sequence converges in norm to some Vv∈ . 

(3) A complete normed vector space ( )⋅,V  is called a Banach space. 
 
Theorem. (Riesz-Fischer) If ( )µ,,FX  is σ -finite then ( )µ,,FXLp  is complete with 
respect to 

p
⋅ , ∞≤≤ p1 . 

 
Proof. We only consider the ∞<≤ p1  case as the ∞=p  case is easy and left as an 
exercise. Suppose { }∞=1nnf  is Cauchy, i.e. 0

, ∞→
→−
nmpnm ff . 

 
The idea is first to find a candidate for a limit, then show that this limit lies in pL , then 
establish convergence. 
 
Consider the following identity: 
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( ) ( )
1010 −

−++−+=
kkk NNNNNN ffffff K  

 
This suggests the “formula”: 
 

“ ( )∑∞

=∞→ −
−+=

1 10
lim

k NNNNk kkk
ffff ” 

 
The sum on the RHS is, in general, divergent. We find ∞↑kN  such that this sum 
converges absolutely a.e.. Choose iN ′  so large that 
 

i
pnmi ffNnm 21, <−⇒′≥  

 
We force the sequence to be increasing by setting iiji NN ′=

≤≤1
max . Now, 

 

( ) ( )
( )

∞<

−+=






 −+≤

−+=






 −+≤






 −+=





 −+

∑

∑

∑

∫ ∑

∫ ∑∫ ∑

∞

=

=∞→

=∞→

=∞→

=∞→

∞

=

−

−

−

−

−−

1

1

1

1

1

1

1

1

1

10

10

10

10

1010

Minkowskiby  lim

lim

Fatouby  lim

lim

k pNNpN

p

n

k NNpNn

p

n

k NNNn

ppn

k NNNn

ppn

k NNNn

pp

k NNN

kk

kk

kk

kk

kkkk

fff

fff

fff

dfff

dfffdfff

µ

µµ

 

 
Therefore, the integrand ∑∞

= −
−+

1 10 k NNN kk
fff  must be finite a.e., for otherwise its pL  

norm would be ∞ . This proves that 
 

( ) ( )xfxf
kNk ∞→

= lim  

 
is well-defined a.e. This is our candidate. 
 
This is an pL  function (i.e. the norm is finite) because 
 

pNk

pp

Nk

pp

Nkp

k

k

k

f

f

ff

∞→

∞→

∞→

=






≤






=

∫

∫

inflim

inflim

lim

1

1
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and }{

pNk
f  is bounded. 

 
Our sequence converges to f  in norm: 
 

( )

pnNk

p
nNkpn

ff

ffff

k

k

−≤

−=−

∞→

∞→

inflim

lim
 

 
If lNn >  then for lk > , l

pnN ff
k

21<− . So l
pnl ffNn 21<−⇒> . So 

0
∞→

→−
npn ff . 

 
 

Corollary. If ff
pL

nn ∞→
→  then ∞↑∃ kN  such that ff

kNk ∞→
→  a.e. 

 

Corollary. { }∞
==

∞

= ∑∑ ⇒∞<
111 N

N

n nn pn ff  converges in pL . (The limit is denoted by 

∑∞

=1n nf . 

 
Exercise. Reconcile the first corollary with the second example above. 
 

The Case 2=p  
 
Suppose ( )µ,,FX  is σ -finite. We can define an inner product on ( )µ,,2 FXL  via 
 

( ) ∫= X
dfggf µ, . 

 
This is well-defined: 
 
(1) If ff ′=  a.e. and gg ′=  a.e. then gffg ′′=  a.e. and so ∫∫ ′′= gffg . 
 
(2) fg  is absolutely integrable since 
 

∞<=









≤ ∫∫∫ 22

22 gfdgdfdfg
XXX

µµµ  

 
and it is related to the 2L  norm in the right way: ( ) 21

2
, fff = . 
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Definition. A complete inner product space ( )( )⋅⋅,,V  is called a Hilbert space. 
 
Definition. A bounded linear functional on 2L  is a linear function R→2: Lφ  such that 

0>∃A  such that ( )
2

fAf ≤φ  for all 2Lf ∈ . 
 
Example. If 2

0 Lg ∈  is fixed then ( ) ( ) ∫==
Xg dfggff µφ 00,

0
 is a bounded linear 

functional. 
 
Proof. It is clear that ( )fg0

φ  is independent of the choice of representative. It is also clear 
that 

0gφ  is linear. It is bounded because the Cauchy-Schwarz Inequality says 
 

( )
20200

gfdfgf
Xg =≤ ∫ µφ . 

 
 
The converse to this is the Riesz Representation Theorem: 
 
Theorem. (Riesz Representation Theorem) If ( )µ,,FX  is σ -finite then every bounded 
linear functional on ( )µ,,2 FXL  is of the form ∫X

dfgf µa  for some fixed 

( )µ,,2 FXLg∈ . 
 

Absolute Continuity 
 
Basic Example. Let ( )ν,,FX  be a σ -finite measure space and suppose R→Xf :  is 
non-negative and measurable. Define R→F:µ  by ( ) ∫= E

dfE νµ . 

 
Exercise. (1) Prove that µ  is a measure. 
(2) Show that ( )µ,,FX  is σ -finite. 
 
Definition. Let νµ,  be two σ -finite measures on ( )F,X . We say that µ  is absolutely 
continuous with respect to ν , and write νµ << , if ( ) ( ) 00 =⇒= EE µν . 
 
Examples. (1) If ( ) ∫= E

dfE νµ  for all F∈E  then νµ << . 

(2) Let ν  be Lebesgue measure on R , let { }∞== 1nnqQ  be an enumeration of Q , and 
define 
 

( ) ( )∑∞

=
=

1 2
1

n nE qE n 1µ . 

 
Exercise. (1) Show that µ  is a finite measure. 
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(2) Show that µ  is not absolutely continuous with respect to ν . (Hint: calculate ( )Qµ  
and ( )Qν .) 
 
Theorem. (Radon-Nikodym) Let νµ,  be two σ -finite measures on ( )F,X . If νµ <<  
then there exists a non-negative measurable function R→Xf :  such that for all µ -
absolutely integrable functions g , 
 

∫∫ =
XX

dgfdg νµ . 

 
Moreover, f  is unique up to µ -null sets. 
 
Definition. In this case we write νµ dfd = , ν

µ
d
df = , and call ν

µ
d
df =  the Radon-

Nikodym derivative of µ  with respect to ν . 
 
Proof. We only treat the finite measure case ( ) ( ) ∞<XX νµ , ; the general case is handled 
in the standard way by breaking X  into 0ℵ  pieces of finite ( )νµ + -measure. 
 
Define νµλ +=  and let ( ) R→λφ ,,: 2 FXL  be the functional 
 

( ) ∫= X
dff µφ . 

 
We need to show that φ  is a well-defined bounded linear functional: 
 
φ  is well defined, for suppose 21 ff =  λ -a.e. Then 
 

[ ] [ ] [ ] [ ]212121210 ffffffff ≠≥≠+≠=≠= µνµλ . 
 
It follows that 21 ff =  µ -a.e. and so ( ) ( )2211 fdfdff

XX
φµµφ === ∫∫ . The linearity of 

φ  is clear. To see that it is bounded use the Cauchy-Schwarz Inequality: 
 

( ) ( ) ∞<=≤≤≤ ∫∫∫∫ 2

221 fXdfddfdff λλλλµφ  

 
By the Riesz Representation Theorem, ( )λ,,2 FXLh∈∃  such that ( )λ,,2 FXLf ∈∀ , 
( ) ( )hff ,=φ . I.e., for ( )λ,,2 FXLf ∈ , 

 
 ∫∫∫∫ +== νµλµ dfhdfhdfhdf

⇒  ( ) ∫∫ =− νµ dfhdhf 1  ( )∗
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This suggests ( ) νµ dhdh =−1 , and so νµ dd h
h
−= 1 . We make this manipulation rigorous: 

 
Claim. 10 <≤ h  λ -a.e. 
 
Proof. We start by noting that F∈∀E , ( )λ,,2 FXLE ∈1 , and so 
 
 ( ) ( ) ∫==

EE dhE λφµ 1  (A)

 ( ) ( ) ( ) ( )∫ −===
E

dhEEE λµλν 1 (B)
 
Now 
 

⇒)A(  [ ]
[ ] 000

0
≥<=≥ ∫ <

khdh
h

µλ

⇒  [ ]
0

0
=∫ <h

dh λ  

⇒  [ ] 00 =<hλ  
 
Exercise. Prove the last implication. 
 
( )⇒B  ( )

[ ]
[ ] 0110

1
≥≥=−≥ ∫ ≥

hdh
h

νλ

⇒  [ ] 01 =≥hν  
 
Since νµ << , [ ] 01 =≥hµ  as well, so [ ] 01 =≥hλ . Hence 10 <≤ h  λ -a.e. This proves 
the claim. 
 
Since ( ) ∞<Xλ , every indicator function is in ( )λ,,2 FXL , and so ( )∗  implies that for 
each F∈E , ( ) ∫∫ ⋅=−⋅ νµ dhdh EE 11 1 . By linearity, for all simple functions f , 
 

( ) ∫∫ =−⋅ νµ dfhdhf 1 . 
 
If f  is non-negative measurable then choose simple fn ↑≤φ0 . Note that fhhn ↑≤φ0 , 

( ) ( )hfhn −⋅↑−⋅≤ 110 φ . Then 
 

( ) ( )

MCTby  

simple  since lim

MCTby  1lim1

∫
∫
∫∫

=

=

−⋅=−⋅

∞→

∞→

ν

φνφ

µφµ

dfh

dh

dhdhf

nnn

nn

 

 
This proves that for 0≥f  measurable, 
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 ( ) ∫∫ =−⋅ νµ dfhdhf 1 . ( )∗∗
 
But if f  is non-negative measurable then so is h

hf −⋅ 1 . Therefore, by ( )∗∗ , 
 

( )

∫
∫
∫∫

−

−

−

=

=

−⋅=

ν

ν

µµ

df

dh

dhdf

h
h

h
f

h
f

1

1

1 1

 

 
for all f  non-negative measurable. 
 
Exercise. Generalize to all µ -absolutely integrable functions −+ −= fff . 

 
 
Exercise. Show the Radon-Nikodym derivative is unique modulo λ . (Hint: suppose 

∫∫ = νµ dfgdfg ii  for 2,1=i  and evaluate ( )( )( ) νdgggg 2121sgn −−∫ .) 
 

Signed Measures 
 
Imagine that electric charge is distributed in space. It makes sense to define ( )Eµ  to be 
the total charge within the region E . However, this µ  is not a measure because it is not, 
in general, non-negative. 
 
Definition. Let ( )F,X  be a measurable space. A signed measure is a set function 

[ ]∞+∞−→ ,:Fµ  such that 
(1) µ  attains at most one of the values ∞± ; 
(2) ( ) 0=∅µ ; 

(3) σ -additivity: if ii EE ∞
== 1C  with F∈iE  then ( ) ( )∑∞

=
=

1i iEE µµ , where 

(a) if ( ) ∞=Eµ  then the convergence of ( )∑∞

=1i iEµ  to ( )Eµ  is meant, 

(b) if ( ) ∞<Eµ  then the absolute convergence of ( )∑∞

=1i iEµ  to ( )Eµ  is meant. 

 
Remarks. (1) was added to prevent the existence of two disjoint sets F∈BA,  such that 
( ) +∞=Aµ , ( ) −∞=Bµ , for in this case ( ) ∞−∞=BACµ . 

(3) was strengthened to make sure all sums converge. 
 
Definitions. Let ( )µ,,FX  be a signed measure space. 
(1) F∈E  is called a null set if EE ⊆′∀  measurable, ( ) 0=′Eµ . (This is stronger than 
saying ( ) 0=Eµ .) 
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(2) F∈E  is positive if EE ⊆′∀  measurable, ( ) 0≥′Eµ . 
(3) F∈E  is positive if EE ⊆′∀  measurable, ( ) 0≤′Eµ . 
 
Lemma. (Exhaustion Lemma) Let ( )µ,,FX  be a signed measure space. Every F∈E  
with ( ) ∞<< Eµ0  contains a subset which is a positive set of strictly positive measure. 
 
Proof. Define EE =1  and set  
 

( ) ( ){ }0 and measurable is sup 11 ≤⊆= AEAA µµµ . 
 
Now choose 11 EA ⊆  measurable such that 
 

( ) 11 −≤Aµ  if +∞=1µ , 
( ) 211 µµ ≤A  if +∞<1µ . 

 
Define 1112 \\ AEAEE == . Set 
 

( ) ( ){ }0 and measurable is sup 22 ≤⊆= AEAA µµµ . 
 
(Note that if ∞<1µ  then 212 µµ ≤ .) Choose 22 EA ⊆  measurable such that 
 

( ) 12 −≤Aµ  if +∞=2µ , 
( ) 222 µµ ≤A  if +∞<2µ . 

 
Proceed by induction. Suppose nAA K,1  already defined. Set 
 

( ) ( ){ }0 and measurable is sup1 ≤⊆=+ AEAA nn µµµ . 
 
Choose 11 ++ ⊆ nn EA  measurable such that 
 

( ) 11 −≤+nAµ  if +∞=+1nµ , 
( ) 211 ++ ≤ nnA µµ  if +∞<+1nµ . 

 
We obtain in this way { }∞=1iiA  pairwise disjoint. Define ii AEE ∞

== 1\~
C . We show that E~  

is positive and ( ) 0~ >Eµ . 
 
Step 1. 0

∞→
→

nnµ . 
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Proof. First note that N∈∃N  such that +∞<Nµ , for otherwise N∈∀n , +∞=nµ  and so 
( ) 1−≤nAµ . Hence, 

 
( ) ( )( ) ( )

[ )
{ ( ) −∞=+==<

−∞=

∞

=
∞+∞−∈

∞
= ∑

43421
CC

1
,

1
~~0

i iii AEAEE µµµµ , 

 
which is a contradiction. By the definition of Nµ , 21 NN µµ ≤+ , so for Nn > , 

02
∞→

− →≤
n

Nn
Nn µµ . 

 
Step 2. E~  is positive. 
 
Proof. EE ~⊆′  is measurable. By definition, i

n
in AEEE 1

1\ −
==⊆′ C , so if ( ) 0≤′Eµ  then 

( ) 0
∞→

→≤′
nnE µµ . Thus, all subsets of E~  with non-positive measure have measure zero, 

so E~  is positive. 
 
Step 3. ( ) 0~ >Eµ . 
 
Proof. ( ) ( ) ( )

43421
0

1

~0
<

∞

=∑+=<
i iAEE µµµ . 

 
 
Theorem. (Hahn’s Decomposition Theorem) Let ( )µ,,FX  be a signed measure space. 
There exist sets F∈±X  such that −+= XXX C , +X  is positive and −X  is negative. If 

−+= 11 XXX C  is another such decomposition then ++ ∆ 1XX  and −− ∆ 1XX  are null sets. 
 
Proof. Assume without loss of generality that µ  omits the value ∞+  (else pass to µ− ). 
Define ( ){ }positive is F∈= EEm µ . This is finite because µ  omits the value ∞+ . 
Choose F∈nE  positive such that ( ) mE

nn ∞→
→µ . Set nn EX ∞

=
+ = 1U , +− = XXX \ . 

 
Exercise. Show that a countable union of positive sets is positive. 
 
So +X  is positive. −X  is negative because otherwise there exists −⊆′ XE  measurable 
such that ( ) 0>′Eµ . In this case EX ′+C  is a positive set with measure ( ) mEm >′+ µ , 
which contradicts the maximality of m . 
 
This proves the existence of a Hahn decomposition. We now prove uniqueness. Let 

−+= 11 XXX C  be another Hahn decomposition. 
 
Suppose ++ ∆⊆ 1XXE . Since 
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( ) ( ) ++++++++ ∪⊆∪=∆ 1111 \\ XXXXXXXX , 

 
( ) 0≥′Eµ  since ++ ∪ 1XX  is positive. But we also have 

 
( ) ( ) −−−+−+++ ∪⊆∩∪∩=∆ XXXXXXXX 1111 , 

 
so ( ) 0≤′Eµ  since −− ∪ XX1  is negative. So ( ) 0=′Eµ . Since E′  was arbitrary, ++ ∆ 1XX  
is null. The proof for −− ∆ 1XX  is similar. 

 
 
Definition. Let νµ,  be two measures on ( )F,X . We say νµ,  are mutually singular amd 
write νµ ⊥  if νµ XXX C=  where ( ) ( ) 0== µν νµ XX . (I.e. µ  “lives on” µX , ν  “lives 
on” νX , ∅=∩ νµ XX ). 
 
Exercise. Show that if νµ <<  then µ  and ν  are not mutually singular. 
 
Theorem. (Jordan’s Decomposition Theorem) Let ( )µ,,FX  be a signed measure space. 
There exists a unique decomposition −+ −= µµµ  where −+ µµ ,  are (proper) measures 
and −+ ⊥ µµ . 
 
Proof. Let −+= XXX C  be a Hahn decomposition. Define two measures −+ µµ ,  by 
 

( ) ( )++ ∩= XEE µµ , 
( ) ( )−− ∩−= XEE µµ . 

 
Exercise. Show −+ µµ ,  are measures. 
 
To see that these measures are mutually singular take +=+ XX

µ
, −=− XX

µ
 and observe 

that −+ −= µµµ . 
 
Suppose −+ −= 11 µµµ  is another Jordan decomposition. Let −+= 11 XXX C  be a 
decomposition such that ( ) ( ) 01111 == +−−+ XX µµ . We claim that this is a Hahn 
decomposition. 
 
To see that +

1X  is positive: +⊆′∀ 1XE , ( ) ( ) ( ) ( ) 0111 ≥′=′−′=′ +−+ EEEE µµµµ . The 
negativity of −

1X  is shown similarly. 
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By the uniqueness part of the Hahn Decomposition Theorem, both ++ ∆ 1XX  and 
−− ∆ 1XX  are null sets. Therefore, for every F∈E , 

 
( ) ( ) ( )

( )
( )
( )
( )E

XE

XXXE

XE

XEXEE

+

++

+++

+

+−+++

=

∩=

∆∩=

∩=

∩−∩=

µ

µ

µ

µ

µµµ

null  since 1

1

11111

 

 
Similarly for −− µµ ,1 . 

 
 
 
 
 


