UNIVERSITY OF WARWICK MA359 MEASURE THEORY Autumn Term 2002 Lectured by Doctor Omri Sarig Typed by Tim Sullivan INDEX

0.	Introduction	3
1.	Lebesgue's Measure	8
2.	Integration	27
3.	Product Measures	50
4.	L^{p} Spaces	61

0. INTRODUCTION

Problem. We wish to assign a numerical size $\mu(E)$ to subsets E of a given space X.

Geometry: $X = \mathbb{R}^2$; $\mu(E) = \operatorname{Area}(E)$.

Mechanics: $X = \mathbb{R}^2 = \text{model}$ for thin sheet of metal with density $\rho(x, y)$; $\mu(E) = \text{mass of } E$.

Probability Theory: X = sample space, collection of possible outcomes; $E \subseteq X$ an "event"; $\mu(E) =$ probability that E happens.

However, there are problems. For instance, what is the area of this?

"Magnification" doesn't help. We encounter similar problems with the idea of mass – what is the mass of, say, a sponge? Or, in the case of probability, imagine picking a real number "at random" – what is the probability that the number chosen is rational?

What would we like to have for \mathbb{R} ?

Idea. (1) A function μ with domain $2^{\mathbb{R}}$ and range $[0, +\infty]$; $\mu(\emptyset) = 0$, $\mu(\mathbb{R}) = \infty$. (2) Translation-invariance: $\mu(x + E) = \mu(E)$ for all $x \in \mathbb{R}$, $E \subseteq \mathbb{R}$. (3) "Consistency": (i) Monotonicity: $A \subseteq B \Rightarrow \mu(A) \le \mu(B)$; (ii) $\mu(A \coprod B) = \mu(A) + \mu(B)$;

(iii)
$$\sigma$$
-additivity: $\mu(\coprod_{i\in\mathbb{N}} A_i) = \sum_{i\in\mathbb{N}} \mu(A_i);$

(iv) $\mu(\emptyset) = 0$;

Sad Fact. These requirements are not self-consistent!

Condition (1) is very strong because there are too many subsets:

$$\left|2^{\mathbb{R}}\right| = 2^{2^{\aleph_0}} >> 2^{\aleph_0} >> \aleph_0 = \left|\mathbb{N}\right|$$

 σ -additivity is also asking for a lot because limits are involved.

The standard choice is to relax (1) and keep σ -additivity for the sake of practicality and an easy life. Relaxing (1) means that the domain for μ should only be a subcollection \mathcal{F} of subsets of X. We would like \mathcal{F} to have the following properties: (1) $\emptyset, X \in \mathcal{F}$; (2) $A, B \in \mathcal{F} \Rightarrow A \cup B, A \cap B, A \setminus B, A^{C} \in \mathcal{F}$; (3) $\{A_i\}_{i=1}^{\infty}$ in $\mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i, \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.

We do not require that \mathcal{F} be closed under arbitrary unions and intersections, simply countable ones.

Definition. Let X be a set. A σ -algebra of subsets of X is a collection of subsets of X that contains \emptyset and is closed under complementation and countable unions of its members.

Exercise. Prove that a σ -algebra satisfies the properties given above.

Definition. A *measurable space* is a pair (X, \mathcal{F}) , where X is a set and \mathcal{F} is a σ -algebra of subsets of X. Elements of \mathcal{F} are called \mathcal{F} -measurable, or simply *measurable*.

Definition. Let (X, \mathcal{F}) be a measurable space. A *measure* on (X, \mathcal{F}) is a function $\mu : \mathcal{F} \to [0, +\infty]$ such that (1) $\mu(\emptyset) = 0$; (2) μ is σ -additive, i.e. if $A_i \in \mathcal{F}$ are pairwise disjoint then $\mu(\coprod_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i)$.

The triple (X, \mathcal{F}, μ) is called a *measure space*.

Proposition. (Basic properties of measures.) Let (X, \mathcal{F}, μ) be a measure space.

- (1) Additivity: $A_1, \ldots, A_n \in \mathcal{F}$ pairwise disjoint $\Rightarrow \mu(\prod_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i);$
- (2) Monotonicity: $A, B \in \mathcal{F}, A \subseteq B \Rightarrow \mu(A) \leq \mu(B);$

(3) Inclusion-Exclusion Principle: if $A, B \in \mathcal{F}$ and $\mu(A \cap B) < \infty$ then

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$

(4) Difference Formula: if $A, B \in \mathcal{F}$, $A \subseteq B$, $\mu(A) < \infty$ then $\mu(B \setminus A) = \mu(B) - \mu(A)$.

Proof. (1) Define

$$B_i = \begin{cases} A_i & 1 \le i \le n \\ \emptyset & i > n \end{cases}$$

By σ -additivity,

$$\mu\left(\coprod_{i=1}^{n} A_{i}\right) = \mu\left(\coprod_{i=1}^{\infty} B_{i}\right)$$
$$= \sum_{i=1}^{\infty} \mu(B_{i})$$
$$= \sum_{i=1}^{n} \mu(A_{i})$$

(2) $\mu(B) = \mu(A \coprod (B \setminus A)) = \mu(A) + \mu(B \setminus A) \ge \mu(A).$

(4) $\mu(B) = \mu(A) + \mu(B \setminus A)$. If $\mu(A) < \infty$ as given we can subtract $\mu(A)$ from both sides to get $\mu(B) - \mu(A) = \mu(B \setminus A)$.

(3)

$$\mu(A \cup B) = \mu(A \coprod (B \setminus A))$$

= $\mu(A) + \mu(B \setminus A)$
= $\mu(A) + \mu(B \setminus (A \cap B))$
= $\mu(A) + \mu(B) - \mu(A \cap B)$

Definition. (Monotone sequences of sets.) We say that a sequence $\{E_i\}_{i=1}^{\infty}$ increases (respectively *decreases*) to a set *E* if

$$\forall i \in \mathbb{N}, E_i \subseteq E_{i+1} \text{ and } \bigcup_{i=1}^{\infty} E_i = E,$$

and write $E_i \uparrow E$ (respectively

$$\forall i \in \mathbb{N}, E_i \supseteq E_{i+1} \text{ and } \bigcap_{i=1}^{\infty} E_i = E,$$

and write $E_i \downarrow E$).

Proposition. (Continuity of measures.) Let (X, \mathcal{F}, μ) be a measure space and let $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$. (1) If $E_i \uparrow E$ then $\mu(E) = \lim_{i \to \infty} \mu(E_i)$. (2) If $E_i \downarrow E$ and $\exists i_0$ such that $\mu(E_{i_0}) < \infty$ then $\mu(E) = \lim_{i \to \infty} \mu(E_i)$.

Proof. (1) Assume first that $\mu(E_i) < \infty$ for all *i*. We claim that

$$E = \bigcup_{i=1}^{\infty} E_i = E_1 \coprod \Bigl(\coprod_{i=2}^{\infty} E_i \setminus E_{i-1} \Bigr).$$

Indeed, LHS \subseteq RHS since if $x \in E$ then there is a minimal *i* such that $x \in E_i$. By minimality, $x \notin E_{i-1}$, so $x \in E_i \setminus E_{i-1} \subseteq$ RHS. RHS \subseteq LHS is trivial.

To see that the union on the RHS is pairwise disjoint suppose i < j. Then $E_j \setminus E_{j-1} \subseteq E_j \setminus E_i$ since $E_i \subseteq E_{i+1} \subseteq \ldots \subseteq E_{j-1} \subseteq E_j$. So, since $E_j \setminus E_{j-1} \subseteq E_i^{C}$ and $E_i \setminus E_{i-1} \subseteq E_i$, $(E_j \setminus E_{j-1}) \cap (E_i \setminus E_{i-1}) = \emptyset$.

We now use the σ -additivity of μ to calculate $\mu(E)$:

$$\mu(E) = \mu(E_1) + \sum_{i=2}^{\infty} \mu(E_i \setminus E_{i-1})$$

= $\mu(E_1) + \sum_{i=2}^{\infty} (\mu(E_i) - \mu(E_{i-1}))$
= $\lim_{n \to \infty} (\mu(E_1) + (\mu(E_2) - \mu(E_1)) + \dots + (\mu(E_n) - \mu(E_{n-1})))$
= $\lim_{n \to \infty} \mu(E_n)$

This proves (1) under the assumption that $\mu(E_i) < \infty$ for all *i*. If $\exists i_0$ such that $\mu(E_{i_0}) = \infty$ then by Monotonicity $i \ge i_0 \Rightarrow \mu(E_i) = \infty$ and $\mu(E) \ge \mu(E_i) = \infty$, hence

$$\mu(E) = \infty = \lim_{i \to \infty} \infty = \lim_{i \to \infty} \mu(E_i),$$

thus proving (1).

(2) By de Morgan,

$$E_{i_0} \setminus \bigcap_{i=i_0}^{\infty} E_i = \bigcup_{i=i_0+1}^{\infty} \left(E_{i_0} \setminus E_i \right)$$

and

 $\left(E_{i_0} \smallsetminus E_i\right) \uparrow \left(E_{i_0} \setminus \bigcap_{i=i_0}^{\infty} E_i\right)$

by (1). So

$$\mu(E_{i_0}) - \mu(\bigcap_{i=i_0}^{\infty}) = \mu(E_{i_0} \setminus \bigcap_{i=i_0}^{\infty} E_i)$$
$$= \mu(\bigcup_{i=i_0}^{\infty} E_{i_0} \setminus E_i)$$
$$= \lim_{i \to \infty} \mu(E_{i_0} \setminus E_i)$$
$$= \mu(E_{i_0}) - \lim_{i \to \infty} \mu(E_i)$$
$$\mu(\bigcap_{i=i_0}^{\infty} E_i) = \lim_{i \to \infty} \mu(E_i)$$

We observe that $\bigcap_{i=i_0}^{\infty} E_i = \bigcap_{i=1}^{\infty} E_i$.

 \Rightarrow

1. LEBESGUE'S MEASURE

Aim. Define a measure m on \mathbb{R} such that

(1) m(interval) = length(interval);

(2) translation-invariance, i.e. m(x+E) = m(E).

Strategy. 'Do what we must.'

(1) Define the measure on certain basic sets for which the definition is obvious – the intervals.

(2) Extend the definition to all sets by approximating them by countable unions of basic sets.

(3) Restrict to a σ -algebra to get σ -additivity.

Step 1 – Defining the Measure on Intervals

We begin with some notation and definitions.

An *interval* is a set of the form (a,b), (a,b], [a,b), [a,b] where $a \le b$. We also allow \emptyset , \mathbb{R} , (a,∞) , $[a,\infty)$, $(-\infty,b)$, $(-\infty,b]$. We shall use $\langle a,b \rangle$ to represent all the possibilities above.

Int = $\{E \subseteq \mathbb{R} \mid E \text{ is an interval}\}$

Let X be a set. A collection $S \subseteq 2^X$ is called a *semi-algebra* (of subsets of X) if (1) $\emptyset, X \in S$;

(2) $A, B \in \mathcal{S} \Longrightarrow A \cap B \in \mathcal{S}$;

(3) $\forall A \in S$, A^{C} can be written as a finite union of pairwise disjoint elements of S.

Proposition. Int is a semi-algebra of subsets of \mathbb{R} (but is not a σ -algebra).

Proof. (1) $\varnothing = (0,0), \mathbb{R} = (-\infty, +\infty).$

(2) The intersection of two intervals is empty, an interval, or a point [a, a].

(3) The complement of an interval is empty, an interval, or the union of two disjoint intervals.

Definition. Let ℓ : Int $\rightarrow [0, \infty]$ be the *length function* given by

$$\ell(\langle a,b\rangle) = b - a$$

Is ℓ σ -additive on Int? I.e. if $I = \coprod_{k=1}^{\infty} I_k$, where $I, I_k \in \text{Int}$, does it follow that

$$\ell(I) = \sum_{k=1}^{\infty} \ell(I_k)?$$

Lemma. (1) ℓ is finitely additive: for $I, I_k \in \text{Int}$,

$$I = \coprod_{k=1}^{N} I_k \Longrightarrow \ell(I) = \sum_{k=1}^{N} \ell(I_k).$$

(2) ℓ is σ -sub-additive: for $I, I_k \in \text{Int}$,

$$I = \bigcup_{k=1}^{\infty} I_k \Longrightarrow \ell(I) \le \sum_{k=1}^{\infty} \ell(I_k).$$

Proof. (1) If I is not bounded then $\ell(I) = \infty$. In this case at least one of the I_k , I_j say, must be unbounded (because a finite union of bounded sets is bounded). Thus,

From now on, assume I, I_k are bounded; $I = \langle a, b \rangle$, $I_k = \langle a_k, b_k \rangle$. Re-order so that $a_1 < a_2 < \ldots < a_N$. Observe that

(i) $\forall k$, $b_k \leq a_{k+1}$ since if not there would be an overlap, $I_k \cap I_{k+1} \supseteq (a_{k+1}, a_{k+1} + \varepsilon)$ would be non-empty;

(ii) $\forall i \leq N-1$, $b_k = a_{k+1}$ since if not there would be a gap, (b_k, a_{k+1}) , yet *I* can have no gaps.

By (ii),

$$\sum_{k=1}^{N} \ell(I_k) = \sum_{k=1}^{N} (b_k - a_k)$$

= $\sum_{k=1}^{N-1} (a_{k+1} - a_k) + (b_N - a_N)$
= $(a_N - a_1) + (b_N - a_N)$
= $b_N - a_1$

Since the a_k were ordered, $b_N = b$ and $a_1 = a$, so

$$\ell(I) = \sum_{k=1}^{N} \ell(I_k) = b - a$$

(2) Case 1: I is a compact interval [a,b].

Write $I_i = \langle a_i, b_i \rangle$, fix $\varepsilon > 0$ and set $J_i = (a_i - \varepsilon/2^{i+1}, b_i + \varepsilon/2^{i+1})$. $\{J_i\}_{i=1}^{\infty}$ is an open cover of the compact interval I. Therefore, by the Heine-Borel Theorem, there exists a finite subcover; fix N and re-order so that $I \subseteq \bigcup_{i=1}^{N} J_i$. Write

$$\alpha_i = a_i - \varepsilon / 2^{i+1}$$
$$\beta_i = b_i + \varepsilon / 2^{i+1}$$

 $a \in I \subseteq \bigcup_{i=1}^{N} J_i$ so $\exists i_1$ such that $a \in J_{i_1} \Leftrightarrow \alpha_{i_1} < a < \beta_{i_1}$. If $I \subseteq J_{i_1}$ we stop. If not, $\beta_{i_1} \in I$ and so $\exists i_2$ such that $a \in J_{i_2} \Leftrightarrow \alpha_{i_2} < \beta_{i_1} < \beta_{i_2}$. If $I \subseteq J_{i_1} \cup J_{i_2}$ we stop. If not, $\beta_{i_2} \in I$ and so $\exists i_3$ such that $a \in J_{i_3} \Leftrightarrow \alpha_{i_3} < \beta_{i_2} < \beta_{i_3}$. Continue this process; this process stops eventually and gives us $i_1, \ldots, i_{N'}$, $N' \leq N$, such that

Therefore, because of overlaps,

$$\sum_{k=1}^{N'} \ell(J_{i_k}) \geq \ell([a,b]) = \ell(I).$$

Thus,

$$\ell(I) \leq \sum_{k=1}^{N'} \ell(J_{i_k})$$

$$\leq \sum_{i=1}^{\infty} \ell(J_i)$$

$$= \sum_{i=1}^{\infty} (\ell(I_i) + 2\frac{\varepsilon}{2^{i+1}})$$

$$= \sum_{i=1}^{\infty} \ell(I_i) + \sum_{i=1}^{\infty} \varepsilon/2^i$$

$$= \sum_{i=1}^{\infty} \ell(I_i) + \varepsilon$$

Since $\varepsilon > 0$ was arbitrary, $\ell(I) \le \sum_{i=1}^{\infty} \ell(I_i)$. Thus, Case 1 is proved.

Case 2: I is a bounded interval, I_k arbitrary intervals.

If I_k bounded for all k we are in Case 1. If not $\exists k$ such that $\ell(I_k) = \infty$ and

$$\ell(I) < \infty = \ell(I_k) \le \sum_{i=1}^{\infty} \ell(I_k).$$

Case 3: General case.

Write $I = \langle a, b \rangle$, a, b possibly infinite. Choose $a_k \downarrow a$, $b_k \uparrow b$, $a_k \leq b_k$. Clearly

$$[a_k,b_k] \subseteq \langle a_k,b_k \rangle \subseteq \bigcup_{k=1}^{\infty} I_k$$

By Case 2,
$$\ell([a_k, b_k]) \leq \sum_{k=1}^{\infty} \ell(I_k)$$
. But $\ell([a_k, b_k]) = b_k - a_k \xrightarrow[k \to \infty]{k \to \infty} \ell(I)$, so $\ell(I) \leq \sum_{i=1}^{\infty} \ell(I_k)$.

Tricks. (1) $\varepsilon/2^i$ trick – we need summable errors. (2) Approximating sets from within by compact sets.

We need to check that ℓ is σ -additive on Int otherwise we have no chance of getting a measure out of ℓ .

Proposition. ℓ : Int $\rightarrow [0, \infty]$ is σ -additive on Int. I.e., if $I, I_k \in$ Int and $I = \coprod_{k=1}^{\infty} I_k$ then $\ell(I) = \sum_{k=1}^{\infty} \ell(I_k)$.

Proof. (\leq) This follows from σ -sub-additivity.

 (\geq) It is enough to prove that $\ell(I) \geq \sum_{k=1}^{N} \ell(I_k)$ for each N, since we can then pass to the limit $N \to \infty$. The idea is to show that $I \setminus \bigcup_{k=1}^{N} I_k$ is a finite pairwise disjoint union of intervals. This will do because if

$$I = \left(\coprod_{k=1}^{N} I_{k}\right) \coprod \left(\coprod_{i=1}^{M} J_{i}\right),$$

with $J_{i} \in \text{Int}$ (*)

then the finite additivity of ℓ on Int would imply

$$\ell(I) = \sum_{k=1}^{N} \ell(I_k) + \underbrace{\sum_{i=1}^{M} \ell(J_i)}_{\geq 0} \geq \sum_{k=1}^{N} \ell(I_k).$$

To prove (*) we can use the properties of Int as a semi-algebra. We claim that

$$I \setminus \bigcup_{k=1}^{N} I_{k} \stackrel{=}{=} I \cap I_{1}^{C} \cap I_{2}^{C} \cap \ldots \cap I_{N}^{C}$$

is a finite disjoint union of intervals and prove this by induction on N.

Case N = 1: Since Int is a semi-algebra $I_1^C = \coprod_{k=1}^n J_k$ for some $J_k \in \text{Int}$. Therefore, $I \cap I_1^C = \coprod_{k=1}^n I \cap J_k$, but $I \cap J_k \in \text{Int}$.

Induction Step: Assume $I \cap I_1^C \cap I_2^C \cap \ldots \cap I_N^C = \coprod_{k=1}^n J_k$ with $J_k \in \text{Int}$. Since Int is a semi-algebra, $I_{N+1}^C = \coprod_{i=1}^m K_i$, $K_i \in \text{Int}$. So,

$$I \cap I_1^{\mathsf{C}} \cap I_2^{\mathsf{C}} \cap \ldots \cap I_{N+1}^{\mathsf{C}} = \left(\coprod_{k=1}^n J_k\right) \cap \left(\coprod_{i=1}^m K_i\right)$$
$$= \coprod_{\substack{1 \le i \le m \\ 1 \le k \le n}} (J_k \cap K_i)$$

Exercise. Check that this union is pairwise disjoint.

Since Int is a semi-algebra, (*) is proved, and so is the proposition.

Exercise. Modify the proof of (\geq) to obtain the stronger statement: If $I, I_j \in$ Int and $I \supseteq \bigcup_{j=1}^{\infty} I_j$ then $\ell(I) \ge \sum_{j=1}^{\infty} \ell(I_j)$.

Or, "Approximating the measure of an arbitrary set from above".

We want to bound the measure of a general set from above. We do this by considering countable covers by basic sets.

Definition. Lebesgue's outer measure is the function $m^*: 2^{\mathbb{R}} \to [0, \infty]$ given by

$$m^*(A) = \left\{ \sum_{k=1}^{\infty} \ell(I_k) \mid A \subseteq \bigcup_{k=1}^{\infty} I_k, I_k \in \text{Int} \right\}.$$

Definition. In general, given a set X, an *outer measure* on X is a function $\mu^*: 2^X \to [0,\infty]$ such that

(1)
$$\mu^*(\emptyset) = 0;$$

- (2) monotonicity: $A \subseteq B \Rightarrow \mu^*(A) \le \mu^*(B);$
- (3) σ -sub-additivity: $\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \leq \sum_{i=1}^{\infty} \mu^* \left(A_i \right).$

Remark. An outer measure is not, in general, a measure.

Proposition. *Lebesgue's outer measure is an outer measure.*

Proof. (1) $\emptyset \subseteq \bigcup_{i=1}^{\infty} I_i$ where $I_i = (1,1) = \emptyset$, and so $m^*(\emptyset) \le \sum_{i=1}^{\infty} 0 = 0$. Obviously $m^*(A) \ge 0 \quad \forall A \subseteq \mathbb{R} \text{ so } m^*(\emptyset) = 0$.

(2) Fix $\varepsilon > 0$ and find $\{I_i\}_{i=1}^{\infty} \subseteq$ Int for which

$$B \subseteq \bigcup_{i=1}^{\infty} I_i,$$
$$\sum_{i=1}^{\infty} \ell(I_i) \le m^*(B) + \varepsilon.$$

(The cover exists by the definition of infimum.) Since $A \subseteq B \subseteq \bigcup_{i=1}^{\infty} I_i$ we must also have

$$m^*(A) \leq \sum_{i=1}^{\infty} \ell(I_i) \leq m^*(B) + \varepsilon$$
,

but $\varepsilon > 0$ is arbitrary so $m^*(A) \le m^*(B)$.

(3) Let $\varepsilon > 0$. For each *i* find $\{I_{j}^{(i)}\}_{j=1}^{\infty} \subseteq$ Int such that

$$A_{i} \subseteq \bigcup_{j=1}^{\infty} I_{j}^{(i)},$$
$$\sum_{j=1}^{\infty} \ell(I_{j}^{(i)}) \le m^{*}(A_{i}) + \varepsilon/2^{i}$$

Clearly,

$$\bigcup_{i=1}^{\infty} A_i \subseteq \bigcup_{i=1}^{\infty} \left(\bigcup_{j=1}^{\infty} I_j^{(i)} \right).$$

The collection $\left\{ I_{j}^{(i)} \mid i, j \in \mathbb{N} \right\}$ is countable and so

$$m^* \left(\bigcup_{i=1}^{\infty} A_i \right) \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \ell \left(I_j^{(i)} \right)$$
$$\leq \sum_{i=1}^{\infty} \left(m^* (A_i) + \varepsilon / 2^i \right)$$
$$= \sum_{i=1}^{\infty} m^* (A_i) + \varepsilon$$

So m^* is σ -sub-additive.

Question. Is it true that $m^*: 2^{\mathbb{R}} \to [0, \infty]$ is an extension of the length function, i.e. $\forall I \in \text{Int}, m^*(I) = \ell(I)$?

Proposition. The Lebesgue outer measure of an interval is its length. Moreover, if $A = \coprod_{i=1}^{\infty} I_k$, $I_k \in \text{Int}$, then $m^*(A) = \sum_{k=1}^{\infty} \ell(I_k)$.

Proof. $(\leq) A \subseteq \coprod_{i=1}^{\infty} I_k$ so $m^*(A) \leq \sum_{k=1}^{\infty} \ell(I_k)$. (\geq) Fix $\varepsilon > 0$ and let $\{J_i\}_{i=1}^{\infty}$ be a cover of $\coprod_{k=1}^{\infty} I_k$ by $J_i \in$ Int such that

$$\sum_{i=1}^{\infty} \ell(J_i) \le m^* \bigl(\coprod_{k=1}^{\infty} I_k \bigr) + \varepsilon .$$

Since $\prod_{k=1}^{\infty} I_k \subseteq \bigcup_{i=1}^{\infty} J_i$, $I_k \subseteq \bigcup_{i=1}^{\infty} J_i \cap I_k$, $\forall k \in \mathbb{N}$. Since Int is closed under intersections, the sets $J_i \cap I_k$ are intervals. Therefore, since ℓ is σ -sub-additive on Int,

$$\ell(I_k) \leq \sum_{i=1}^{\infty} \ell(J_i \cap I_k) \quad \forall k \in \mathbb{N}.$$

Sum over all $k \in \mathbb{N}$:

$$\sum_{k=1}^{\infty} \ell(I_k) \leq \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \ell(J_i \cap I_k) = \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \ell(J_i \cap I_k)$$

By assumption the I_k are pairwise disjoint, so $J_i \supseteq \coprod_{k=1}^{\infty} J_i \cap I_k$. By the earlier exercise, $\ell(J_i) \ge \sum_{k=1}^{\infty} \ell(J_i \cap I_k)$. It follows that

$$\sum_{k=1}^{\infty} \ell(I_k) \leq \sum_{i=1}^{\infty} \ell(J_i)$$
$$\leq m^* (\coprod_{k=1}^{\infty} I_k) + \varepsilon$$

Since $\varepsilon > 0$ was arbitrary, the proposition follows.

Example. What is $m^*(\mathbb{Q})$?

(1) Direct method: enumerate $\mathbb{Q} = \{x_k\}_{k=1}^{\infty}$. Choose intervals

$$I_{k} = \left(x_{k} - \varepsilon/2^{k+1}, x_{k} + \varepsilon/2^{k+1}\right)$$

for a fixed $\varepsilon > 0$. $\{I_k\}_{k=1}^{\infty}$ is a cover of \mathbb{Q} .

$$0 \leq \sum_{k=1}^{\infty} \ell(I_k) = \sum_{k=1}^{\infty} \varepsilon/2^k = \varepsilon \underset{\varepsilon \to 0}{\to} 0$$

(2) By σ -sub-additivity:

$$m^{*}(\mathbb{Q}) = m^{*}(\bigcup_{k=1}^{\infty} \{x_{k}\}) \leq \sum_{k=1}^{\infty} \ell([x_{k}, x_{k}]) = 0$$

Exercise. (1) Show that every countable set in \mathbb{R} has zero outer measure. (2) Show that a countable union of sets with outer measure zero also has outer measure zero.

Summary. We have extended $\ell : \text{Int} \to [0,\infty]$ to $m^* : 2^{\mathbb{R}} \to [0,\infty]$; m^* is defined for all subsets of \mathbb{R} ; m^* is σ -sub-additive on $2^{\mathbb{R}}$; m^* is not σ -additive on $2^{\mathbb{R}}$ and so is not a measure.

Step 3 – Obtaining a Measure from m^* by Restricting its Domain

Definition. A set $E \subseteq \mathbb{R}$ is called *Lebesgue measurable* if it satisfies the condition

 $\forall T \subseteq \mathbb{R}, \ m^*(T) = m^*(T \cap E) + m^*(T \cap E^{\mathbb{C}}).$

This condition is called Carathéodory's criterion.

Remarks. (1) T is often called a "test set". (2) Carathéodory's criterion is symmetric with respect to E, so if E is Lebesgue measurable so is E^{C} . (3) The inequality

$$m^*(T) \le m^*(T \cap E) + m^*(T \cap E^{\mathsf{C}})$$

is always true by the σ -sub-additivity of m^* .

Notation. $\mathcal{B}_0 = \{ E \subseteq \mathbb{R} \mid E \text{ is Lebesgue measurable} \}.$

We aim to prove: (1) \mathcal{B}_0 is a σ -algebra;

(2) $m^*|_{\mathcal{B}_0} : \mathcal{B}_0 \to [0,\infty]$ is σ -additive;

(3)
$$\mathcal{B}_0 \supseteq \text{Int}$$
.

Given these, $\left(\mathbb{R}, \mathcal{B}_0, m^* \Big|_{\mathcal{B}_0}\right)$ will be a measure space.

Proposition. Let $\mathcal{B}_0 = \{E \subseteq \mathbb{R} \mid E \text{ is Lebesgue measurable}\}$. Then (1) $\emptyset, \mathbb{R} \in \mathcal{B}_0$; (2) $E \in \mathcal{B}_0 \Rightarrow E^{\mathbb{C}} \in \mathcal{B}_0$; $(3) \ E_1, E_2 \in \mathcal{B}_0 \Longrightarrow E_1 \cap E_2, E_1 \cup E_2, E_1 \setminus E_2 \in \mathcal{B}_0.$

Proof. (1) $\emptyset \in \mathcal{B}_0$ since $m^*(T) = m^*(T \cap \emptyset) + m^*(T \cap \emptyset^{\mathbb{C}}) = 0 + m^*(T)$; similarly for \mathbb{R} .

(2) If *E* is Lebesgue measurable then $\forall T \subseteq \mathbb{R}$,

$$m^{*}(T) = m^{*}(T \cap E) + m^{*}(T \cap E^{C}) = m^{*}(T \cap (E^{C})^{C}) + m^{*}(T \cap E^{C})$$

(3) Let $E_1, E_2 \in \mathcal{B}_0$. Then

$$m^{*}(T \cap (E_{1} \cup E_{2})) = m^{*}(T \cap (E_{1} \coprod (E_{2} \cap E_{1}^{C}))))$$

$$\leq m^{*}(T \cap E_{1}) + m^{*}(T \cap (E_{2} \cap E_{1}^{C}))$$

$$m^{*}(T \cap (E_{1} \cup E_{2})^{C}) = m^{*}(T \cap (E_{1}^{C} \cap E_{2}^{C}))$$

$$= m^{*}((T \cap E_{1}^{C}) \cap E_{2}^{C})$$

$$= m^{*}(T \cap E_{1}^{C}) - m^{*}(T \cap E_{1}^{C} \cap E_{2})$$

because if we apply Carathéodory's criterion for E_2 using the test set $T \cap E_1^C$ we get

$$m^*(T \cap E_1^{\mathsf{C}}) = m^*(T \cap E_1^{\mathsf{C}} \cap E_2) + m^*(T \cap (E_1^{\mathsf{C}} \cap E_2^{\mathsf{C}}))$$

Adding these estimates gives

$$m^*(T \cap (E_1 \cup E_2)) + m^*(T \cap (E_1 \cup E_2)^{C}) \le m^*(T \cap E_1) + m^*(T \cap E_1^{C}) = m^*(T)$$

The reverse inequality is always true (see the remark above) so $E_1 \cup E_2 \in \mathcal{B}_0$. The remainder (intersections, differences, etc.) follow from that already shown and de Morgan's laws.

Lemma. m^* is finitely additive on \mathcal{B}_0 .

Proof. We require that given $E_1, \ldots, E_n \in \mathcal{B}_0$ pairwise disjoint, $m^*(\coprod_{i=1}^n E_i) = \sum_{i=1}^n m^*(E_i)$. Apply Carathéodory's criterion for E_n with test set $T = \coprod_{i=1}^n E_i$:

$$m^{*}(T) = m^{*}(T \cap E_{n}) + m^{*}(T \cap E_{n}^{C})$$

= $m^{*}(E_{n}) + m^{*}(\coprod_{i=1}^{n-1} E_{i})$
= $\sum_{i=1}^{n} m^{*}(E_{i})$

and the result follows by induction.

Exercise. Prove that if $E_1, \ldots, E_n \in \mathcal{B}_0$ are pairwise disjoint then $\forall T \subseteq \mathbb{R}$,

$$m^*(T \cap \coprod_{i=1}^n E_i) = \sum_{i=1}^n m^*(T \cap E_i).$$

Proposition. \mathcal{B}_0 is a σ -algebra.

Proof. We already know that \mathcal{B}_0 is an algebra so we need only check that given $\{E_i\}_{i=1}^{\infty}$ in \mathcal{B}_0 the union $\bigcup_{i=1}^{\infty} E_i \in \mathcal{B}_0$.

Step 1: It is possible to assume without loss of generality that this collection of sets is a collection of pairwise disjoint sets.

Proof: Let $E'_i = E_i \setminus \bigcup_{j=1}^{i-1} E_j$. These are in \mathcal{B}_0 because we know that \mathcal{B}_0 is closed under finite unions and set differences. Also, $\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} E'_i$ and $E'_i \cap E'_j = \emptyset$ for $i \neq j$.

So we can assume that the E_i are pairwise disjoint.

Step 2: $\forall T \subseteq \mathbb{R}$, $m^*(T) = m^*(T \cap \coprod_{i=1}^{\infty} E_i) + m^*(T \setminus \coprod_{i=1}^{\infty} E_i)$.

Proof: (\leq) follows from the σ -sub-additivity of m^* .

 $(\geq) \forall N \in \mathbb{N}$, $\coprod_{i=1}^{N} E_i \in \mathcal{B}_0$ since \mathcal{B}_0 is an algebra of sets. Therefore, $\forall T \subseteq \mathbb{R}$,

$$m^{*}(T) = m^{*}\left(T \cap \coprod_{i=1}^{N} E_{i}\right) + m^{*}\left(T \setminus \coprod_{i=1}^{N} E_{i}\right)$$
$$= \sum_{i=1}^{N} m^{*}\left(T \cap E_{i}\right) + m^{*}\left(T \setminus \coprod_{i=1}^{N} E_{i}\right)$$
$$\geq \sum_{i=1}^{N} m^{*}\left(T \cap E_{i}\right) + m^{*}\left(T \setminus \coprod_{i=1}^{\infty} E_{i}\right)$$

So for each $N \in \mathbb{N}$, $m^*(T) \ge \sum_{i=1}^N m^*(T \cap E_i) + m^*(T \setminus \coprod_{i=1}^\infty E_i)$. Passing to the limit as $N \to \infty$:

$$m^{*}(T) \geq \sum_{i=1}^{\infty} m^{*}(T \cap E_{i}) + m^{*}(T \setminus \coprod_{i=1}^{\infty} E_{i})$$
$$\geq m^{*}(T \cap \coprod_{i=1}^{\infty} E_{i}) + m^{*}(T \setminus \coprod_{i=1}^{\infty} E_{i})$$

Proposition. m^* is σ -additive on \mathcal{B}_0 .

Proof. We need to show that if $\{E_i\}_{i=1}^{\infty}$ in \mathcal{B}_0 are pairwise disjoint then

$$m^*(\coprod_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} m^*(E_i).$$

 (\leq) is the σ -sub-additivity of m^* .

(≥) By monotonicity, $\forall N \in \mathbb{N}$, $m^*(\coprod_{i=1}^{\infty} E_i) \ge m^*(\coprod_{i=1}^{N} E_i)$, which equals $\sum_{i=1}^{N} m^*(E_i)$ by finite additivity. Since this holds for all N, $m^*(\coprod_{i=1}^{\infty} E_i) \ge \sum_{i=1}^{\infty} m^*(E_i)$.

Proposition. Intervals are Lebesgue measurable.

Proof. Let $I \in \text{Int}$. We need to show that $\forall T \subseteq \mathbb{R}$,

$$m^*(T) = m^*(T \cap I) + m^*(T \cap I^{\mathsf{C}}).$$

 (\leq) is always true.

(\geq) Fix $\varepsilon > 0$ and let $\{I_k\}_{k=1}^{\infty}$ be a cover of T by intervals I_k such that $m^*(T) \geq \sum_{k=1}^{\infty} \ell(I_k) - \varepsilon$. Then

$$m^{*}(T \cap I) \leq m^{*}(\bigcup_{k=1}^{\infty} I_{k} \cap I) \leq \sum_{k=1}^{\infty} m^{*}(I_{k} \cap I)$$
$$m^{*}(T \cap I^{C}) \leq \sum_{k=1}^{\infty} m^{*}(I_{k} \cap I^{C})$$

So

$$m^*(T \cap I) + m^*(T \cap I^{\mathcal{C}}) \leq \sum_{k=1}^{\infty} \left(m^*(I_k \cap I) + m^*(I_k \cap I^{\mathcal{C}}) \right)$$

If we knew that $m^*(I_k \cap I) + m^*(I_k \cap I^C) = m^*(I_k)$ then we would have

$$\operatorname{RHS} \leq \sum_{k=1}^{\infty} m^*(I_k) \leq m^*(T) + \varepsilon$$

Passing to the limit as $\varepsilon \to 0$ would prove (\leq). So we need only prove that $\forall k \in \mathbb{N}$,

$$m^*(I_k \cap I) + m^*(I_k \cap I^{\mathbb{C}}) = m^*(I_k).$$

Int forms a semi-algebra and so $I_k \cap I \in \text{Int}$, $I \cap I^{\mathbb{C}} = \prod_{i=1}^n J_i$ with $J_i \in \text{Int}$. It follows that

$$m^*(I_k \cap I) + m^*(I_k \cap I^{\mathsf{C}}) = \ell(I_k \cap I) + \sum_{i=1}^n \ell(J_i)$$
$$= \ell((I_k \cap I) \coprod (\coprod_{i=1}^n J_i))$$
$$= \ell(I_k)$$
$$= m^*(I_k)$$

Theorem. There exists a σ -algebra \mathcal{B}_0 of subsets of \mathbb{R} and a set function $m: \mathcal{B}_0 \to [0, \infty]$ such that (1) $\mathcal{B}_0 \supseteq \operatorname{Int};$ (2) m is σ -additive; (3) $m(I) = \ell(I)$ for $I \in \operatorname{Int}$.

Notation and Terminology. (1) $m = m^* \Big|_{B_0}$ is called *Lebesgue measure*.

- (2) \mathcal{B}_0 is the σ -algebra of Lebesgue measurable subsets.
- (3) $(\mathbb{R}, \mathcal{B}_0, m)$ is Lebesgue's measure space (on \mathbb{R}).

Properties of Lebesgue Measure

Proposition. (Translation-invariance) If $E \in \mathcal{B}_0$ and $x \in \mathbb{R}$ then m(E) = m(x + E).

Proof. It is obvious that $\ell: \operatorname{Int} \to [0,\infty]$ is translation-invariant. It follows that m^* is translation-invariant. We would like to now say that $m = m^*|_{\mathcal{B}_0}$ is also translation-invariant. However, we don't know that $E \in \mathcal{B}_0 \Longrightarrow x + E \in \mathcal{B}_0$. Let $T \subseteq \mathbb{R}$.

$$m^{*}(T \cap (x+E)) + m^{*}(T \setminus (x+E)) = m^{*}(x + ((-x+T) \cap E)) + m^{*}(x + ((-x+T) \cap E^{C}))$$

= $m^{*}((-x+T) \cap E) + m^{*}((-x+T) \cap E^{C})$
= $m^{*}(-x+T)$
= $m^{*}(T)$

So *m* is translation-invariant.

Definition. A measure space (X, \mathcal{F}, μ) is called σ -finite if $\exists F_i \in \mathcal{F}$ such that $X = \bigcup_{i=1}^{\infty} F_i$ and $\mu(F_i) < \infty$.

A measure space (X, \mathcal{F}, μ) is called a *probability space* if $\mu(X) = 1$.

Proposition. $(\mathbb{R}, \mathcal{B}_0, m)$ is σ -finite.

Proof. Take

$$F_n = \begin{cases} [k, k+1) & n = 2k \\ [-k, -k+1) & n = 2k+1 \end{cases}$$

Definition. Let (X, \mathcal{F}, μ) be a measure space. $A \subseteq X$ is called μ -negligible (or μ -null) if $\inf \{ \mu(E) \mid A \subseteq E \in \mathcal{F} \} = 0$. (X, \mathcal{F}, μ) is called *complete* if every μ -null set is in \mathcal{F} .

Proposition. $(\mathbb{R}, \mathcal{B}_0, m)$ is complete.

Proof. Suppose A is a null set. Fix $\varepsilon > 0$ and find an $E \in \mathcal{B}_0$ such that $A \subseteq E$ and $\mu(E) < \varepsilon/2$. Since $m = m^*|_{\mathcal{B}_0}$ there must exist a cover of E by a countable collection of intervals $\{I_k\}_{k=1}^{\infty}$ such that

$$\sum_{k=1}^{\infty} \ell(I_k) \le m^*(E) + \varepsilon/2 < \varepsilon$$

Clearly $A \subseteq E$ is covered by $\bigcup_{k=1}^{\infty} I_k$ as well. So

$$m^*(A) \leq \sum_{k=1}^{\infty} \ell(I_k) < \varepsilon$$

Since $\varepsilon > 0$ was arbitrary, $m^*(A) = 0$. This implies that $A \in \mathcal{B}_0$ because

$$m^{*}(T) \leq m^{*}(T \cap A) + m^{*}(T \setminus A)$$
$$\leq m^{*}(A) + m^{*}(T)$$
$$= m^{*}(T)$$

and so $m^*(T) = m^*(T \cap A) = m^*(T \setminus A)$.

We will now work towards the following result:

Proposition. *Open and closed subsets of* \mathbb{R} *are Lebesgue measurable.*

Lemma. (Lindelöf's Lemma) Every open subset of \mathbb{R} is a countable union of open intervals.

Proof. Fix an open set $U \subseteq \mathbb{R}$. Every $x \in U$ has a neighbourhood such that $(x - \varepsilon_x, x + \varepsilon_x) \subseteq U$. Choose $x - \varepsilon_x < \alpha_x < x < \beta_x < x + \varepsilon_x$ such that $\alpha_x, \beta_x \in \mathbb{Q}$. Clearly $U = \bigcup_{x \in \mathbb{Q}} (\alpha_x, \beta_x)$. The cardinality of the cover $\{(\alpha_x, \beta_x)\}_{x \in U}$ is at most $|\mathbb{Q} \times \mathbb{Q}| = \aleph_0$.

Definition. The smallest σ -algebra of subsets of \mathbb{R} containing all open sets is called the *Borel* σ -algebra and is denoted $\mathcal{B}(\mathbb{R})$. Elements of $\mathcal{B}(\mathbb{R})$ are called *Borel sets*.

Remark. Assignment 1 proves that the smallest σ -algebra containing a given collection actually exists.

Lemma. All intervals, open sets and closed sets are Borel sets.

Proof. Open sets are Borel because, by Lindelöf's Lemma, they are countable unions of open intervals. Closed sets are complements of open sets, and so are Borel. Intervals (a,b) and [a,b] are Borel because they are open and closed respectively.

$$(a,b] = (a,c) \cup [c,b]$$
 for any $c \in (a,b)$

so (a,b] is Borel. Similarly for [a,b).

Note. We can define the Borel σ -algebra for any topological space (X, \mathcal{T}) : simply close \mathcal{T} under complementation.

Proposition. $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{B}_0$; *i.e.*, every Borel set is Lebesgue measurable.

Proof. Define $\mathcal{F} = \{ E \in \mathcal{B}(\mathbb{R}) \mid E \in \mathcal{B}_0 \}$. We prove that $\mathcal{F} \supseteq \mathcal{B}(\mathbb{R})$ by showing

(1) \mathcal{F} contains the open sets;

(2) \mathcal{F} is a σ -algebra.

The proposition then follows, since $\mathcal{B}(\mathbb{R})$ is the smallest σ -algebra contains the open sets.

(1) Suppose $U \subseteq \mathbb{R}$ is open. By Lindelöf's Lemma there are open intervals $\{I_k\}_{k=1}^{\infty}$ such that $U = \bigcup_{k=1}^{\infty} I_k$. Intervals are Lebesgue measurable and \mathcal{B}_0 is a σ -algebra. So $U \in \mathcal{B}_0$. $\mathcal{B}(\mathbb{R}) \supseteq \{\text{open sets}\}$ so $U \in \mathcal{B}(\mathbb{R})$ so $U \in \mathcal{F}$.

(2) $\emptyset \in \mathcal{F}$ is trivial.

 $E \in \mathcal{F} \Rightarrow E^{C} \in \mathcal{F}$ since

$$E \in \mathcal{F} \Leftrightarrow E \in \mathcal{B}(\mathbb{R}), E \in \mathcal{B}_{0}$$
$$\Leftrightarrow E^{C} \in \mathcal{B}(\mathbb{R}), E \in \mathcal{B}_{0}$$
$$\Leftrightarrow E^{C} \in \mathcal{F}$$

 $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{F} \Longrightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{F}$ because

$$\begin{split} \{E_i\}_{i=1}^{\infty} &\subseteq \mathcal{F} \Leftrightarrow \forall i, E_i \in \mathcal{B}(\mathbb{R}), E_i \in \mathcal{B}_0 \\ \Rightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{B}(\mathbb{R}), \bigcup_{i=1}^{\infty} E_i \in \mathcal{B}_0 \\ \Rightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{F} \end{split}$$

Theorem. (Regularity Theorem) If $E \in \mathcal{B}_0$, then $\varepsilon > 0$ there are sets $F \subseteq E \subseteq U$ such that F is closed, U is open, and $m(U \setminus F) < \varepsilon$. Moreover, if $m(E) < \infty$ then F can be chosen to be compact.

Remark. Informally, this says that every measurable set is approximately open and approximately closed.

Proof. Step 1: Constructing U. Define $E_n = [n, n+1)$ for $n \in \mathbb{Z}$. By definition, $m(E_n) = m^*(E_n)$, so for every $\varepsilon_n > 0$ there is a countable cover of E_n by intervals $\langle a_k^{(n)}, b_k^{(n)} \rangle$ such that

$$\sum_{k=1}^{\infty} \ell\left(\!\left\langle a_k^{(n)}, b_k^{(n)} \right\rangle\!\right) \le m^*(E_n) + \varepsilon_n$$

If $I_k^{(n)} = (a_k^{(n)} - \varepsilon_n / 2^{k+1}, b_k^{(n)} + \varepsilon_n / 2^{k+1})$ then $E_n \subset \bigcup_{k=1}^{\infty} I_k^{(n)}$ and

$$m(E_n) \ge \sum_{k=1}^{\infty} \left(\ell(I_k^{(n)}) - 2 \frac{\varepsilon_n}{2^{k+1}} \right) - \varepsilon_n$$
$$= \sum_{k=1}^{\infty} \ell(I_k^{(n)}) - 2\varepsilon_n$$

.

Define $U_n = \bigcup_{k=1}^{\infty} I_k^{(n)}$ and $U = \bigcup_{n \in \mathbb{Z}} U_n$. Note that $U \supseteq E$ and that

$$m(U \setminus E) \leq \sum_{n \in \mathbb{Z}} m(U_n \setminus E)$$
$$\leq \sum_{n \in \mathbb{Z}} m(U_n \setminus E_n)$$
$$= \sum_{n \in \mathbb{Z}} (m(U_n) - m(E_n))$$

$$\leq \sum_{n \in \mathbb{Z}} \sum_{k=1}^{\infty} \ell(I_k^{(n)}) - m(E_n)$$
$$\leq \sum_{n \in \mathbb{Z}} 2\varepsilon_n$$
$$= 2\sum_{n \in \mathbb{Z}} \varepsilon_n$$

Now choose $\varepsilon_n = \varepsilon / 2^{|n|+10}$ to obtain

$$m(U \setminus E) \le 2\varepsilon \left(\sum_{n=0}^{\infty} \frac{1}{2^{n+10}} + \sum_{n=1}^{\infty} \frac{1}{2^{n+10}} \right) < 2\varepsilon \left(\frac{1}{8} + \frac{1}{8} \right) = \varepsilon/2$$

This shows that $\forall E \in \mathcal{B}_0$, $\forall \varepsilon > 0$, $\exists U$ open, such that $U \supseteq E$ and $m(U \setminus E) < \varepsilon/2$.

Step 2: Constructing F. Apply Step 1 to $E^{\mathbb{C}}$ to obtain an open set $V \supseteq E^{\mathbb{C}}$ such that $m(V \setminus E^{\mathbb{C}}) < \varepsilon/2$. Then $F = V^{\mathbb{C}}$ satisfies F closed, $F \subseteq E$ and

$$m(E \setminus F) = m(E \cap V) = m(V \setminus E^{C}) < \varepsilon/2$$
.

Taken together, Steps 1 and 2 give $F \subseteq E \subseteq U$ such that

$$m(U \setminus F) \le m(U \setminus E) + m(E \setminus F)$$

$$< \varepsilon/2 + \varepsilon/2$$

$$= \varepsilon$$

Step 3: Compact Lower Bound. Suppose $m(E) < \infty$. Use Steps 1 and 2 to obtain F closed such that $m(E \setminus F) < \varepsilon/2$. For each n set $F_n = F \cap [-n, n]$. This set is closed and bounded, hence compact. We also have $F_n \uparrow F$, so $E \setminus F_n \downarrow E \setminus F$. By assumption, $m(E) < \infty$, so $m(E \setminus F_n) \rightarrow m(E \setminus F)$ as $n \rightarrow \infty$, and $m(E \setminus F) < \varepsilon/2 < \infty$. It follows that we can choose n large enough so that $m(E \setminus F_n) < \varepsilon$. F_n is our suitable compact set.

Corollary. (Structure of Lebesgue Measurable Sets) If $E \in \mathcal{B}_0$ then there is a $B \in \mathcal{B}(\mathbb{R})$ and a null set N such that $E = B\Delta N = (B \setminus N) \cup (N \setminus B)$.

Proof. Take $U_n \supseteq E$ open such that $m(U_n \setminus E) < 1/n$ and consider $B = \bigcap_{n=1}^{\infty} U_n$. Then $E = B \setminus (B \setminus E)$, B is Borel, and $B \setminus E$ is null.

Alternatively, take $F_n \subseteq E$ closed such that $m(E \setminus F_n) < 1/n$ and consider $B = \bigcup_{n=1}^{\infty} U_n$.

Sets that are not Lebesgue Measurable

Theorem. (Vitali's Theorem) There exists a subset of [0,1] that is not Lebesgue measurable.

Idea. Show that [0,1] can be written as a countable pairwise disjoint union $[0,1] = \coprod_{k=1}^{\infty} A_k$ of sets A_k such that if A_1 is measurable then all A_k are measurable and have the same measure as A_1 . This implies that A_1 is not measurable because otherwise

$$1 = m([0,1]) = m(\coprod_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} m(A_k) = m(A_1) + m(A_1) + \dots$$

which is impossible since if $m(A_1) > 0$ the RHS is infinite, and if $m(A_1) = 0$ then RHS is 0. We construct a suitable A_1 using the translation-invariance of \mathcal{B}_0 and m.

Proof. Define a binary operation on [0,1) by

$$x \oplus y = \begin{cases} x+y & x+y \in [0,1) \\ x+y-1 & x+y \ge 1 \end{cases}$$

Step 1. $([0,1], \oplus)$ is an Abelian group.

Proof. $x \oplus y$ is determined by the two conditions $x \oplus y \in [0,1)$ and $e^{2\pi i (x \oplus y)} = e^{2\pi i x} e^{2\pi i y}$. Commutativity:

$$e^{2\pi i (x \oplus y)} = e^{2\pi i x} e^{2\pi i y}$$
$$= e^{2\pi i y} e^{2\pi i x}$$
$$= e^{2\pi i (y \oplus x)}$$

Associativity:

$$e^{2\pi i (x \oplus (y \oplus z))} = e^{2\pi i x} \left(e^{2\pi i y} e^{2\pi i z} \right)$$
$$= \left(e^{2\pi i x} e^{2\pi i y} \right) e^{2\pi i z}$$
$$= e^{2\pi i ((x \oplus y) \oplus z)}$$

The neutral element is 0 and the inverse of x, -x = 1 - x.

Step 2. \mathcal{B}_0 and *m* are \oplus -invariant.

Proof. Write $A = A_1 \coprod A_2$ where $A_1 = A \cap [0, 1-x)$, $A_2 = A \cap [1-x, 1)$. If $A \in \mathcal{B}_0$ then $A_1, A_2 \in \mathcal{B}_0$ and

$$x \oplus A = x \oplus (A_1 \coprod A_2)$$

= $(x \oplus A_1) \coprod (x \oplus A_2)$
= $(x + A_1) \coprod ((x - 1) + A_2)$

Since \mathcal{B}_0 is +-invariant, $x + A_1, (x-1) + A_2 \in \mathcal{B}_0$ and so $x \oplus A \in \mathcal{B}_0$. Since *m* is +-invariant, $m(x \oplus A) = m(A_1) + m(A_2) = m(A)$.

Step 3. Obtain a partition by defining an equivalence relation on [0,1) by $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$ (it is easy to see \sim is an equivalence relation). Let

$$[x] = \{ y \in [0,1) \mid x \sim y \}$$

be the equivalence class of \sim containing x.

We wish to choose a representative from each class. Formally, let $\mathcal{E} = \{ [x] \mid x \in [0,1) \}$ be the collection of equivalence classes. Using the Axiom of Choice find a choice function $f : \mathcal{E} \to [0,1)$ such that $f([x]) \in [x]$ (f is our law that "chooses" a representative).

Define $A = \{ f([x]) \mid x \in [0,1) \} =$ the collection of representatives, and enumerate $\mathbb{Q} \cap [0,1)$ as $\{q_k\}_{k=1}^{\infty}$. We claim that if $A_k = q_k \oplus A$ then $[0,1] = \coprod_{k=1}^{\infty} A_k$, i.e. (1) $[0,1] = \bigcup_{k=1}^{\infty} A_k$; (2) $i \neq j \Rightarrow A_i \cap A_j = \emptyset$.

Proof of (1). It is enough to show that $[0,1] \subseteq \bigcup_{k=1}^{\infty} A_k$. Suppose $y \in [0,1]$. y is equivalent to the representative of its class, whence $y - f([x]) = q' \in \mathbb{Q}$.

If $q' \in [0,1)$ set q = q' and observe that $y = q + f([y]) = q \oplus f([y]) \in q \oplus A$.

If not then $q' = y - f([y]) \in (-1,0)$. In this case define $q = q' + 1 \in \mathbb{Q} \cap [0,1)$ and note that $y = q + f([y]) - 1 = q \oplus f([y]) \in q \oplus A$. In either case, $\exists q \in \mathbb{Q} \cap [0,1)$ such that $y \in q \oplus A$. By definition, $\exists k$ such that $q = q_k$ and $y \in q_k + A = A_k$.

Proof of (2). Suppose $y \in A_i \cap A_j$. Then $q_i \oplus f([y]) = y = q_j \oplus f([y])$. Add 1 - f([y]) mod 1 to both sides to obtain $q_i = q_j$, i.e. i = j.

This argument implies that A, A_1, A_2, \ldots are all non-measurable since if one of them were measurable then by Step 1 all would be measurable with equal measure. This contradicts σ -additivity because we have

$$1 = m([0,1)) = m(\coprod_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} m(A_k) = \sum_{k=1}^{\infty} m(A) \in \{0,\infty\}$$

Warning. Whenever the Axiom of Choice is used, measurability problems may arise.

2. INTEGRATION

Aim. To define the integral of a suitable function with respect to a measure on a measurable space.

Measurable Functions

Let (X, \mathcal{F}) be a measurable space.

Notation. We use the following shorthand notation for sets: if $f: X \to [-\infty, \infty]$ is a function then

$$[f < t] = \{x \in X \mid f(x) < t\}$$
$$[f \in B] = \{x \in X \mid f(x) \in B\}$$
$$[a \le f \le b] = \{x \in X \mid a \le f(x) \le b\}$$

etc.

Definition. Let (X, \mathcal{F}) be a measurable space and $f : X \to [-\infty, \infty]$ a function. We say that f is \mathcal{F} -measurable if $\forall t \in \mathbb{R}$, $[f < t] \in \mathcal{F}$.

Proposition. The following are all equivalent: (1) $f: X \to \mathbb{R}$ is \mathcal{F} -measurable; (2) $\forall t \in \mathbb{R}, [f > t] \in \mathcal{F}$; (3) $\forall a, b \in \mathbb{R}, [a < f < b] \in \mathcal{F}$; (4) $\forall B \in \mathcal{B}(\mathbb{R}), f^{-1}(B) \in \mathcal{F}$ and $f^{-1}(-\infty), f^{-1}(\infty) \in \mathcal{F}$.

Proof. (1) \Rightarrow (2). Fix t. Then

$$\begin{bmatrix} f > t \end{bmatrix} = \begin{bmatrix} f \le t \end{bmatrix}^{C}$$
$$= \begin{bmatrix} \forall n, f < t + \frac{1}{n} \end{bmatrix}$$
$$= \left(\bigcap_{n=1}^{\infty} \begin{bmatrix} f < t + \frac{1}{n} \end{bmatrix}\right)^{C}$$
$$\in \mathcal{F}$$

since \mathcal{F} is a σ -algebra.

(2)⇒(3).

$$\begin{bmatrix} a < f < b \end{bmatrix} = \begin{bmatrix} f > a \end{bmatrix} \cap \begin{bmatrix} f < b \end{bmatrix}$$
$$= \begin{bmatrix} f > a \end{bmatrix} \cap \begin{bmatrix} f \ge b \end{bmatrix}^{C}$$
$$= \begin{bmatrix} f > a \end{bmatrix} \cap \begin{bmatrix} \forall n, f > b - \frac{1}{n} \end{bmatrix}^{C}$$

$$= [f > a] \cap \left(\bigcap_{n=1}^{\infty} [f > b - \frac{1}{n}]\right)^{C}$$

 $\in \mathcal{F}$

(3) \Rightarrow (4). Define $C = \{B \in \mathcal{B}(\mathbb{R}) \mid f^{-1}(B) \in \mathcal{F}\}$. We show

- (a) C contains all open sets;
- (b) C is a σ -algebra;

(c) $\mathcal{B}(\mathbb{R})$ is the smallest σ -algebra containing the open sets, so $\mathcal{C} \supseteq \mathcal{B}(\mathbb{R})$, and we are done once we check that $f^{-1}(-\infty), f^{-1}(\infty) \in \mathcal{F}$.

(a) (3) $\Leftrightarrow f^{-1}(I) \in \mathcal{F}$ for all open intervals I. By Lindelöf, every open set $U \subseteq \mathbb{R}$ can be written as $U = \bigcup_{k=1}^{\infty} I_k$, I_k open intervals. Observe

$$f^{-1}(U) = f^{-1}\left(\bigcup_{k=1}^{\infty} I_{k}\right)$$

= { $x \in X \mid f(x) \in I_{k}$ for some k }
= $\bigcup_{k=1}^{\infty} \{x \in X \mid f(x) \in I_{k}\}$
= $\bigcup_{k=1}^{\infty} f^{-1}(I_{k})$
 $\in \mathcal{F}$

(b) Exercise.

(c) (a) and (b) imply $B \in \mathcal{B}(\mathbb{R}) \Rightarrow f^{-1}(B) \in \mathcal{F}$. We now need only check that $f^{-1}(-\infty)$ and $f^{-1}(\infty) \in \mathcal{F}$:

$$f^{-1}(\infty) = [f = \infty]$$

= $[\forall n, f > n]$
= $\bigcap_{n=1}^{\infty} [f > n]$
 $\in \mathcal{F}$
$$f^{-1}(-\infty) = [f = -\infty]$$

= $[\forall n, f < -n]$
= $\bigcap_{n=1}^{\infty} [f < -n]$
 $\in \mathcal{F}$

 $(4) \Rightarrow (1)$ is trivial.

Proposition. Suppose $f_1, \ldots, f_n : X \to \mathbb{R}$ are \mathcal{F} -measurable. If

$$\left\{\left(f_1(x),\ldots,f_n(x)\right)\in\mathbb{R}^n\mid x\in X\right\}\subseteq U$$

for some open set $U \subseteq \mathbb{R}^n$ and if $\phi: U \to \mathbb{R}: (t_1, \dots, t_n) \mapsto \phi(t_1, \dots, t_n)$ is continuous then $x \mapsto \phi(f_1(x), \dots, f_n(x))$ is \mathcal{F} -measurable.

Examples. (1) $f_1 + \ldots + f_n$ is \mathcal{F} -measurable (take $\phi(t_1, \ldots, t_n) = t_1 + \ldots + t_n$).

(2) $f_1 f_2 \dots f_n$ is \mathcal{F} -measurable.

(3) $\arcsin \log \sqrt{f_1 + f_2 f_3^{1/2}} + 1$ is \mathcal{F} -measurable provided

$$\{(f_1(x), f_2(x), f_3(x)) \in \mathbb{R}^3 \mid x \in X\} \subseteq \operatorname{domain}(\phi)$$

where $\phi(t_1, t_2, t_3) = \arcsin \log \sqrt{t_1 + t_2 t_3^{1/2}}$.

Proof. Suppose $V \subseteq \mathbb{R}^n$ is open. Then there is a countable collection of open boxes

$$C_k = \left(a_1^{(k)}, b_1^{(k)}\right) \times \ldots \times \left(a_n^{(k)}, b_n^{(k)}\right)$$

such that $V = \bigcup_{k=1}^{\infty} C_k$ (prove this). Fix $t \in \mathbb{R}$. We show that $[\phi(f_1, \dots, f_n) > t] \in \mathcal{F}$. Since ϕ is continuous, $V = \{(s_1, \dots, s_n) \in \mathbb{R}^n \mid \phi(s_1, \dots, s_n) > t\}$ is open. Find boxes $\{C_k\}_{k=1}^{\infty}$ such that $V = \bigcup_{k=1}^{\infty} C_k$. Now calculate

$$\begin{split} \left[\phi(f_1, \dots, f_n) > t \right] &= \left\{ x \in X \mid (f_1(x), \dots, f_n(x)) \in V \right\} \\ &= \left\{ x \in X \mid (f_1(x), \dots, f_n(x)) \in \bigcup_{k=1}^{\infty} C_k \right\} \\ &= \bigcup_{k=1}^{\infty} \left\{ x \in X \mid f_i(x) \in (a_i^{(k)}, b_i^{(k)}), 1 \le i \le n \right\} \\ &= \bigcup_{k=1}^{\infty} \bigcap_{i=1}^{\infty} \left[a_i^{(k)} < f_i < b_i^{(k)} \right] \\ &\in \mathcal{F} \end{aligned}$$

This shows that $\forall t \in \mathbb{R}, [\phi(f_1, \dots, f_n) > t] \in \mathcal{F}$.

Recall. For a sequence $\{a_n\}_{n=1}^{\infty}$, a *limit point* is the limit of a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$. The *limit superior* is $\limsup_{n\to\infty} a_n = \sup\{\liminf_{n\to\infty} \{\min_{n\to\infty} a_n = \max\{\min_{n\to\infty} a_n = \max\{\min_{n\to\infty} a_n = \max\{\min_{n\to\infty} a_n = \max\{\min_{n\to\infty} a_n = \max_{n\to\infty} a_n = \min_{n\to\infty} a_n = \min_{n\to\infty} a_n = \min_{n\to\infty} a_n$. We also have the following formulae:

$$\limsup_{n \to \infty} a_n = \inf_N \sup_{n > N} a_n,$$

$$\liminf_{n \to \infty} a_n = \sup_N \inf_{n > N} a_N.$$

Proposition. (Calculus of measurable functions.) If $\{f_n\}_{n=1}^{\infty}$ are \mathcal{F} -measurable functions then the following functions are also \mathcal{F} -measurable: (1) $f(x) = \sup_{n} f_n(x)$; $f(x) = \inf_{n} f_n(x)$; (It is essential that sup and inf are taken over a countable range of parameters.) (2) $f(x) = \limsup_{n \to \infty} f_n(x)$; $f(x) = \liminf_{n \to \infty} f_n(x)$; (3) $f_c(x) = \lim_{n \to \infty} f_n(x)$ if the limit exists, c otherwise; (4) $f(x) = \sum_{n=1}^{\infty} f_n(x)$ if the sum converges; $f(x) = \prod_{n=1}^{\infty} f_n(x)$ if the product converges.

Proof. (1) Suppose $f = \sup_{n} f_n$. Then $\forall t \in \mathbb{R}$,

$$[f < t] = [\sup_{n} f_{n} < t]$$
$$= [\exists k \text{ s.t. } \forall n, f_{n} < t - \frac{1}{k}]$$
$$= \bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} [f_{n} < t - \frac{1}{k}]$$
$$\in \mathcal{F}$$

since $[f_n < t - \frac{1}{k}] \in \mathcal{F}$ and \mathcal{F} is a σ -algebra. Since this holds $\forall t \in \mathbb{R}$, $f = \sup_n f_n$ is \mathcal{F} -measurable.

In the case of $\inf_n f_n$, observe that $\inf_n f_n = -\sup_n (-f_n)$. If f_n is \mathcal{F} -measurable so is $-f_n$, thus the result follows from the above.

(2) Suppose that $f = \limsup_{n \to \infty} f_n$. Recall that $\limsup_{n \to \infty} a_n = \inf_N \sup_{n > N} a_n$. By (1), $\forall N \in \mathbb{N}$, $x \mapsto \sup_{n > N} f_n(x)$ is \mathcal{F} -measurable. Again by (1), $x \mapsto \inf_N \sup_{n > N} f_n(x)$ is \mathcal{F} -measurable. A similar proof shows that $\liminf_{n \to \infty} f_n$ is \mathcal{F} -measurable.

(3) We start by showing that $[\lim_{n\to\infty} f_n(x) \text{ exists}] \in \mathcal{F}$. This is because

$$[\lim_{n \to \infty} f_n(x) \text{ exists}] = [\lim_{n \to \infty} f_n(x) \text{ does not exist}]^{\mathbb{C}}$$
$$= [\lim_{n \to \infty} \sup_{n \to \infty} f_n > \liminf_{n \to \infty} f_n]^{\mathbb{C}}$$
$$= [\exists q \in \mathbb{Q} \text{ s.t. } \limsup_{n \to \infty} f_n > q > \liminf_{n \to \infty} f_n]^{\mathbb{C}}$$

$$= X \setminus \bigcup_{q \in \mathbb{Q}} \left([\limsup_{n \to \infty} f_n > q] \cap [\liminf_{n \to \infty} f_n < q] \right)$$

and by (2) and the fact that \mathcal{F} is a σ -algebra. We now show that $[f_c < t] \in \mathcal{F} \quad \forall t \in \mathbb{R}$. Observe that

$$[f_c < t] = \begin{cases} ([\lim \text{ exists}] \cap [\lim \sup_{n \to \infty} f_n < t]) \cup [\lim \text{ exists}]^C & c < t \\ [\lim \text{ exists}] \cap [\lim \sup_{n \to \infty} f_n < t] & c \ge t \end{cases}$$

In both cases $[f_c < t] \in \mathcal{F}$.

(4) Exercise.

Examples of Measurable Functions

Definition. $f: E \to [-\infty, +\infty]$ is called *Lebesgue* (respectively *Borel*) *measurable* if it is measurable with respect to the Lebesgue (respectively Borel) σ -algebra.

Remarks. (1) Every Borel measurable function is Lebesgue measurable, since $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{B}_0$.

(2) Every continuous function $f:[a,b] \to \mathbb{R}$ is Borel (and hence Lebesgue) since [f < t] is open for all t, and open sets are Borel.

(3) Highly discontinuous functions can be Borel, too, such as the Dirichlet function:

$$D(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

This is Borel ($D = \mathbf{1}_{\odot}$) but is not continuous.

Definition. If *A* is a set the *indicator function* of *A* is

$$\mathbf{1}_{A}(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

Proposition. The indicator of A is Borel (respectively Lebesgue) measurable if and only if A is Borel (respectively Lebesgue).

Proof.

$$\begin{bmatrix} \mathbf{1}_{A} < t \end{bmatrix} = \begin{cases} \varnothing & t \le 0 \\ A^{\mathsf{C}} & 0 \le t \le 1 \\ \mathbb{R} & 1 < t \end{cases}$$

Definition. Let (X, \mathcal{F}) be a measurable space. A *simple function* is an $f: X \to \mathbb{R}$ of the form

$$f(x) = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{E_i}(x)$$

for some $n \in \mathbb{N}$, $\alpha_i \in \mathbb{R}$, $E_i \in \mathcal{F}$.

Warning. This is not the same as being a step function. A simple function is a step function if and only if all the E_i are intervals.

Theorem. (Basic Approximation) Let (X, \mathcal{F}) be a measurable space. Then $f: X \to \mathbb{R}$ is bounded and measurable if and only if $\forall \varepsilon > 0$ there is a simple function $\phi_{\varepsilon}: X \to \mathbb{R}$ such that $\forall x \in X$, $|f(x) - \phi_{\varepsilon}(x)| < \varepsilon$.

Proof. (\Leftarrow) Suppose $f: X \to \mathbb{R}$ is the uniform limit of simple functions, i.e. $\forall n \in \mathbb{N}$, $\exists \phi_n$ simple such that $\forall x \in X$, $|f(x) - \phi_n(x)| < 1/n$. Then

(1) f is measurable, because it is the limit of measurable functions.

(2) f is bounded, because $|f(x)| \le |\phi_1(x)| + 1 < \sup |\phi_1| + 1 < \infty$.

 (\Rightarrow) Suppose $f: X \to \mathbb{R}$ is bounded measurable.

MA359 MEASURE THEORY

(Divide the y-axis evenly by ε -strips, project on to x-axis.)

By assumption, f is bounded, so $M = \sup |f| < \infty$. Fix $\varepsilon > 0$ and choose $n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon$. Define

$$\phi_n(x) = \sum_{k=0}^{\lceil Mn \rceil} \frac{k}{n} \mathbf{1}_{\left[\frac{k}{n} \le f < \frac{k+1}{n}\right]}(x) + \sum_{k=-\lfloor Mn \rfloor}^{-1} \frac{k}{n} \mathbf{1}_{\left[\frac{k}{n} \le f < \frac{k+1}{n}\right]}(x).$$

This is a simple function. For all $x \in X$ there is a unique k such that $-\lfloor Mn \rfloor \le k < \lceil Mn \rceil$ and $\frac{k}{n} \le f(x) < \frac{k+1}{n}$, and for this $k f(x) \in \left[\frac{k}{n}, \frac{k+1}{n}\right]$, $\phi_n(x) = \frac{k}{n}$, and so $|f(x) - \phi_n(x)| < \frac{1}{n} < \varepsilon$.

Properties of Lebesgue Measurable Functions

Definition. Let (X, \mathcal{F}, μ) be a measure space and let *P* be a property of points $x \in X$. We say that *P* holds μ -almost everywhere $(\mu$ -a.e.) if $\mu(\{x \in X \mid \neg P(x)\}) = 0$

Examples. (1) $f_n \to f$ a.e. iff $\mu(\{x \in X \mid f_n(x) \not\rightarrow f(x)\}) = 0$. (2) f = g a.e. if $\mu([f \neq g]) = 0$.

Proposition. If $f:[a,b] \to [-\infty,\infty]$ is Lebesgue measurable and finite *m*-a.e. then $\forall \varepsilon, \delta > 0 \ \exists \phi \in C^1([a,b],\mathbb{R})$ such that $m\{x \in [a,b] \mid |f(x) - \phi(x)| > \varepsilon\} < \delta$.

Example. For the Dirichlet function $D = \mathbf{1}_{\mathbb{Q}}$ take $\phi(x) \equiv 0$ since $m[D - \phi| > 0] = m(\mathbb{Q}) = 0$.

Proof. (1) First prove for indicators.

(2) Generalize to simple functions.

(3) Generalize to bounded measurable functions.

(4) Generalize to all a.e.-finite measurable functions.

Step 1 – Indicators. Suppose $f = \mathbf{1}_E$, $E \subseteq [a,b]$ Lebesgue measurable. Using the regularity of Lebesgue measure find $K \subseteq E \subseteq U$, K compact, U open, such that $m(U \setminus K) < \delta$ for a given fixed $\delta > 0$. By Urysohn's Lemma there exists a continuous function ϕ such that $\phi|_K \equiv 1$, $\phi|_{U^c} \equiv 0$.

If $x \in K$ then $|\mathbf{1}_{E}(x) - \phi(x)| = |1 - 1| = 0$; if $x \in U^{C}$ then $|\mathbf{1}_{E}(x) - \phi(x)| = |0 - 0| = 0$. Therefore,

$$m[[\mathbf{1}_E - \phi] > \varepsilon] \leq m[\mathbf{1}_E \neq \phi] \leq m(U \setminus K) < \delta.$$

Step 2 – Simple Functions. Let $f = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{E_i}$. Find using Step 1 continuous functions ϕ_i such that $m[|\mathbf{1}_{E_i} - \phi_i| > \varepsilon_i] < \delta_i$, where $\varepsilon_i, \delta_i > 0$ will be determined later.

$$\left[\left|\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}} - \sum_{i=1}^{n} \alpha_{i} \phi_{i}\right| > \varepsilon\right] \subseteq \bigcup_{i=1}^{n} \left[\left|\mathbf{1}_{E_{i}} - \phi_{i}\right| > \frac{\varepsilon}{n|\alpha_{i}|}\right]$$
(*)

since if $x \in LHS$ then $|\alpha_i \mathbf{1}_{E_i}(x) - \alpha_i \phi_i(x)| > \frac{\varepsilon}{n}$ for at least one *i*, for otherwise we would have

$$\left|\sum_{i=1}^n \alpha_i \mathbf{1}_{E_i}(x) - \sum_{i=1}^n \alpha_i \phi_i(x)\right| \leq \sum_{i=1}^n |\alpha_i| |\mathbf{1}_{E_i}(x) - \phi_i(x)| < \sum_{i=1}^n |\alpha_i| \frac{\varepsilon}{n|\alpha_i|} = \varepsilon.$$

By (*),

$$m\left[\left|\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}} - \sum_{i=1}^{n} \alpha_{i} \phi_{i}\right| > \varepsilon\right] \leq \sum_{i=1}^{n} m\left[\left|\mathbf{1}_{E_{i}} - \phi_{i}\right| > \frac{\varepsilon}{n|\alpha_{i}|}\right]$$

Therefore, if we choose $\varepsilon_i = \frac{\varepsilon}{n|\alpha_i|}$, $\delta_i = \frac{\delta}{n}$, then

$$m\left[\left|\sum_{i=1}^{n}\alpha_{i}\mathbf{1}_{E_{i}}-\sum_{i=1}^{n}\alpha_{i}\phi_{i}\right|>\varepsilon\right]<\delta.$$

Step 3 – Bounded Measurable Functions. Suppose f is bounded measurable. By the Basic Approximation Theorem there is a simple function ϕ_1 such that $|f(x) - \phi_1(x)| < \varepsilon/2$ for all x. Using Step 2 find a continuous ϕ such that $m[|\phi_1 - \phi| > \varepsilon/2] < \delta$. Now note that

$$\left[\left| f - \phi \right| > \varepsilon \right] \subseteq \left[\left| f - \phi_{1} \right| > \varepsilon/2 \right] \cup \left[\left| \phi_{1} - \phi \right| > \varepsilon/2 \right]$$

and so

$$m\left[\left|f-\phi\right|>\varepsilon\right]\leq \underbrace{m\left[\left|f-\phi_{1}\right|>\varepsilon/2\right]}_{=0}+\underbrace{m\left[\left|\phi_{1}-\phi\right|>\varepsilon/2\right]}_{<\delta}.$$

Step 4 – General Case. Suppose $f:[a,b] \rightarrow [-\infty,\infty]$ is finite a.e. and measurable. Define

$$f_M(x) = \begin{cases} f(x) & |f(x)| \le M \\ 0 & \text{otherwise} \end{cases}$$

Note that $[f \neq f_M] = [[f| > M] \downarrow [[f| = \infty]]$. Since $[f \neq f_1] \subseteq [a, b]$ has finite measure, $m[f \neq f_M] \xrightarrow[M \to \infty]{\rightarrow} m[[f| = \infty] = 0$. Now choose M so large that $m[f \neq f_M] < \delta/2$ and use Step 3 to obtain a continuous ϕ such that $m[[f_M - \phi] > \varepsilon] < \delta/2$. The inclusion

$$\left[\left| f - \phi \right| > \varepsilon \right] \subseteq \left[\left| f_{M} - \phi \right| > \varepsilon \right] \cup \left[f \neq f_{M} \right]$$

implies that ϕ provides a suitable approximation.

Theorem. (Egoroff's Theorem) Suppose $f_n : E \to \mathbb{R}$ are Lebesgue measurable and that $E \in \mathcal{B}_0$ has finite measure. Assume that $f_n \xrightarrow[n\to\infty]{} f$ a.e. in E. Then $\forall \varepsilon > 0 \quad \exists K \subseteq E$ compact such that $m(E \setminus K) < \varepsilon$ and $f_n \xrightarrow[n\to\infty]{} f$ uniformly on K.

Proof. Define $G_{n,k} = \left\{ x \in E \mid |f_k(x) - f(x)| > \frac{1}{n} \right\}$. Set

$$G_N^{(n)} = \bigcup_{k=N+1}^n G_{n,k} = \left\{ x \in E \mid \exists k > N \text{ s.t. } |f_k(x) - f(x)| > \frac{1}{n} \right\}$$

Observe that $\{G_N^{(n)}\}_{N=1}^{\infty}$ is a decreasing sequence of sets and that

$$\bigcap_{N=1}^{\infty} G_N^{(n)} \subseteq [f_k \not\rightarrow f].$$

But $f_k \to f$ a.e. so $m(G_N^{(n)})_{N\to\infty} m(\bigcap_{N=1}^{\infty} G_N^{(n)}) = 0$. Therefore, $\forall n \in \mathbb{N}$, $\exists N_n \in \mathbb{N}$ such that $m(G_{N_n}^{(n)}) < \varepsilon/2^{n+1}$. Now consider $E' = E \setminus \bigcup_{n=1}^{\infty} G_{N_n}^{(n)}$. Then

$$m(E \setminus E') \leq m\left(\bigcup_{n=1}^{\infty} G_{N_n}^{(n)}\right) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2}.$$

If $x \in E'$ then $x \notin G_{N_n}^{(n)}$ and so

$$k > N_n \Longrightarrow |f_k(x) - f(x)| \le \frac{1}{n}$$

and so $f_n \to f$ uniformly on E'. Now apply the regularity of m to obtain a compact $K \subseteq E'$ with $m(E' \setminus K) < \varepsilon/2$. Check that K still satisfies the requirements.

Theorem. (Lusin's Theorem) If $f: E \to \mathbb{R}$ is Lebesgue measurable and $E \in \mathcal{B}_0$ has finite measure then $\forall \varepsilon > 0$ there is a compact $K \subseteq E$ such that $f|_K : K \to \mathbb{R}$ is uniformly continuous and $m(E \setminus K) < \varepsilon$.

Proof. Exercise.

Exercise. What happens when $f = D = \mathbf{1}_{\mathbb{Q}}$?

The Lebesgue Integral

What is $\int_0^1 f(t) dt$?

The regulated integral:

(1) step functions $\phi = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{I_i}, \ \alpha_i \in \mathbb{R}, \ I_i \in \text{Int}$:

$$\int \phi = \sum_{i=1}^n \alpha_i \ell(I_i).$$

(2) regulated functions f = uniform limit of step functions ϕ_n :

$$\int f = \lim_{n \to \infty} \int \phi_n \; .$$

The Lebesgue integral:

(1) simple functions $\phi = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{E_i}, \ \alpha_i \in \mathbb{R}, \ E_i \in \mathcal{B}_0$:

$$\int \phi = \sum_{i=1}^n \alpha_i m(E_i).$$

(2) bounded measurable functions f = uniform limit of simple functions ϕ_n :

$$\int f = \lim_{n \to \infty} \int \phi_n \; .$$

To make these ideas rigorous we start by integrating simple functions:

$$f = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{E_i}, \ E_i \in \mathcal{B}_0$$

Natural definition:

$$\int_{E} f = \sum_{i=1}^{n} \alpha_{i} m (E_{i} \cap E)$$
Problem. There are many representations of f of the form $\sum_{i=1}^{n} \alpha_i \mathbf{1}_{E_i}$, for instance

$$\mathbf{1}_{[0,2]} + \mathbf{1}_{[1,3]} = \mathbf{1}_{[0,1)} + 2 \cdot \mathbf{1}_{[1,2]} + \mathbf{1}_{(2,3]}$$

Solution. Choose a canonical representation such as

$$f(x) = \sum_{y \in f(\mathbb{R})} y \mathbf{1}_{[f=y]}(x)$$

Example.

$$sgn(x) = \begin{cases} x/|x| & x \neq 0 \\ 0 & x = 0 \end{cases}$$
$$sgn(\mathbb{R}) = \{-1, 0, 1\}$$
$$[sgn = -1] = (-\infty, 0)$$
$$[sgn = 0] = \{0\}$$
$$[sgn = 1] = (0, \infty)$$

Hence $sgn(x) = -1.1_{(-\infty,0)}(x) + 0.1_{\{0\}}(x) + 1.1_{(0,\infty)}(x)$.

Definition. If f is a (Lebesgue measurable) simple function and $E \in \mathcal{B}_0$ has finite measure the *integral of f over E with respect to m* is

$$\int_{E} f \, dm = \sum_{y \in f(\mathbb{R})} y . m \left(E \cap \left[f = y \right] \right).$$

Remark. We require $m(E) < \infty$ to prevent the following problem:

$$\int_{\mathbb{R}} \operatorname{sgn}(x) dm(x) = -1.m((-\infty, 0)) + 0.m(\{0\}) + 1.m((0, \infty))$$
$$= \infty - \infty$$
$$= \text{undefined}$$

Proposition. If f, g are simple functions, $\alpha, \beta \in \mathbb{R}$, $E \in \mathcal{B}_0$, $m(E) < \infty$, then (1) linearity: $\int_E \alpha f + \beta g = \alpha \int_E f + \beta \int_E g$; (2) monotonicity: $f \ge g \Rightarrow \int_E f \ge \int_E g$; (3) absolute value property: $\left| \int_E f \right| \le \int_E |f|$; (4) f = g a.e. $\Rightarrow \int_E f = \int_E g$;

(5)
$$E = E_1 \coprod E_2, \ E_i \in \mathcal{B}_0 \Longrightarrow \int_E f = \int_{E_1} f + \int_{E_2} f.$$

Proof. (1) We start by showing $\int_{E} f + g = \int_{E} f + \int_{E} g$. By definition

$$\begin{split} \int_{E} f + g &= \sum_{y \in (f+g)(\mathbb{R})} y.m(E \cap [f+g=y]) \\ &= \sum_{y \in f(\mathbb{R}) + g(\mathbb{R})} y.m(E \cap [f+g=y]) \\ &= \sum_{F \in f(\mathbb{R}), G \in g(\mathbb{R})} y.m(E \cap [f+g=y]) \\ &= \sum_{y \in f(\mathbb{R}) + g(\mathbb{R})} y \left(\sum_{F \in f(\mathbb{R}), G \in g(\mathbb{R})} m(E \cap [f=F,g=G]) \right) \\ &\left(\because [f+g=y] = \prod_{F \in f(\mathbb{R}), G \in g(\mathbb{R})} [f=F,g=G] \right) \\ &= \sum_{F \in f(\mathbb{R}), G \in g(\mathbb{R})} (F+G)m(E \cap [f=F] \cap [g=G]) \\ &= \sum_{F \in f(\mathbb{R})} F \sum_{G \in g(\mathbb{R})} m(E \cap [f=F] \cap [g=G]) + \sum_{G \in g(\mathbb{R})} G \sum_{F \in f(\mathbb{R})} m(E \cap [f=F]) \cap [g=G]) \\ &= \sum_{F \in f(\mathbb{R})} F.m(E \cap [f=F]) + \sum_{G \in g(\mathbb{R})} G.m(E \cap [g=G]) \\ &= \sum_{F \in f(\mathbb{R})} F.m(E \cap [f=F]) + \sum_{G \in g(\mathbb{R})} G.m(E \cap [g=G]) \\ &= \int_{E} f + \int_{E} g \end{split}$$

Now show that $\int_E cf = c \int_E f$.

$$(cf)(\mathbb{R}) = \{ cy \mid y \in f(\mathbb{R}) \}$$

$$\Rightarrow \qquad \int_{E} cf = \sum_{y \in f(\mathbb{R})} cy.m(E \cap [f = y]) = c \int_{E} f$$

(2) If $f \ge g$, $f - g \ge 0$, so all values of f - g are non-negative, so $\int_E f - g \ge 0$. Together with (1), this implies that $\int_E f - \int_E g \ge 0$, so $\int_E f \ge \int_E g$.

(3)
$$-|f| \le f \le |f|$$
, so $-\int_{E} |f| \le \int_{E} f \le \int_{E} |f|$, so $\left|\int_{E} f\right| \le \int_{E} |f|$.

(4), (5). Exercises.

We now integrate bounded measurable functions.

Proposition. Let $f: E \to \mathbb{R}$ be bounded measurable, $E \in \mathcal{B}_0$, $m(E) < \infty$. There exist simple functions $\phi_n: E \to \mathbb{R}$ such that $\phi_n \xrightarrow[n \to \infty]{} f$ uniformly on E and (1) $\{\int_E \phi_n\}$ always converges;

(2) its limit is independent of the choice of $\{\phi_n\}$.

Definition. The integral of f over E with respect to m is $\int_E f \, dm = \lim_{n \to \infty} \int_E \phi_n \, dm$.

Proof. The existence of $\phi_n \to f$ is the content of the Basic Approximation Theorem.

(1) By assumption, $\phi_n \underset{n \to \infty}{\to} f$ uniformly on E so $\varepsilon_n = \sup_E |\phi_n - f| \underset{n \to \infty}{\to} 0$. We check that the sequence $\{\int_E \phi_n\}$ is Cauchy:

$$\left|\int_{E}\phi_{m}-\int_{E}\phi_{n}\right|\leq\int_{E}\left|\phi_{m}-\phi_{n}\right|\leq m(E)\sup_{E}\left|\phi_{m}-\phi_{n}\right|.$$

But $\forall x \in E$,

$$|\phi_m(x)-\phi_n(x)| \leq |\phi_m(x)-f(x)|+|f(x)-\phi_n(x)| \leq \varepsilon_m+\varepsilon_n$$
.

So

$$\left|\int_{E}\phi_{m}-\int_{E}\phi_{n}\right|\leq m(E)(\varepsilon_{m}+\varepsilon_{n})\underset{n\to\infty}{\longrightarrow}0.$$

(2) Exercise.

Proposition. (Properties of the integral.) If f, g are bounded measurable functions, $\alpha, \beta \in \mathbb{R}, E \in \mathcal{B}_0, m(E) < \infty$, then (1) linearity: $\int_E \alpha f + \beta g = \alpha \int_E f + \beta \int_E g$; (2) monotonicity: $f \ge g \Rightarrow \int_E f \ge \int_E g$; (3) absolute value property: $\left| \int_E f \right| \le \int_E |f|$; (4) $\forall G \in \mathcal{B}_0, \int_E f \cdot \mathbf{1}_G = \int_{E \cap G} f$;

(5)
$$f = g \ a.e. \Rightarrow \int_{E} f = \int_{E} g;$$

(6) $E = E_1 \coprod E_2, \ E_i \in \mathcal{B}_0 \Rightarrow \int_{E} f = \int_{E_1} f + \int_{E_2} f.$

Proof. Let $\{\phi_n\}, \{\psi_n\}$ be sequences of simple functions tending to f, g uniformly on E as $n \to \infty$.

(1) Clearly $\alpha \phi_n + \beta \psi_n \xrightarrow[n \to \infty]{} \alpha f + \beta g$ uniformly on *E* since

$$\left|\left(\alpha\phi_n(x)+\beta\psi_n(x)\right)-\left(\alpha f(x)+\beta g(x)\right)\right|\leq \left|\alpha\right|\left|\phi_n(x)-f(x)\right|+\left|\beta\right|\left|\psi_n(x)-g(x)\right|.$$

Thus

$$\int_{E} \alpha f + \beta g = \int_{E} \lim_{n \to \infty} (\alpha \phi_{n} + \beta \psi_{n})$$
$$= \lim_{n \to \infty} \int_{E} \alpha \phi_{n} + \beta \psi_{n}$$
$$= \alpha \lim_{n \to \infty} \int_{E} \phi_{n} + \beta \lim_{n \to \infty} \int_{E} \psi_{n}$$
$$= \alpha \int_{E} f + \beta \int_{E} g$$

(2) Suppose $f \ge g$. Fix $\varepsilon > 0$. By uniform convergence $\exists N$ such that $n > N \Longrightarrow \sup_{E} |f - \phi_{n}|, \sup_{E} |g - \psi_{n}| < \varepsilon$. In particular, for n > N,

$$\phi_n > f - \varepsilon \ge g - \varepsilon > \psi_n - 2\varepsilon.$$

By Monotonicity for simple functions,

$$\int_{E} \phi_{n} > \int_{E} (\psi_{n} - 2\varepsilon) = \int_{E} \psi_{n} = 2\varepsilon m(E)$$

$$\Rightarrow \qquad \int_{E} f = \lim_{n \to \infty} \int_{E} \phi_{n} \ge \lim_{n \to \infty} \int_{E} \psi_{n} - 2\varepsilon m(E) = \int_{E} g - 2\varepsilon m(E)$$

Pass to the limit as $\varepsilon \downarrow 0$; $\int_{\varepsilon} f \ge \int_{\varepsilon} g$.

(3) Corollary of (2).

(4) First observe that this property holds for simple functions, since

$$\int_{E} \left(\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}} \right) \mathbf{1}_{G} = \int_{E} \sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i} \cap G}$$
$$= \sum_{i=1}^{n} \alpha_{i} m \left(E \cap E_{i} \cap G \right)$$
$$= \int_{E \cap G} \sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}$$

Since $\phi_n \to f$ uniformly on E, $\phi_n \to f$ uniformly on $E \cap G$. So

$$\int_{E \cap G} f = \lim_{n \to \infty} \int_{E \cap G} \phi_n$$
$$= \lim_{n \to \infty} \int_E \phi_n \mathbf{1}_G$$
$$= \int_E f \cdot \mathbf{1}_G$$

(5) Let $M = \sup_E f \vee \sup_E g$.[†] By (1),

$$\int_E f = \int_E f \cdot \mathbf{1}_{[f=g]} + \int_E f \cdot \mathbf{1}_{[f\neq g]}.$$

But $\int_{E} f \cdot \mathbf{1}_{[f \neq g]} = 0$ since $\left| \int_{E} f \cdot \mathbf{1}_{[f \neq g]} \right| \le M \cdot m \left(E \cap [f \neq g] \right) \le M \cdot m \left[f \neq g \right] = 0$. So

$$\begin{aligned} \int_{E} f &= \int_{E} f \cdot \mathbf{1}_{[f=g]} \\ &= \int_{E \cap [f=g]} f \\ &= \int_{E \cap [f=g]} g \\ &= \int_{E \cap [f=g]} g + \int_{E \cap [f\neq g]} g \\ &= \int_{E} \left(g \cdot \mathbf{1}_{[f=g]} + g \cdot \mathbf{1}_{[f\neq g]} \right) \\ &= \int_{E} g \end{aligned}$$

(6) Follows from (1) and (4).

Theorem. (Bounded Convergence Theorem) Suppose $\{f_n\}_{n=1}^{\infty}$ are uniformly bounded measurable functions on $E \in \mathcal{B}_0$ of finite measure, i.e. $\exists M > 0$ such that $\forall x \in E, n \in \mathbb{N}$, $|f_n(x)| \leq M$. If $\forall x \in E$, $f_n(x) \xrightarrow[n \to \infty]{} f(x)$, then $\int_E f_n \xrightarrow[n \to \infty]{} \int_E f$.

[†] Shorthand notation: $(a \lor b)(x) = \max\{a(x), b(x)\}; (a \land b)(x) = \min\{a(x), b(x)\}.$

Proof. First note that $\int_{F} f$ is well-defined because

- (1) f is measurable, since it is the limit of measurable functions;
- (2) f is bounded (by M).

By Egoroff's Theorem, $\forall \varepsilon > 0$, $\exists E_{\varepsilon} \in \mathcal{B}_0$, $E_{\varepsilon} \subseteq E$, such that $m(E \setminus E_{\varepsilon}) < \varepsilon$ and $\sup_{E_{\varepsilon}} |f_n - f| \xrightarrow[n \to \infty]{} 0$. It follows that

$$\begin{split} \left| \int_{E} f_{n} - \int_{E} f \right| &\leq \int_{E} \left| f_{n} - f \right| \\ &= \int_{E_{\varepsilon}} \left| f_{n} - f \right| + \int_{E \setminus E_{\varepsilon}} \left| f_{n} - f \right| \\ &\leq \sup_{E_{\varepsilon}} \left| f_{n} - f \right| \cdot m(E_{\varepsilon}) + \left(\sup_{E} \left| f \right| + \sup_{E} \left| f_{n} \right| \right) m(E \setminus E_{\varepsilon}) \\ &\leq \sup_{E_{\varepsilon}} \left| f_{n} - f \right| \cdot m(E_{\varepsilon}) + 2M\varepsilon \\ &\xrightarrow{\to 0 \text{ as } n \to \infty} \end{split}$$

So $\limsup_{n\to\infty} \left| \int_E f_n - \int_E f \right| \le 2M\varepsilon \underset{\varepsilon \downarrow 0}{\longrightarrow} 0$. Hence $\left| \int_E f_n - \int_E f \right| \underset{n\to\infty}{\longrightarrow} 0$.

Exercise. Suppose f is continuous on [a,b]. Show that the Lebesgue and regulated integrals of f agree, i.e.

$$\int_{[a,b]} f \, dm = \int_a^b f(x) dx \, .$$

We now proceed to integrate unbounded functions, and begin with the non-negative case to prevent $\infty - \infty$ problems such as with $\int_{\mathbb{T}} \operatorname{sgn} dm$.

Definition. Suppose $f: E \to [0, \infty]$ is measurable and $E \in \mathcal{B}_0$ (not necessarily of finite measure). Then the *integral of f over E with respect to m* is

$$\int_{E} f \, dm = \sup \left\{ \int_{[h \neq 0]} h \, dm \, \middle| \, h \, \text{bdd. meas., } m[h \neq 0] < \infty, \, 0 \le h \le f \, . \mathbf{1}_{E} \right\}.$$

Proposition. (Properties of the integral.) If $f, g : E \to [0, \infty]$, $\alpha, \beta > 0$, $E \in \mathcal{B}_0$, then (1) linearity: $\int_E \alpha f + \beta g = \alpha \int_E f + \beta \int_E g$; (2) monotonicity: $f \ge g \Rightarrow \int_E f \ge \int_E g$;

(3)
$$\forall G \in \mathcal{B}_0, \ \int_E f \cdot \mathbf{1}_G = \int_{E \cap G} f;$$

(4) $f = g \ a.e. \Rightarrow \int_E f = \int_E g.$

Proof. All trivial apart from $\int_E f + g = \int_E f + \int_E g$.

(≥) Take $0 \le F \le f.\mathbf{1}_E$, $0 \le G \le g.\mathbf{1}_E$ bounded measurable such that $m[F \ne 0]$, $m[G \ne 0] < \infty$ and

$$\int_{[F\neq 0]}^{F} \geq \int_{E} f - \frac{\varepsilon}{2},$$
$$\int_{[G\neq 0]}^{G} \leq \int_{E} g - \frac{\varepsilon}{2}.$$

The function F + G is bounded measurable, satisfies $0 \le F + G \le (f + g) \mathbf{1}_E$ and $m[F + G \ne 0] = m([F \ne 0] \cup [G \ne 0]) < \infty$. Therefore,

$$\int_{E} f + g \ge \int_{[F+G\neq 0]} F + G$$

$$= \int_{[F+G\neq 0]} F + \int_{[F+G\neq 0]} G$$

$$= \int_{[F\neq 0]} F + \int_{[G\neq 0]} G$$

$$\ge \int_{E} f + \int_{E} g - \mathcal{E}$$

Since $\varepsilon > 0$ was arbitrary, $\int_{E} f + g \ge \int_{E} f + \int_{E} g$.

(≤) We show that for every bounded measurable function $0 \le h \le (f+g) \cdot \mathbf{1}_E$ such that $m[h \ne 0] < \infty$, $\int_{[h \ne 0]} \le \int_E f + \int_E g$. We then pass to the supremum over all such *h* to deduce (≤).

The idea is to "split" h into two lower bounds, one for f and one for g. Define $F = h \wedge f$, G = h - F. Note that

$$h = 0 \Longrightarrow F = 0, G = 0;$$

$$0 < h \le f \Longrightarrow F = h \le f, G = 0;$$

$$f < h \le f + g \Longrightarrow F = f, G = h - f \le g.$$

Therefore, $0 \le F \le f$ and $0 \le G \le g$, and since $F, G \le h \le f.\mathbf{1}_E$ we also have $0 \le F \le f.\mathbf{1}_E$, $0 \le G \le g.\mathbf{1}_E$. It is clear that F, G are bounded measurable, that $[F \ne 0]$, $[G \ne 0] \subseteq [h \ne 0]$ and that F + G = h. So

$$\int_{[h\neq 0]}^{h} = \int_{[h\neq 0]}^{F} + G$$
$$= \int_{[h\neq 0]}^{F} + \int_{[h\neq 0]}^{G}$$
$$\leq \int_{E} f + \int_{E} g$$

So $\int_E f + g \leq \int_E f + \int_E g$.

Theorem. (Fatou's Lemma) Suppose $\{f_n\}_{n=1}^{\infty}$ are non-negative measurable functions on $E \in \mathcal{B}_0$. Then

$$\int_E \liminf_{n \to \infty} f_n \leq \liminf_{n \to \infty} \int_E f_n \, .$$

Proof. It is enough to show that for every bounded measurable $0 \le h \le \liminf_{n \to \infty} f_n \cdot \mathbf{1}_E$ such that $m[h \ne 0] < \infty$, $\int_E h \le \liminf_{n \to \infty} \int_E f_n$ because we can take the supremum over all such h.

Define $h_n = h \wedge f_n$. For every $\varepsilon > 0 \quad \exists N = N(x)$ such that $n > N(x) \Rightarrow f_n(x) > h(x) - \varepsilon$ because $h(x) \le \liminf_{n \to \infty} f_n(x)$ (*). Therefore, $h_n(x) \le \liminf_{n \to \infty} f_n(x)$. But the h_n are bounded measurable and $m[h \neq 0] < \infty$ so $\int_E h_n \le \int_E \liminf_{n \to \infty} f_n(x)$.

Note that $h_n = h \wedge f_n \xrightarrow[n \to \infty]{} h$ by (*). Since $\sup h_n \leq \sup h$ the Bounded Convergence Theorem tells us $\int_E h_n \xrightarrow[n \to \infty]{} \int_E h$. But $h_n \leq f_n$ by construction. So

$$\int_{E} h = \lim_{n \to \infty} \int_{E} h_n \le \liminf_{n \to \infty} \int_{E} f_n$$

Lemma. If $f : \mathbb{R} \to [0,\infty]$ is measurable and $\int_E f < \infty$ then f is a.e. finite in E.

Proof. Obviously, $\forall n \in \mathbb{N}$, $n.\mathbf{1}_{[f=\infty]} \leq f$. By monotonicity, $n.m(E \cap [f=\infty]) \leq \int_E f$ and so $m(E \cap [f=\infty]) \leq \frac{1}{n} \int_E f \xrightarrow[n \to \infty]{} 0$. So $m[f=\infty] = 0$.

Corollary. Suppose $f_n : E \to [0,\infty]$ are measurable. If $\liminf_{n\to\infty} \int_E f_n < \infty$ then $\liminf_{n\to\infty} f_n(x) < \infty$ a.e. in E.

Remark. The following example may aid in remembering Fatou's Lemma: consider $f_n = \mathbf{1}_{[n,n+1)}$. $\liminf_{n \to \infty} f_n \equiv 0$, so $\int_{\mathbb{R}} \liminf_{n \to \infty} f_n = 0$; $\int_{\mathbb{R}} f_n \equiv 1$, so $\liminf_{n \to \infty} \int_{\mathbb{R}} f_n = 1$.

Theorem. (Monotone Convergence Theorem) (1) If $f_n \ge 0$ are measurable and $f_n(x) \le f_{n+1}(x)$ for all $n \in \mathbb{N}$ and all $x \in E \in \mathcal{B}_0$ then

$$\int_{E} \lim_{n \to \infty} f_n(x) dm(x) = \lim_{n \to \infty} \int_{E} f_n(x) dm(x).$$

(2) If $u_n \ge 0$ are measurable then

$$\int_E \sum_{n=1}^\infty u_n(x) dm(x) = \sum_{n=1}^\infty \int_E u_n(x) dm(x).$$

(3) If $E = \prod_{n=1}^{\infty} E_n$, $E_n \in \mathcal{B}_0$, then for all $f \ge 0$ measurable,

$$\int_E f = \sum_{n=1}^\infty \int_{E_n} f.$$

Proof. (1) Define $f(x) = \lim_{n \to \infty} f_n(x) \in [0, \infty]$. This is well-defined because $\{f_n(x)\}_{n=1}^{\infty}$ is monotone. This f is a non-negative measurable function and so $\int_E f$ is well-defined. Since $f_n \leq f_{n+1}$, $\int_E f_n \leq \int_E f_{n+1}$ and so $\{\int_E f_n\}_{n=1}^{\infty}$ is monotone. It follows that $\lim_{n \to \infty} \int_E f_n$ exists.

 (\leq) Since $f_n \leq f$, $\int_E f_n \leq \int_E f$ and so $\lim_{n \to \infty} \int_E f_n \leq \int_E f$.

 (\geq) By Fatou's Lemma, $\int_{E} f = \int_{E} \liminf_{n \to \infty} f_n \leq \liminf_{n \to \infty} \int_{E} f_n$ and so $\lim_{n \to \infty} \int_{E} f_n \geq \int_{E} f$.

- (2) Follows from (1) with $f_n = u_1 + \ldots + u_n$.
- (3) Follows from (2) with $u_n = f \cdot \mathbf{1}_{E_n}$.

We now proceed to the general case of integrating multi-signed unbounded functions. Recall that the problem here is one of avoiding $\infty - \infty$. For example,

$$\int_{-\infty}^{\infty} \operatorname{sgn} = \int_{-\infty}^{\infty} 1 + \int_{-\infty}^{\infty} (-1) = \infty - \infty$$

Note that we cannot solve this by simply taking limits of domains of integration because

$$\int_{-\infty}^{\infty} \operatorname{sgn} = \lim_{n \to \infty} \int_{-n}^{n} \operatorname{sgn} = 0 \neq 1 = \lim_{n \to \infty} \int_{-n}^{n+1} \operatorname{sgn} .$$

Definition. Let f be a real-valued function. The *positive part* of f is $f^+ = f \lor 0$ = $f.\mathbf{1}_{[f \ge 0]}$. The *negative part* of f is $f^- = -f \land 0 = -f.\mathbf{1}_{[f < 0]}$. (Note that both f^+ and f^- are positive.)

Exercise. Verify that $f = f^+ - f^-$, $|f| = f^+ + f^-$.

Definition. Let $f: E \to [-\infty, \infty]$ be some function, $E \in \mathcal{B}_0$. f is called *absolutely integrable on* E if it is measurable and $\int_E f^+, \int_E f^- < \infty$. f is called *one-sided integrable on* E if at least one of $\int_E f^+, \int_E f^-$ is finite. In each of these cases define the *integral of* f over E to be

$$\int_E f = \int_E f^+ - \int_E f^- \, .$$

Exercise. Prove that a measurable function f is absolutely integrable on E if and only if $\int_{E} |f| < \infty$.

Proposition. (Properties of the integral.) If f, g are absolutely integrable on $E \in \mathcal{B}_0$, $\alpha, \beta \in \mathbb{R}$, then

(1) linearity: $\alpha f + \beta g$ is absolutely integrable on E and $\int_{E} \alpha f + \beta g = \alpha \int_{E} f + \beta \int_{E} g$;

(2) monotonicity: $f \ge g \Rightarrow \int_E f \ge \int_E g$;

- (3) $\forall G \in \mathcal{B}_0, \ \int_E f \cdot \mathbf{1}_G = \int_{E \cap G} f;$
- (4) $f = g \ a.e. \Rightarrow \int_E f = \int_E g;$
- (5) $E = E_1 \coprod E_2, \ E_i \in \mathcal{B}_0 \Longrightarrow \int_E f = \int_{E_1} f + \int_{E_2} f.$

Proof. As usual, everything is trivial except for $\int_{E} (f+g) = \int_{E} f + \int_{E} g$. First note that f+g is absolutely integrable since $\int_{E} |f+g| \le \int_{E} |f| + |g| = \int_{E} |f| + \int_{E} |g| < \infty$. By definition,

$$\begin{split} \int_{E} (f+g) &= \int_{E} (f+g)^{+} - \int_{E} (f+g)^{-} \\ \int_{E} (f+g)^{+} &= \int_{E} (f+g) \cdot \mathbf{1}_{[(f^{+}-f^{-})+(g^{+}-g^{-})>0]} \\ &= \int_{E \cap [f^{+}+g^{+}>f^{-}+g^{-}]} (f^{+}+g^{+}-f^{-}-g^{-}) \\ &= \int_{E \cap [f^{+}+g^{+}>f^{-}+g^{-}]} ((f^{+}+g^{+})-(f^{-}+g^{-})) \end{split}$$

Note that if F, G, F - G > 0 then $\int (F - G) + \int G = \int (F - G + G) = \int F$. Therefore,

$$\int_{E} (f+g)^{+} = \int_{E \cap [f^{+}+g^{+}>f^{-}+g^{-}]} (f^{+}+g^{+}) - \int_{E \cap [f^{+}+g^{+}>f^{-}+g^{-}]} (f^{-}+g^{-}).$$

In the same way we obtain

$$\int_{E} (f+g)^{-} = \int_{E \cap [f^{+}+g^{+}< f^{-}+g^{-}]} (f^{-}+g^{-}) - \int_{E \cap [f^{+}+g^{+}< f^{-}+g^{-}]} (f^{+}+g^{+}).$$

Thus

$$\begin{split} \int_{E} (f+g) &= \int_{E} (f+g)^{+} - \int_{E} (f+g)^{-} \\ &= \int_{E} (f^{+}+g^{+}) - \int_{E} (f^{-}+g^{-}) \\ &= \int_{E} f^{+} - \int_{E} f^{-} + \int_{E} g^{+} - \int_{E} g^{-} \\ &= \int_{E} f + \int_{E} g \end{split}$$

Theorem. (Lebesgue's Dominated Convergence Theorem) Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of measurable functions such that $f_n(x) \xrightarrow[n \to \infty]{} f(x)$ for all $x \in E \in \mathcal{B}_0$. If $|f_n(x)| \le g(x)$, where g is absolutely integrable on E, then $\int_{E} \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_{E} f_n$.

Proof. First note that $f(x) = \lim_{n \to \infty} f_n(x)$ is absolutely integrable since (1) it is a limit of measurable functions, and so is measurable; (2) $\int_E |f| \le \int_E |g| < \infty$ since $|f| = \lim_{n \to \infty} |f_n| \le |g|$.

We show that $\int_E f_n \xrightarrow[n \to \infty]{} \int_E f$ by proving

$$\int_{E} f \leq \liminf_{n \to \infty} \int_{E} f_n \leq \limsup_{n \to \infty} \int_{E} f_n \leq \int_{E} f_n \; .$$

Since $|f_n| \le g$ we have $-g \le f_n \le g$. Therefore, $g + f_n \ge 0$ and by Fatou's Lemma,

$$\int_{E} g + \int_{E} f = \int_{E} (g + f)$$
$$= \int_{E} \liminf_{n \to \infty} (g + f_{n})$$
$$\leq \liminf_{n \to \infty} \int_{E} (g + f_{n})$$
$$\leq \int_{E} g + \liminf_{n \to \infty} \int_{E} f_{n}$$

Since $\int_{E} |g| < \infty$, $\int_{E} f \le \liminf_{n \to \infty} \int_{E} f_{n}$. The functions $g - f_{n}$ are also non-negative.

$$\int_{E} g - \int_{E} f = \int_{E} (g - f)$$
$$= \int_{E} \liminf_{n \to \infty} (g - f_{n})$$
$$\leq \liminf_{n \to \infty} \left(\int_{E} g - \int_{E} f_{n} \right)$$
$$= \int_{E} g - \limsup_{n \to \infty} \int_{E} f_{n}$$

So $\int_{E} f \ge \limsup_{n \to \infty} \int_{E} f_n$. Hence, $\int_{E} f = \lim_{n \to \infty} \int_{E} f_n$.

Exercise. Show that the Dominated Convergence Theorem implies both the Monotone Convergence Theorem and the Bounded Convergence Theorem.

Summary. (1) If f is absolutely integrable then $\int_E f = \int_E f^+ - \int_E f^-$, so calculating $\int_E f$ can be done by considering non-negative functions.

(2) Given a non-negative f we can find simple functions $0 \le h_n \le f$ such that $h_n(x) \uparrow f(x)$. Simply take

$$h_n(x) = \sum_{k=0}^{n^2} \frac{k}{n} \mathbf{1}_{\left[\frac{k}{n} \le f < \frac{k+1}{n}\right]}(x).$$

By the Dominated Convergence Theorem, $\int_E f = \lim_{n \to \infty} \int_E h_n$.

Remark. Although we worked in $(\mathbb{R}, \mathcal{B}_0, m)$ everything we did works almost verbatim for a general σ -finite measure space (X, \mathcal{F}, μ) .

3. PRODUCT MEASURES

Question. How can we measure the size of subsets of \mathbb{R}^n ? More generally, given two σ -finite measure spaces (X, \mathcal{C}, μ) and (Y, \mathcal{D}, ν) we seek a construction of a measure space on $X \times Y$.

Approach. (1) Define the measure of "basic sets" of the form $C \times D$, $C \in C$, $D \in D$ as $\lambda(C \times D) = \mu(C)\nu(D)$.

(2) Use the Carathéodory Extension Theorem to obtain a full measure out of this. (See Assignment 2.)

Definition. A *measurable rectangle* is a set of the form $C \times D$ where $C \in C$, $D \in D$. Denote by \mathcal{R} the collection of all measurable rectangles.

Proposition. \mathcal{R} is a semi-algebra.

Proof. (1) $\emptyset, X \times Y \in \mathcal{R}$ obvious. (2) Intersections: $(C \times D) \cap (C' \times D') = (C \cap C') \times (D \cap D')$. (3) Complements: $(X \times Y) \setminus (C \times D) = ((X \setminus C) \times D) \coprod (C \times (Y \setminus D))$.

Proposition. *The algebra generated by* \mathcal{R} *is*

$$\mathcal{A}(\mathcal{R}) = \left\{ \prod_{i=1}^{n} C_{i} \times D_{i} \mid C_{i} \in \mathcal{C}, D_{i} \in \mathcal{D}, n \in \mathbb{N} \right\}.$$

Proof. See Assignment 2.

Definition. $\lambda : \mathcal{A}(\mathcal{R}) \rightarrow [0, +\infty]$ is defined as

$$\lambda \left(\coprod_{i=1}^{n} C_{i} \times D_{i} \right) = \sum_{i=1}^{n} \mu(C_{i}) \nu(D_{i})$$

with the convention that $0\infty = \infty 0 = 0$.

Proposition. This λ is (1) properly defined, i.e.

$$\coprod_{i=1}^{n} C_i \times D_i = \coprod_{i=1}^{n'} C_i' \times D_i' \Longrightarrow \sum_{i=1}^{n} \mu(C_i) \nu(D_i) = \sum_{i=1}^{n'} \mu(C_i') \nu(D_i')$$

(2) σ-additive on A(R)
(3) σ-finite if μ,ν are σ-finite.

Proof. (1) Suppose $\coprod_{i=1}^{n} C_i \times D_i = \coprod_{i=1}^{n'} C'_i \times D'$. Then

$$\sum_{i=1}^{n} \mathbf{1}_{C_{i}}(x) \mathbf{1}_{D_{i}}(y) \equiv \sum_{i=1}^{n'} \mathbf{1}_{C_{i}'}(x) \mathbf{1}_{D_{i}'}(y) \equiv \mathbf{1}_{\prod_{i=1}^{n} C_{i} \times D_{i}}(x, y)$$

Fix y and integrate over all x w.r.t. μ . By linearity,

$$\sum_{i=1}^{n} \mu(C_i) \mathbf{1}_{D_i}(y) = \sum_{i=1}^{n'} \mu(C'_i) \mathbf{1}_{D'_i}(y).$$

Integrate over y w.r.t. v:

$$\sum_{i=1}^{n} \mu(C_i) \nu(D_i) = \sum_{i=1}^{n'} \mu(C'_i) \nu(D'_i)$$

(2) Suppose $\coprod_{i=1}^{n} C_i \times D_i = \coprod_{k=1}^{\infty} \coprod_{j=1}^{\infty} C_j^{(k)} \times D_j^{(k)}$. Again

$$\sum_{i=1}^{n} \mathbf{1}_{C_{i}}(x) \mathbf{1}_{D_{i}}(y) \equiv \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mathbf{1}_{C_{j}^{(k)}}(x) \mathbf{1}_{D_{j}^{(k)}}(y).$$

Integrating over x w.r.t. μ we have

$$\sum_{i=1}^{n} \mu(C_{i}) \mathbf{1}_{D_{i}}(y) = \int_{X} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mathbf{1}_{C_{j}^{(k)}}(x) \mathbf{1}_{D_{j}^{(k)}}(y) d\mu(x)$$
$$= \sum_{k=1}^{\infty} \int_{X} \sum_{j=1}^{\infty} \mathbf{1}_{C_{j}^{(k)}}(x) \mathbf{1}_{D_{j}^{(k)}}(y) d\mu(x)$$
$$= \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mu(C_{j}^{(k)}) \mathbf{1}_{D_{j}^{(k)}}(y)$$

Now integrate over y w.r.t v. By the Monotone Convergence Theorem:

$$\sum_{i=1}^{n} \mu(C_i) \nu(D_i) = \sum_{k=1}^{\infty} \sum_{j=1}^{n_k} \mu(C_j^{(k)}) \nu(D_j^{(k)})$$

LHS = $\lambda \coprod_{i=1}^{n} C_i \times D_i$
RHS = $\sum_{k=1}^{\infty} \lambda \coprod_{j=1}^{n_k} C_j^{(k)} \times D_j^{(k)}$

 $\Rightarrow \sigma$ -additivity on $\mathcal{A}(\mathcal{R})$.

(3) (X, \mathcal{C}, μ) σ -finite $\Rightarrow \exists X_i \in \mathcal{C}$ s.t. $X = \coprod_{i=1}^{\infty} X_i$ and $\mu(X_i) < \infty$. (Y, \mathcal{D}, ν) σ -finite $\Rightarrow \exists Y_j \in \mathcal{D}$ s.t. $Y = \coprod_{j=1}^{\infty} Y_j$ and $\mu(Y_j) < \infty$. Then $X \times Y = \coprod_{i,j=1}^{\infty} X_i \times Y_j$ where $X_i \times Y_j \in \mathcal{R}$ and $\lambda(X_i \times Y_j) = \mu(X_i)\nu(Y_j) < \infty$.

Definition. The product σ -algebra $\mathcal{C} \otimes \mathcal{D}$ is the minimal σ -algebra containing the collection $\{C \times D \mid C \in \mathcal{C}, D \in \mathcal{D}\}$.

Theorem. Let (X, \mathcal{C}, μ) , (Y, \mathcal{D}, ν) be two σ -finite measure spaces. There exists a unique measure, called the product measure, $\mu \times \nu$ on $(X \times Y, \mathcal{C} \otimes \mathcal{D})$ such that

$$(\mu \times \nu)(C \times D) = \mu(C)\nu(D)$$

for all $C \in C$ and $D \in D$, and this measure is σ -finite.

Proof. Apply the Carathéodory Extension Theorem to $\lambda : \mathcal{A}(\mathcal{R}) \rightarrow [0, +\infty]$.

We would like to define the Lebesgue measure on \mathbb{R}^2 as $m \times m$ on $\mathcal{B}_0 \otimes \mathcal{B}_0$ but we have a technical problem:

The Completion Problem. Recall that a measure space (X, \mathcal{F}, μ) is *complete* if every null set is measurable, a null set being an $A \subset X$ such that $\exists E \in \mathcal{F}$ such that $A \subset E$ and $\mu(E) = 0$.

The Lebesgue measure on \mathbb{R} is complete, but $m \times m$ on $\mathcal{B}_0 \otimes \mathcal{B}_0$ is not complete: take $A \subset [0,1]$ not Lebesgue-measurable and consider $A_0 = A \times \{1\}$. This is a null set because $A_0 \subset [0,1] \times \{1\}$, which has measure zero, yet $A \notin \mathcal{B}_0 \otimes \mathcal{B}_0$.

Solution. The completion procedure:

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Define $\mu^* : 2^{\Omega} \to [0, +\infty]$ by

$$\mu^*(A) = \inf \{ \mu(E) \mid A \subseteq E \in \mathcal{F} \}.$$

Definition. The *completion* of $(\Omega, \mathcal{F}, \mu)$ is $(\Omega, \mathcal{F}_0, \mu_0)$, where (1) $\mathcal{F}_0 = \{ E_0 \subseteq \Omega \mid \exists E \in \mathcal{F} \text{ s.t. } \mu^* (E \Delta E_0) = 0 \},$ (2) $\mu_0 = \mu^* \Big|_{\mathcal{F}_0}$. **Exercise.** Prove that $(\Omega, \mathcal{F}_0, \mu_0)$ is a complete measure space.

Exercise. Show that $(\mathbb{R}, \mathcal{B}_0, m)$ is the completion of $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$. (Hint: Show that $\forall E_0 \in \mathcal{B}_0 \ \exists G = \bigcap_{n=1}^{\infty} U_n$ such that U_n open, $E_0 \subseteq G$, $m(G \setminus E_0) = 0$.)

Definition. (Lebesgue's Measure on \mathbb{R}^n). This is the measure space

$$(\mathbb{R}^{n},(\underbrace{\mathcal{B}_{0}\otimes\ldots\otimes\mathcal{B}_{0}}_{n})_{0},(\underbrace{m\times\ldots\times m}_{n})_{0})$$

i.e. the completion of the product space $\prod_{i=1}^{n} (\mathbb{R}, \mathcal{B}_{0}, m)$.

Definition. Given a product space $(X \times Y, \mathcal{C} \otimes \mathcal{D}, \mu \times \nu)$, $E \subseteq X \times Y$, $x \in X$, $y \in Y$, (1) the *x*-section of *E* is $E_x = \{y \in Y \mid (x, y) \in E\}$; (2) the *y*-section of *E* is $E^y = \{x \in X \mid (x, y) \in E\}$.

Exercise. Verify (1) $(A \cup B)_x = A_x \cup B_x$; (2) $(A \cap B)_x = A_x \cap B_x$; (3) $(A^C)_x = (A_x)^C$; (4) $(A \setminus B)_x = A_x \setminus B_x$; (5) $(\bigcup_{\lambda \in \Lambda} A_\lambda)_x = \bigcup_{\lambda \in \Lambda} (A_\lambda)_x$ etc. and similarly for *y*-sections.

Our aim is to prove that

$$E \in \mathcal{C} \otimes \mathcal{D} \Rightarrow \int_{X} \nu(E_x) d\mu(x) = \int_{Y} \mu(E^y) d\nu(y)$$

Two problems: (1) Is $E_x \in \mathcal{D}$? Is $E^y \in \mathcal{C}$? (2) Is $x \mapsto v(E_x) \mathcal{C}$ -measurable? Is $y \mapsto \mu(E^y) \mathcal{D}$ -measurable?

Proposition. If $E \in \mathcal{C} \otimes \mathcal{D}$ then for all $x \in X$ and $y \in Y$, $E_x \in \mathcal{D}$ and $E^y \in \mathcal{C}$.

Proof. We only prove the result for x-sections: the proof for y-sections is analogous.

Recall that $C \otimes D$ is the minimal σ -algebra containing the collection $\mathcal{R} = \{C \times D \mid C \in C, D \in D\}$. It is, therefore, enough to show that

$$\mathcal{F} = \left\{ E \in \mathcal{C} \otimes \mathcal{D} \mid \forall x \in X, E_x \in \mathcal{D} \right\}$$

is a σ -algebra containing \mathcal{R} .

Step 1: $\mathcal{F} \supseteq \mathcal{R}$.

Fix $C \times D \in \mathcal{R}$. Then

$$(C \times D)_x = \begin{cases} D & x \in C \\ \varnothing & x \notin C \end{cases}$$

and $\emptyset, D \in \mathcal{D}$.

Step 2: \mathcal{F} is a σ -algebra.

(a) $\emptyset \in \mathcal{F}$ is trivial. (b) $E \in \mathcal{F} \Rightarrow E^{\mathbb{C}} \in \mathcal{F}$ since $(E^{\mathbb{C}})_x = (E_x)^{\mathbb{C}} = Y \setminus E_x \in \mathcal{D}$. (c) $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{F}$ since $(\bigcup_{i=1}^{\infty} E_i)_x = \bigcup_{i=1}^{\infty} (E_i)_x \in \mathcal{D}$.

Remark. It is not true that $E \in (\mathcal{C} \otimes \mathcal{D})_0 \Rightarrow \forall x \in X, E_x \in \mathcal{D}$.

Example. Take $A \subset (0,1)$ non-measurable. Then $A \times \{1\} \in (\mathcal{B}_0 \otimes \mathcal{B}_0)_0$ since $(m \times m)(A \times \{1\}) = 0$, but $(A \times \{1\})^1 = A \notin \mathcal{B}_0$.

Proposition. Let (X, C, μ) , (Y, D, ν) be two σ -finite measure spaces. If $E \in C \otimes D$ then (1) $x \mapsto v(E_x)$ is C-measurable and $\int_X v(E_x) d\mu(x) = (\mu \times \nu)(E)$; (2) $y \mapsto \mu(E^y)$ is D-measurable and $\int_V \mu(E^y) d\nu(y) = (\mu \times \nu)(E)$.

Proof. Again, we prove (1) only.

Assume first that $\mu(X), \nu(Y) < \infty$. Define $\mathcal{F} = \{E \in \mathcal{C} \otimes \mathcal{D} \mid (1) \text{ holds }\}$. We prove $\mathcal{F} \supseteq \mathcal{R}$ and \mathcal{F} is a σ -algebra.

Step 1: $\mathcal{F} \supseteq \mathcal{R}$.

Fix $C \times D \in \mathcal{R}$. Then

$$(C \times D)_x = \begin{cases} D & x \in C \\ \varnothing & x \notin C \end{cases}$$

Hence $\nu((C \times D)_x) = \nu(D) \mathbf{1}_C(x)$. Obviously $x \mapsto \nu((C \times D)_x)$ is measurable and

$$\int_{X} \nu((C \times D)_{x}) d\mu(x) = \nu(D) \int_{X} \mathbf{1}_{C}(x) d\mu(x)$$
$$= \mu(C) \nu(D)$$
$$= (\mu \times \nu) (C \times D)$$

So (1) holds for $C \times D$.

Step 2: \mathcal{F} is a σ -algebra.

Suppose $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$. We show that $\nu((\bigcup_i E_i)_x) = \nu(\bigcup_i (E_i)_x)$ is measurable in x. If the union were disjoint we could use σ -additivity.

First attempt: Write $\bigcup_{i=1}^{\infty} E_i = \coprod_{i=1}^{\infty} \left(E_i \setminus \bigcup_{j=1}^{i-1} E_j \right)$ – but we can't be sure that $E_i \setminus \bigcup_{j=1}^{i-1} E_j \in \mathcal{F}$ because we still don't know that \mathcal{F} is an algebra!

Second attempt: We show that \mathcal{F} is a monotone class.

(a)
$$\emptyset \in \mathcal{F}$$
: trivial.

(b) $E_n \in \mathcal{F}, E_n \uparrow E \Longrightarrow E \in \mathcal{F}$: if $E_n \in \mathcal{F}$ and $E_n \uparrow E$ then $(E_n)_x \uparrow E_x$. By the continuity of measures, $\nu((E_n)_x) \uparrow \nu(E_x)$. It follows that $x \mapsto \nu(E_x)$ is measurable because it is the limit of measurable functions.

By the Monotone Convergence Theorem,

$$\begin{bmatrix}
\nu(E_x) = \int \lim_{n \to \infty} \nu((E_n)_x) \\
= \lim_{n \to \infty} \int \nu((E_n)_x) \\
= \lim_{n \to \infty} (\mu \times \nu)(E_n) \\
= (\mu \times \nu)(E)$$

Thus $E \in \mathcal{F}$.

(c) $E_n \in \mathcal{F}, E_n \downarrow E \Rightarrow E \in \mathcal{F}$: Again $(E_n)_x \downarrow E_x$, so by the continuity of measures and since $v((E_n)_x) \leq v(Y) < \infty$, $v((E_n)_x)_{n \to \infty} v(E_x)$. It follows that $x \mapsto v(E_x)$ is measurable.

Note $\nu((E_n)_x) \le \nu(E_x)$ and $\int_X \nu(Y) < \infty$. By the Dominated Convergence Theorem,

$$\int_{X} v(E_x) d\mu(x) = \int_{X} \lim_{n \to \infty} v((E_n)_x) d\mu(x)$$
$$= \lim_{n \to \infty} \int_{X} v((E_n)_x) d\mu(x)$$
$$= \lim_{n \to \infty} (\mu \times v)(E_n)$$
$$= (\mu \times v)(E)$$

by the continuity of $\mu \times \nu$ and $(\mu \times \nu)(E_1) \le (\mu \times \nu)(X \times Y) = \mu(X)\nu(Y) < \infty$.

This shows that \mathcal{F} is a monotone class. By the Monotone Class Theorem \mathcal{F} contains a σ -algebra containing \mathcal{R} , so $\mathcal{F} \supseteq \mathcal{C} \otimes \mathcal{D}$.

We now treat the σ -finite case: assume (X, \mathcal{C}, μ) , (Y, \mathcal{D}, ν) σ -finite. $\exists X_i \in \mathcal{C}$ s.t. $X = \coprod_{i=1}^{\infty} X_i$ and $\mu(X_i) < \infty$; $\exists Y_j \in \mathcal{D}$ s.t. $Y = \coprod_{j=1}^{\infty} Y_j$ and $\mu(Y_j) < \infty$. Define

$$\mathcal{C}_{i} = \left\{ E \cap X_{i} \mid E \in \mathcal{C} \right\}$$
$$\mu_{i} = \mu|_{\mathcal{C}_{i}}$$
$$\mathcal{D}_{j} = \left\{ E \cap Y_{j} \mid E \in \mathcal{D} \right\}$$
$$v_{j} = v|_{\mathcal{D}_{j}}$$

Exercise. Prove (1) $(X_i, C_i, \mu_i), (Y_j, \mathcal{D}_j, v_j)$ are finite measure spaces; (2) $C_i \otimes \mathcal{D}_j = \{E \cap (X_i \times Y_j) \mid E \in \mathcal{C} \otimes \mathcal{D}\};$ (3) $\forall E \in \mathcal{C} \otimes \mathcal{D}, (\mu \times \nu)(E) = \sum_{i,j} (\mu_i \times v_j)(E \cap (X_i \times Y_j)).$

Now consider some set $E \in \mathcal{C} \otimes \mathcal{D}$.

$$\nu(E_x) = \sum_{j=1}^{\infty} \nu(E_x \cap Y_j)$$
$$= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \mathbf{1}_{X_i}(x) \nu(E_x \cap (X_i \times Y_j)_x)$$
$$= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \mathbf{1}_{X_i}(x) \underbrace{\nu_i(E_x \cap (X_i \times Y_j)_x)}_{C_i - \text{measurable by } \sigma - \text{finite case}}$$

Since $C_i \subseteq C$ every C_i -measurable function is C-measurable. Therefore, since

$$\nu(E_x) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \mathbf{1}_{X_i}(x) \nu_i \left(\left(E \cap \left(X_i \times Y_j \right) \right)_x \right), \tag{*}$$

 $x \mapsto v(E_x)$ is C-measurable. Now integrate (*) over $x \in X$. By the Monotone Convergence Theorem,

$$\int_{X} v(E_{x}) d\mu(x) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \int_{X_{i}} v_{i} \left(\left(E \cap \left(X_{i} \times Y_{j} \right) \right)_{x} \right) d\mu(x)$$
$$= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} (\mu \times v) \left(E \cap \left(X_{i} \times Y_{j} \right) \right)$$
$$= (\mu \times v) (E)$$

The proof for y-sections is analogous.

Fubini's Theorem: We want to show that

$$\int_{X \times Y} f(x, y) d(\mu \times \nu)(x, y) = \int_X \int_Y f(x, y) d\nu(y) d\mu(x)$$

Problems:

(1) Is $f(x, \cdot)$ ν -integrable for all x? (2) Is $x \mapsto \int_{Y} f(x, y) d\nu(y) \mu$ -integrable?

Theorem. (Fubini's Theorem) Suppose (X, C, μ) , (Y, D, ν) are σ -finite measure spaces and that $f: X \times Y \to [-\infty, +\infty]$ is $C \otimes D$ -measurable with $\int_{X \times Y} |f| d(\mu \times \nu) < \infty$. Then (1) $\forall x \in X, y \mapsto f(x, y)$ is D-measurable; $\forall y \in Y, x \mapsto f(x, y)$ is C-measurable; (2) for μ -a.e. $x \in X, y \mapsto f(x, y)$ is ν -absolutely integrable; for ν -a.e. $y \in Y, x \mapsto f(x, y)$ is μ -absolutely integrable; (3) $x \mapsto \int_Y f(x, y) d\nu(y)$ is C-measurable and μ -absolutely integrable; $y \mapsto \int_X f(x, y) d\mu(x)$ is D-measurable and ν -absolutely integrable; (4)

$$\int_{Y}\int_{X}f(x,y)d\mu(x)d\nu(y)=\int_{X\times Y}f(x,y)d(\mu\times\nu)(x,y)=\int_{X}\int_{Y}f(x,y)d\nu(y)d\mu(x).$$

Proof. We prove this first for indicator functions, then simple functions, then non-negative functions, then absolutely integrable functions.

Indicators: Suppose $f(x, y) = \mathbf{1}_{E}(x, y)$, $E \in \mathcal{C} \otimes \mathcal{D}$. $f(x, \cdot) = \mathbf{1}_{E_{x}(\cdot)}$. So, by the previous proposition, $f(x, \cdot)$ is \mathcal{D} -measurable since $E_{x} \in \mathcal{D}$. [(1) done.] The same proposition says that

$$\int_{Y} f(x,\cdot) d\nu(\cdot) = \nu(E_x)$$

is C-measurable. [(2) done.] Again, the previous proposition gives

$$\int_{X} \int_{Y} f(x, \cdot) d\nu(\cdot) d\mu(x) = \int_{X} \nu(E_{x}) d\mu(x)$$
$$= (\mu \times \nu)(E)$$
$$= \int_{X \times Y} f d(\mu \times \nu)$$
$$< \infty$$

[(3), (4) done.] The proof is the same for y-sections.

Simple Functions: Follows from the previous case (indicators) by linearity.

Non-negative Measurable Functions: Suppose $f(x, y) \ge 0$ is $C \otimes D$ -measurable. There exist simple functions $0 \le h_n(x, y) \le h_{n+1}(x, y)$ such that $h_n(x, y) \uparrow f(x, y)$. For instance, take

$$h_n(x, y) = \sum_{k=1}^{n^2} \frac{k}{n} \mathbf{1}_{\left[\frac{k}{n} \le f < \frac{k+1}{n}\right]}(x, y).$$

 $f(x,\cdot) = \lim_{n \to \infty} h_n(x,\cdot)$ so $f(x,\cdot)$ is \mathcal{D} -measurable since the h_n are \mathcal{D} -measurable. [(1) done.] Since $h_n \uparrow f$, by the Monotone Convergence Theorem,

$$\int_{Y} f(x,\cdot) d\nu(\cdot) = \int_{Y} \lim_{n \to \infty} h_n(x,\cdot) d\nu(\cdot)$$
$$= \lim_{n \to \infty} \int_{Y} h_n(x,\cdot) d\nu(\cdot)$$

Since $h_n(x, y)$ simple, previous case shows $x \mapsto \int_Y h_n(x, \cdot) dv(\cdot)$ is *C*-measurable, so $x \mapsto \int_Y f(x, \cdot) dv(\cdot)$ is *C*-measurable. [(2) done.] By the Monotone Convergence Theorem, $\int_Y h_n(x, \cdot) dv(\cdot) \uparrow \int_Y f(x, \cdot) dv(\cdot)$. Again by the Monotone Convergence Theorem,

$$\int_{X} \int_{Y} f \, dv \, d\mu = \int_{X} \lim_{n \to \infty} \int_{Y} h_n \, dv \, d\mu$$
$$= \lim_{n \to \infty} \int_{X} \int_{Y} h_n \, dv \, d\mu$$
$$= \lim_{n \to \infty} \int_{X \times Y} h_n \, d(\mu \times \nu)$$
$$= \int_{X \times Y} \lim_{n \to \infty} h_n \, d(\mu \times \nu)$$
$$= \int_{X \times Y} f \, d(\mu \times \nu)$$

[(3), (4) done.] Similarly for the other order of integration.

General Case: Suppose f is $(\mu \times \nu)$ -absolutely integrable. Decompose $f = f^+ - f^-$ and apply the previous case to f^+, f^- .

Remark. Remember this trick of approximating a non-negative function by a monotone sequence of simple functions.

Theorem. (Tonelli's Theorem) Suppose (X, \mathcal{C}, μ) , (Y, \mathcal{D}, ν) are σ -finite measure spaces and that $f: X \times Y \to [-\infty, +\infty]$ is $\mathcal{C} \otimes \mathcal{D}$ -measurable. If $\int_X \int_Y |f| dv d\mu < \infty$ then $\int_{X \times Y} |f| d(\mu \times \nu) < \infty$.

Proof. Since (X, C, μ) , (Y, D, ν) are σ -finite so is $(X \times Y, C \otimes D, \mu \times \nu)$. So $\exists F_n \in C \otimes D$ with finite measure such that $F_n \uparrow X \times Y$. Now define $\phi_n = \mathbf{1}_{F_n} \cdot (|f| \wedge n)$. Check that $\int_{X \times Y} |\phi_n| d(\mu \times \nu) < \infty$ and that $\phi_n(x, y) \uparrow |f(x, y)|$. By the Monotone Convergence Theorem,

$$\int_{X \times Y} |f| d(\mu \times \nu) = \int_{X \times Y} \lim_{n \to \infty} \phi_n d(\mu \times \nu)$$
$$= \lim_{n \to \infty} \int_{X \times Y} \phi_n d(\mu \times \nu)$$
$$= \lim_{n \to \infty} \int_X \int_Y \phi_n d\nu d\mu$$
$$\leq \int_X \int_Y |f| d\nu d\mu$$
$$< \infty$$

So f is $(\mu \times \nu)$ -absolutely integrable.

Corollary. (The Fubini-Tonelli Theorem) *If one of the following integrals exists then all three exist and are equal:*

$$\int_{Y}\int_{X}f\,d\mu\,d\nu\,,\,\int_{X\times Y}f\,d(\mu\times\nu),\,\int_{X}\int_{Y}f\,d\nu\,d\mu\,.$$

4. L^p Spaces

Convexity Inequalities

Definition. A function $\phi:[a,b] \to \mathbb{R}$ is called *convex* if $\forall x, y \in [a,b], \forall t \in [0,1]$,

Proposition. ϕ is convex in [a,b] iff for all $a \le x < y \le z < w \le b$,

$$\frac{\phi(x)-\phi(y)}{x-y} \le \frac{\phi(z)-\phi(w)}{z-w} \,.$$

Proof. Enough to prove inequalities in the case y = z. Assume a < x < z < w < b. Solve for t in

$$z = tx + (1 - t)w$$
$$z = t(x - w) + w$$
$$t = \frac{z - w}{x - w}$$
$$1 - t = \frac{x - w - z + w}{x - w} = \frac{x - z}{x - w}$$

Observe,

$$\begin{aligned} \phi(tx + (1-t)w) &\leq t\phi(x) + (1-t)\phi(w) \\ \phi(z) &\leq t\phi(x) + (1-t)\phi(w) \\ \Leftrightarrow & 0 &\leq t(\phi(x) - \phi(z)) + (1-t)(\phi(w) - \phi(z)) \\ \Leftrightarrow & 0 &\leq t(\phi(x) - \phi(z)) + \frac{x-z}{x-w}(\phi(w) - \phi(z)) \\ \Leftrightarrow & 0 &\leq (z-w)(\phi(x) - \phi(z)) + (x-z)(\phi(w) - \phi(z)) \\ \Leftrightarrow & 0 &\geq (z-w)(\phi(x) - \phi(z)) + (x-z)(\phi(w) - \phi(z)) \\ \Leftrightarrow & z &= tx + (1-t)w, \\ \phi(tx + (1-t)w) &\leq t\phi(x) + (1-t)\phi(w) \\ \Leftrightarrow & \frac{\phi(x) - \phi(z)}{x-z} &\leq \frac{\phi(w) - \phi(z)}{w-z} \end{aligned}$$

Corollary. If $\phi: [a,b] \to \mathbb{R}$ is C^2 then ϕ is convex on [a,b] iff $\phi''(x) \ge 0$.

Examples. (1) $t \mapsto e^t$ is convex on \mathbb{R} . (2) $t \mapsto t^{\alpha}$ is convex $[0, \infty)$ if $\alpha \ge 1$, but not convex if $\alpha < 1$.

Proposition. (Supporting lines.) If $\phi: [a,b] \to \mathbb{R}$ is convex then $\forall x_0 \in [a,b] \exists m \in \mathbb{R}$ such that $\forall x \in [a,b]$

Proof. Fix $x_0 \in [a,b]$. Define $\hat{m}(x) = \frac{\phi(x)-\phi(x_0)}{x-x_0}$ for $x \neq x_0$. This is increasing in x by the previous proposition. So the following numbers exist and are finite:

$$m^{+} = \inf_{x > x_0} \hat{m}(x)$$
$$m^{-} = \sup_{x < x_0} \hat{m}(x)$$

Also, $m^- \le m^+$. Now choose $m^- \le m \le m^+$ and note that

$$x > x_0 \Longrightarrow \frac{\phi(x) - \phi(x_0)}{x - x_0} \ge m^+ \ge m \Longrightarrow \phi(x) \ge \phi(x_0) + m(x - x_0)$$
$$x < x_0 \Longrightarrow \frac{\phi(x_0) - \phi(x)}{x_0 - x} \le m^- \le m \Longrightarrow \phi(x) \ge \phi(x_0) + m(x - x_0)$$

Theorem. (Jensen's Inequality) If (X, \mathcal{F}, μ) is a measure space, $E \in \mathcal{F}$ has finite measure and $f: E \to \mathbb{R}$ is absolutely integrable, then for any convex function ϕ ,

$$\phi\!\left(\tfrac{1}{\mu(E)}\int_E f\,d\mu\right) \leq \tfrac{1}{\mu(E)}\int_E \phi\circ f\,d\mu\,.$$

Proof. If $x_0 = \frac{1}{\mu(E)} \int_E \phi \circ f \, d\mu$ and $m_{x_0}(x - x_0) + \phi(x_0)$ is a supporting line for ϕ then for all ξ ,

$$\phi(f(\xi)) \ge \phi(x_0) + m_{x_0} \left(f(\xi) + \frac{1}{\mu(E)} \int_E f d\mu \right).$$

So,

$$\frac{1}{\mu(E)} \int_{E} \phi \circ f \, d\mu \ge \phi(x_{0})$$

$$= \phi\left(\frac{1}{\mu(E)} \int_{E} f \, d\mu\right) + m_{x_{0}}\left(\frac{1}{\mu(E)} \int_{E} f \, d\mu - \frac{1}{\mu(E)} \int_{E} f \, d\mu\right)$$

$$= \phi\left(\frac{1}{\mu(E)} \int_{E} f \, d\mu\right)$$

Hölder's Inequality. Let (X, \mathcal{F}, μ) be a measure space and suppose p, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$. For every $f, g: X \to [-\infty, +\infty]$ \mathcal{F} -measurable,

$$\int_{X} |fg| d\mu \leq \left(\int_{X} |f|^{p} d\mu \right)^{1/p} \left(\int_{X} |g|^{q} d\mu \right)^{1/q}.$$

(Here we take $0\infty = 0$.)

Proof. We first prove *Young's Inequality*:

$$a, b \ge 0 \Longrightarrow ab \le \frac{a^p}{p} + \frac{b^q}{q}$$
$$ab = \exp\left(\frac{1}{p}\log a^p + \frac{1}{q}\log b^q\right)$$
$$\le \frac{1}{p}\exp\log a^p + \frac{1}{q}\exp\log b^q$$
$$= \frac{a^p}{p} + \frac{b^q}{q}$$

by the convexity of exp. By Young's Inequality, if $A = \left(\int_X |f|^p d\mu\right)^{1/p}$, $B = \left(\int_X |g|^q d\mu\right)^{1/q}$ then $\forall x \in X$,

$$\frac{\left|f(x)\right|}{A}\frac{\left|g(x)\right|}{B} \leq \frac{1}{p}\frac{\left|f(x)\right|^{p}}{A^{p}} + \frac{1}{q}\frac{\left|g(x)\right|^{q}}{b^{q}}$$

Integrating w.r.t. μ over X gives, by monotonicity,

$$\frac{\int |fg|d\mu}{\left(\int |f|^p d\mu\right)^{l/p} \left(\int |g|^q d\mu\right)^{l/q}} \leq \frac{1}{p} \frac{\int |f|^p d\mu}{\int |f|^p d\mu} + \frac{1}{q} \frac{\int |g|^q d\mu}{\int |g|^q d\mu} = \frac{1}{p} + \frac{1}{q} = 1$$

Cauchy-Schwartz Inequality. If (X, \mathcal{F}, μ) is a measure space then for every $f, g: X \rightarrow [-\infty, +\infty] \mathcal{F}$ -measurable,

$$\int_{X} |fg| d\mu \leq \left(\int_{X} |f|^{2} d\mu \right)^{1/2} \left(\int_{X} |g|^{2} d\mu \right)^{1/2}.$$

Proof. Hölder with p = q = 2.

Minkowski's Inequality. Let (X, \mathcal{F}, μ) be a measure space and $p \ge 1$. Then for every $f, g: X \rightarrow [-\infty, +\infty] \mathcal{F}$ -measurable,

$$\left(\int_{X} |f+g|^{p} d\mu\right)^{1/p} \leq \left(\int_{X} |f|^{p} d\mu\right)^{1/p} + \left(\int_{X} |g|^{p} d\mu\right)^{1/p}$$

Proof. Define $A = \left(\int_{X} |f|^{p} d\mu\right)^{1/p}$, $B = \left(\int_{X} |g|^{p} d\mu\right)^{1/p}$. For every $x \in X$,

$$\frac{|f(x)+g(x)|^p}{(A+B)^p} \le \left(\frac{|f(x)|+|g(x)|}{A+B}\right)^p$$
$$= \left(\frac{A}{A+B} \frac{|f(x)|}{A} + \frac{B}{A+B} \frac{|g(x)|}{B}\right)^p$$
$$\le \frac{A}{A+B} \frac{|f(x)|^p}{A^p} + \frac{B}{A+B} \frac{|g(x)|^p}{B^p}$$

by the convexity of $t \mapsto t^p$. Integrate:

$$\frac{\left(\int |f+g|^p \, d\mu\right)^{\prime p}}{\left(\int |f|^p \, d\mu\right)^{\prime p} \left(\int |g|^p \, d\mu\right)^{\prime p}} \leq \frac{A}{A+B} \frac{\int |f|^p \, d\mu}{\int |f|^p \, d\mu} + \frac{B}{A+B} \frac{\int |g|^p \, d\mu}{\int |g|^p \, d\mu} = 1$$

\mathcal{L}^{p} and L^{p} Spaces

Minkowski's Inequality looks like a triangle inequality for a "norm":

$$\left\|f\right\|_{p} = \left(\int_{X} \left|f\right|^{p} d\mu\right)^{1/p}$$

This suggests the following:

Definitions. Fix a measure space (X, \mathcal{F}, μ) and $1 \le p \le \infty$. (1) For $f: X \to [-\infty, +\infty]$ define

$$\|f\|_{p} = \left(\int_{X} |f|^{p} d\mu\right)^{1/p} \text{ for } 1 \le p < \infty$$
$$\|f\|_{\infty} = \inf\left\{\sup_{x \in X} |f'(x)| \mid f' = f \ \mu - \text{a.e.}\right\}$$

(2) $\mathcal{L}^{p}(X, \mathcal{F}, \mu) = \{f : X \to [-\infty, +\infty] \mid f \text{ is } \mathcal{F} \text{ - measurable, } \|f\|_{p} < \infty\}.$

Example. The Dirichlet function

$$D(x) = \mathbf{1}_{\mathbb{Q}}(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

has \mathcal{L}^{∞} norm $||D||_{\infty} = 0$ because D = 0 *m*-a.e.

Remark. $||f||_{\infty}$ is sometimes called the *essential supremum* of f and thus denoted ess sup f.

Exercise. Show that if $||f||_{\infty} < \infty$ there is a bounded measurable function g such that f = g a.e.

Proposition. $\mathcal{L}^{p}(X, \mathcal{F}, \mu)$ is a vector space over \mathbb{R} and $\|\cdot\|_{p}$ is a seminorm on $\mathcal{L}^{p}(X, \mathcal{F}, \mu)$. I.e. (1) $\forall f \in \mathcal{L}^{p}(X, \mathcal{F}, \mu), \|f\|_{p} \ge 0$; (2) $\forall f \in \mathcal{L}^{p}(X, \mathcal{F}, \mu), \lambda \in \mathbb{R}, \|\lambda f\|_{p} = |\lambda| \|f\|_{p};$ (3) $\forall f, g \in \mathcal{L}^{p}(X, \mathcal{F}, \mu), \|f + g\|_{p} \le \|f\|_{p} + \|g\|_{p}.$

Note. $\|\cdot\|_p$ is not a norm since $\exists f \in \mathcal{L}^p(X, \mathcal{F}, \mu)$ such that $\|f\|_p = 0$ but $f \neq 0$, for instance $f(x) = \mathbf{1}_{\{0\}}(x)$.

Proof. $\mathcal{L}^{p}(X, \mathcal{F}, \mu)$ is a vector space since $\forall f, g \in \mathcal{L}^{p}(X, \mathcal{F}, \mu), \alpha, \beta \in \mathbb{R}$, Minkowski's Inequality says

$$\begin{aligned} \left\| \alpha f + \beta g \right\|_{p} &= \left(\int_{X} \left| \alpha f + \beta g \right|^{p} d\mu \right)^{1/p} \\ &\leq \left(\int_{X} \left| \alpha f \right|^{p} d\mu \right)^{1/p} + \left(\int_{X} \left| \beta g \right|^{p} d\mu \right)^{1/p} \\ &= \left| \alpha \right\| \left\| f \right\|_{p} + \left| \beta \right\| \left\| g \right\|_{p} < \infty \end{aligned}$$

Properties (1) and (2) are trivial. Property (3) is Minkowski's Inequality.

Proposition. $||f - g||_p = 0 \Leftrightarrow f = g \ \mu$ -a.e.

Proof. $p = \infty$ is easy, so let $1 \le p < \infty$.

 (\Leftarrow) If f = g a.e. then $|f - g|^p = 0$ a.e. and so

$$||f-g||_p = \left(\int_X |f-g|^p d\mu\right)^{1/p} = 0.$$

 (\Rightarrow) Suppose $||f - g||_p = 0$. Then $\int_X |f - g|^p d\mu = 0$. Observe that

$$\mu[|f - g|^{p} \neq 0] \le \sum_{n=1}^{\infty} \mu[|f - g|^{p} > 1/n]$$
(*)

Now,

$$\mu[|f-g|^{p} > 1/n] \le \int_{[|f-g|^{p} > 1/n]} n|f-g|^{p} d\mu$$

because the integrand is ≥ 1 on $[|f - g|^p > 1/n]$. Therefore,

$$\mu[|f-g|^{p} > 1/n] \le n \int_{X} |f-g|^{p} d\mu = n ||f-g||_{p}^{p} = 0.$$

By (*), f = g a.e.

This suggests that we consider $f, g \in \mathcal{L}^p$ with $||f - g||_p = 0$ as equivalent.

Define a relation ~ on $\mathcal{L}^p(X, \mathcal{F}, \mu)$ by $f \sim g$ iff $f = g \ \mu$ -a.e. (iff $||f - g||_p = 0$).

Exercise. Prove that \sim is an equivalence relation.

Define $[f] = \{g \in \mathcal{L}^p \mid f \sim g\}.$

Definition. The L^p -space of (X, \mathcal{F}, μ) is

$$L^p(X,\mathcal{F},\mu) = \left\{ [f] \mid f \in \mathcal{L}^p(X,\mathcal{F},\mu) \right\}$$

with the operations

$$\begin{bmatrix} f \end{bmatrix} + \begin{bmatrix} g \end{bmatrix} = \begin{bmatrix} f + g \end{bmatrix}$$
$$\lambda \begin{bmatrix} f \end{bmatrix} = \begin{bmatrix} \lambda f \end{bmatrix}$$
$$\left\| \begin{bmatrix} f \end{bmatrix} \right\|_{p} = \left\| f \right\|_{p}$$

Proposition. This is a proper definition that makes $L^p(X, \mathcal{F}, \mu)$ into a normed vector space over \mathbb{R} .

Proof. (1) Addition well-defined: Suppose $f \sim f', g \sim g'$. Show $f + g = f' + g' \mu$ -a.e.

$$\mu[f + g \neq f' + g'] \le \mu[f \neq f'] + \mu[g \neq g'] = 0$$

- (2) Multiplication well-defined: Exercise.
- (3) Norm well-defined: Suppose $f \sim f'$. Then $|f|^p = |f'|^p \mu$ -a.e. So

$$||f||_{p} = (\int |f|^{p})^{\vee p} = (\int |f'|^{p})^{\vee p} = ||f'||_{p}.$$

(4) L^p a vector space: By Minkowski's Inequality.

(5)
$$\|\cdot\|_p$$
 a norm: $\|[f]-[g]\|_p = 0 \Rightarrow \|[f-g]\|_p = 0 \Rightarrow \|f-g\|_p = 0 \Rightarrow f = g \text{ a.e.} \Rightarrow [f]=[g].$

Remark. It is traditional to drop the [] and refer to L^p -elements as "functions":

- (1) L^p -functions are not functions;
- (2) L^p -functions cannot be evaluated at a point;

(3) L^p -functions can be integrated against other functions, since if $f \sim f'$, fg = f'g a.e., and so $\int_{F} fg d\mu = \int_{F} f'g d\mu$.

L^p Convergence

Definition. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of L^p -functions. We say that f_n converges in L^p to f, and write $f_n \xrightarrow{L^p} f$, if $||f_n - f||_p \xrightarrow{\to \infty} 0$.

Remarks. (1) There is an analogous notion for \mathcal{L}^p . (2) L^p -convergence neither implies nor is implied by convergence almost everywhere. **Examples.** Take $f_n = \mathbf{1}_{[n,n+1]} \in L^p(\mathbb{R}, \mathcal{B}_0, m)$. $f_n(x) \xrightarrow[n \to \infty]{} 0$ for all $x \in \mathbb{R}$, but $f_n \xrightarrow[n \to \infty]{} 0$ because $||f_n||_p = \left(\int_n^{n+1} dx\right)^{1/p} = 1$ so $||f_n - 0||_p \xrightarrow[n \to \infty]{} 0$.

However, consider the following array:

$$f_{1,0} = \mathbf{1}_{[0,1]}$$

$$f_{2,0} = \mathbf{1}_{[0,1/2]}, \ f_{2,1} = \mathbf{1}_{[1/2,1]}$$

$$f_{3,0} = \mathbf{1}_{[0,1/3]}, \ f_{3,1} = \mathbf{1}_{[1/3,2/3]}, \ f_{3,2} = \mathbf{1}_{[2/3,1]}$$

$$\vdots$$

$$f_{n,k} = \mathbf{1}_{[k/n,(k+1)/n]} \text{ for } k = 0, 1, \dots, n-1$$

Let $\{g_n\}$ be the sequence $f_{1,0}, f_{2,0}, f_{2,1}, f_{3,0}, ...$ Then for all x

$$\liminf_{n\to\infty} g_n(x) = 0, \ \limsup_{n\to\infty} g_n(x) = 1$$

but $\|g_n\|_p \xrightarrow[n \to \infty]{} 0$ for $1 \le p < \infty$ because

$$\|f_{n,k}\|_p = \|\mathbf{1}_{[k/n,(k+1)/n]}\|_p = \frac{1}{n} \underset{n \to \infty}{\longrightarrow} 0$$
.

Definitions. Let $(V, \|\cdot\|)$ be a normed vector space.

- (1) A Cauchy sequence in V is a $\{v_n\}_{n=1}^{\infty} \subseteq V$ such that $||v_m v_n||_{m \to \infty} 0$.
- (2) $(V, \|\cdot\|)$ is *complete* if every Cauchy sequence converges in norm to some $v \in V$.
- (3) A complete normed vector space $(V, \|\cdot\|)$ is called a *Banach space*.

Theorem. (Riesz-Fischer) If (X, \mathcal{F}, μ) is σ -finite then $L^p(X, \mathcal{F}, \mu)$ is complete with respect to $\|\cdot\|_p$, $1 \le p \le \infty$.

Proof. We only consider the $1 \le p < \infty$ case as the $p = \infty$ case is easy and left as an exercise. Suppose $\{f_n\}_{n=1}^{\infty}$ is Cauchy, i.e. $\|f_m - f_n\|_p \xrightarrow[m \to \infty]{} 0$.

The idea is first to find a candidate for a limit, then show that this limit lies in L^p , then establish convergence.

Consider the following identity:

$$f_{N_k} = f_{N_0} + (f_{N_1} - f_{N_0}) + \dots + (f_{N_k} - f_{N_{k-1}})$$

This suggests the "formula":

$$\lim_{k \to \infty} f_{N_k} = f_{N_0} + \sum_{k=1}^{\infty} (f_{N_k} - f_{N_{k-1}})^{n}$$

The sum on the RHS is, in general, divergent. We find $N_k \uparrow \infty$ such that this sum converges absolutely a.e.. Choose N'_i so large that

$$m, n \ge N'_i \Longrightarrow \left\| f_m - f_n \right\|_p < 1/2^i$$

We force the sequence to be increasing by setting $N_i = \max_{1 \le j \le i} N'_i$. Now,

$$\begin{split} \left(\int \left(\int \left(f_{N_0} \right) + \sum_{k=1}^{\infty} \left| f_{N_k} - f_{N_{k-1}} \right| \right)^p d\mu \right)^{1/p} &= \left(\int \lim_{n \to \infty} \left(\int \left(f_{N_0} \right) + \sum_{k=1}^n \left| f_{N_k} - f_{N_{k-1}} \right| \right)^p d\mu \right)^{1/p} \text{ by Fatou} \\ &\leq \lim_{n \to \infty} \left(\int \left(\int \left(f_{N_0} \right) + \sum_{k=1}^n \left| f_{N_k} - f_{N_{k-1}} \right| \right)_p \right) d\mu \right)^{1/p} \text{ by Fatou} \\ &= \lim_{n \to \infty} \left\| \left| f_{N_0} \right| + \sum_{k=1}^n \left| f_{N_k} - f_{N_{k-1}} \right\|_p \right) \\ &\leq \lim_{n \to \infty} \left(\left\| f_{N_0} \right\|_p + \sum_{k=1}^n \left\| f_{N_k} - f_{N_{k-1}} \right\|_p \right) \text{ by Minkowski} \\ &= \left\| f_{N_0} \right\|_p + \sum_{k=1}^{\infty} \left\| f_{N_k} - f_{N_{k-1}} \right\|_p \\ &< \infty \end{split}$$

Therefore, the integrand $|f_{N_0}| + \sum_{k=1}^{\infty} |f_{N_k} - f_{N_{k-1}}|$ must be finite a.e., for otherwise its L^p norm would be ∞ . This proves that

$$f(x) = \lim_{k \to \infty} f_{N_k}(x)$$

is well-defined a.e. This is our candidate.

This is an L^p function (i.e. the norm is finite) because

$$\begin{split} \left\|f\right\|_{p} &= \left(\int \lim_{k \to \infty} \left|f_{N_{k}}\right|^{p}\right)^{1/p} \\ &\leq \liminf_{k \to \infty} \left(\int \left|f_{N_{k}}\right|^{p}\right)^{1/p} \\ &= \liminf_{k \to \infty} \left\|f_{N_{k}}\right\|_{p} \end{split}$$

and $\{ \| f_{N_k} \|_p \}$ is bounded.

Our sequence converges to f in norm:

$$\begin{split} \left\| f - f_n \right\|_p &= \left\| \lim_{k \to \infty} \left(f_{N_k} - f_n \right) \right\|_p \\ &\leq \liminf_{k \to \infty} \left\| f_{N_k} - f_n \right\|_p \end{split}$$

If $n > N_l$ then for k > l, $||f_{N_k} - f_n||_p < 1/2^l$. So $n > N_l \Rightarrow ||f - f_n||_p < 1/2^l$. So $||f_n - f||_p \Rightarrow 0$.

Corollary. If $f_n \xrightarrow[n \to \infty]{L^p} f$ then $\exists N_k \uparrow \infty$ such that $f_{N_k} \xrightarrow[k \to \infty]{K} f$ a.e.

Corollary. $\sum_{n=1}^{\infty} ||f_n||_p < \infty \Rightarrow \left\{ \sum_{n=1}^{N} f_n \right\}_{N=1}^{\infty}$ converges in L^p . (The limit is denoted by $\sum_{n=1}^{\infty} f_n$.

Exercise. Reconcile the first corollary with the second example above.

The Case
$$p = 2$$

Suppose (X, \mathcal{F}, μ) is σ -finite. We can define an inner product on $L^2(X, \mathcal{F}, \mu)$ via

$$(f,g) = \int_X fg \, d\mu$$
.

This is well-defined:

(1) If
$$f = f'$$
 a.e. and $g = g'$ a.e. then $fg = f'g'$ a.e. and so $\int fg = \int f'g'$.

(2) fg is absolutely integrable since

$$\int_{X} |fg| d\mu \leq \left(\int_{X} |f|^{2} d\mu \right) \left(\int_{X} |g|^{2} d\mu \right) = ||f||_{2} ||g||_{2} < \infty$$

and it is related to the L^2 norm in the right way: $\|f\|_2 = (f, f)^{1/2}$.

Definition. A complete inner product space $(V, (\cdot, \cdot))$ is called a *Hilbert space*.

Definition. A *bounded linear functional* on L^2 is a linear function $\phi: L^2 \to \mathbb{R}$ such that $\exists A > 0$ such that $|\phi(f)| \le A ||f||_2$ for all $f \in L^2$.

Example. If $g_0 \in L^2$ is fixed then $\phi_{g_0}(f) = (f, g_0) = \int_X fg_0 d\mu$ is a bounded linear functional.

Proof. It is clear that $\phi_{g_0}(f)$ is independent of the choice of representative. It is also clear that ϕ_{g_0} is linear. It is bounded because the Cauchy-Schwarz Inequality says

$$|\phi_{g_0}(f)| \leq \int_X |fg_0| d\mu = ||f||_2 ||g_0||_2$$

The converse to this is the Riesz Representation Theorem:

Theorem. (Riesz Representation Theorem) If (X, \mathcal{F}, μ) is σ -finite then every bounded linear functional on $L^2(X, \mathcal{F}, \mu)$ is of the form $f \mapsto \int_X fg \, d\mu$ for some fixed $g \in L^2(X, \mathcal{F}, \mu)$.

Absolute Continuity

Basic Example. Let (X, \mathcal{F}, v) be a σ -finite measure space and suppose $f: X \to \mathbb{R}$ is non-negative and measurable. Define $\mu: \mathcal{F} \to \mathbb{R}$ by $\mu(E) = \int_{\mathbb{R}} f \, dv$.

Exercise. (1) Prove that μ is a measure. (2) Show that (X, \mathcal{F}, μ) is σ -finite.

Definition. Let μ, ν be two σ -finite measures on (X, \mathcal{F}) . We say that μ is *absolutely* continuous with respect to ν , and write $\mu \ll \nu$, if $\nu(E) = 0 \Rightarrow \mu(E) = 0$.

Examples. (1) If $\mu(E) = \int_E f \, dv$ for all $E \in \mathcal{F}$ then $\mu \ll v$.

(2) Let v be Lebesgue measure on \mathbb{R} , let $\mathbb{Q} = \{q_n\}_{n=1}^{\infty}$ be an enumeration of \mathbb{Q} , and define

$$\mu(E) = \sum_{n=1}^{\infty} \frac{1}{2^n} \mathbf{1}_E(q_n).$$

Exercise. (1) Show that μ is a finite measure.

(2) Show that μ is not absolutely continuous with respect to ν . (Hint: calculate $\mu(\mathbb{Q})$ and $\nu(\mathbb{Q})$.)

Theorem. (Radon-Nikodym) Let μ, ν be two σ -finite measures on (X, \mathcal{F}) . If $\mu \ll \nu$ then there exists a non-negative measurable function $f: X \to \mathbb{R}$ such that for all μ -absolutely integrable functions g,

$$\int_X g\,d\mu = \int_X gf\,d\nu\,.$$

Moreover, f is unique up to μ -null sets.

Definition. In this case we write $d\mu = f dv$, $f = \frac{d\mu}{dv}$, and call $f = \frac{d\mu}{dv}$ the *Radon-Nikodym derivative* of μ with respect to v.

Proof. We only treat the finite measure case $\mu(X), \nu(X) < \infty$; the general case is handled in the standard way by breaking X into \aleph_0 pieces of finite $(\mu + \nu)$ -measure.

Define $\lambda = \mu + \nu$ and let $\phi: L^2(X, \mathcal{F}, \lambda) \to \mathbb{R}$ be the functional

$$\phi(f) = \int_X f \, d\mu$$

We need to show that ϕ is a well-defined bounded linear functional:

 ϕ is well defined, for suppose $f_1 = f_2 \ \lambda$ -a.e. Then

$$0 = \lambda [f_1 \neq f_2] = \mu [f_1 \neq f_2] + \nu [f_1 \neq f_2] \ge \mu [f_1 \neq f_2].$$

It follows that $f_1 = f_2 \ \mu$ -a.e. and so $\phi(f_1) = \int_X f_1 d\mu = \int_X f_2 d\mu = \phi(f_2)$. The linearity of ϕ is clear. To see that it is bounded use the Cauchy-Schwarz Inequality:

$$\left|\phi(f)\right| \leq \int \left|f\right| d\mu \leq \int \left|f\right| d\lambda \leq \sqrt{\int 1^2 d\lambda} \sqrt{\int \left|f\right|^2 d\lambda} = \sqrt{\lambda(X)} \left\|f\right\|_2 < \infty$$

By the Riesz Representation Theorem, $\exists h \in L^2(X, \mathcal{F}, \lambda)$ such that $\forall f \in L^2(X, \mathcal{F}, \lambda)$, $\phi(f) = (f, h)$. I.e., for $f \in L^2(X, \mathcal{F}, \lambda)$,

$$\int f \, d\mu = \int fh \, d\lambda = \int fh \, d\mu + \int fh \, d\nu$$

$$\Rightarrow \qquad \qquad \int f(1-h) d\mu = \int fh \, d\nu \qquad (*)$$
This suggests $(1-h)d\mu = h dv$, and so $d\mu = \frac{h}{1-h} dv$. We make this manipulation rigorous:

Claim. $0 \le h < 1 \ \lambda$ -a.e.

Proof. We start by noting that $\forall E \in \mathcal{F}$, $\mathbf{1}_E \in L^2(X, \mathcal{F}, \lambda)$, and so

$$\mu(E) = \phi(\mathbf{1}_E) = \int_E h \, d\lambda \tag{A}$$

$$\nu(E) = \lambda(E) = \mu(E) = \int_{E} (1-h) d\lambda$$
 (B)

Now

$$(A) \Rightarrow \qquad 0 \ge \int_{[h<0]} h \, d\lambda = \mu [h<0] k \ge 0$$
$$\Rightarrow \qquad \int_{[h<0]} h \, d\lambda = 0$$
$$\Rightarrow \qquad \lambda [h<0] = 0$$

Exercise. Prove the last implication.

$$(B) \Rightarrow \qquad 0 \ge \int_{[h\ge 1]} (1-h) d\lambda = \nu[h\ge 1] \ge 0$$
$$\Rightarrow \qquad \nu[h\ge 1] = 0$$

Since $\mu \ll v$, $\mu[h \ge 1] = 0$ as well, so $\lambda[h \ge 1] = 0$. Hence $0 \le h < 1$ λ -a.e. This proves the claim.

Since $\lambda(X) < \infty$, every indicator function is in $L^2(X, \mathcal{F}, \lambda)$, and so (*) implies that for each $E \in \mathcal{F}$, $\int \mathbf{1}_E \cdot (1-h) d\mu = \int \mathbf{1}_E \cdot h d\nu$. By linearity, for all simple functions f,

$$\int f \cdot (1-h) d\mu = \int fh \, d\nu \, .$$

If f is non-negative measurable then choose simple $0 \le \phi_n \uparrow f$. Note that $0 \le \phi_n h \uparrow fh$, $0 \le \phi_n \cdot (1-h) \uparrow f \cdot (1-h)$. Then

$$\int f \cdot (1-h) d\mu = \lim_{n \to \infty} \int \phi_n \cdot (1-h) d\mu \text{ by MCT}$$
$$= \lim_{n \to \infty} \int \phi_n h \, d\nu \text{ since } \phi_n \text{ simple}$$
$$= \int fh \, d\nu \text{ by MCT}$$

This proves that for $f \ge 0$ measurable,

$$\int f \cdot (1-h) d\mu = \int fh \, d\nu \,. \tag{(**)}$$

But if f is non-negative measurable then so is $f \cdot \frac{h}{1-h}$. Therefore, by (**),

$$\int f d\mu = \int \frac{f}{1-h} \cdot (1-h) d\mu$$
$$= \int \frac{f}{1-h} h d\nu$$
$$= \int f \frac{h}{1-h} d\nu$$

for all f non-negative measurable.

Exercise. Generalize to all μ -absolutely integrable functions $f = f^+ - f^-$.

Exercise. Show the Radon-Nikodym derivative is unique modulo λ . (Hint: suppose $\int fg_i d\mu = \int fg_i d\nu$ for i = 1, 2 and evaluate $\int (\operatorname{sgn}(g_1 - g_2))(g_1 - g_2) d\nu$.)

Signed Measures

Imagine that electric charge is distributed in space. It makes sense to define $\mu(E)$ to be the total charge within the region E. However, this μ is not a measure because it is not, in general, non-negative.

Definition. Let (X, F) be a measurable space. A signed measure is a set function μ: F → [-∞,+∞] such that
(1) μ attains at most one of the values ±∞;
(2) μ(Ø)=0;
(3) σ -additivity: if E = ∐[∞]_{i=1} E_i with E_i ∈ F then μ(E) = ∑[∞]_{i=1} μ(E_i), where
(a) if |μ(E)| = ∞ then the convergence of ∑[∞]_{i=1} μ(E_i) to μ(E) is meant,
(b) if |μ(E)| < ∞ then the absolute convergence of ∑[∞]_{i=1} μ(E_i) to μ(E) is meant.

Remarks. (1) was added to prevent the existence of two disjoint sets $A, B \in \mathcal{F}$ such that $\mu(A) = +\infty$, $\mu(B) = -\infty$, for in this case $\mu(A \coprod B) = \infty - \infty$. (3) was strengthened to make sure all sums converge.

Definitions. Let (X, \mathcal{F}, μ) be a signed measure space. (1) $E \in \mathcal{F}$ is called a *null set* if $\forall E' \subseteq E$ measurable, $\mu(E') = 0$. (This is stronger than saying $\mu(E) = 0$.)

- (2) $E \in \mathcal{F}$ is positive if $\forall E' \subseteq E$ measurable, $\mu(E') \ge 0$. (2) $E \in \mathcal{F}$ is positive if $\forall E' \subseteq E$ measurable $\mu(E') \ge 0$.
- (3) $E \in \mathcal{F}$ is *positive* if $\forall E' \subseteq E$ measurable, $\mu(E') \leq 0$.

Lemma. (Exhaustion Lemma) Let (X, \mathcal{F}, μ) be a signed measure space. Every $E \in \mathcal{F}$ with $0 < \mu(E) < \infty$ contains a subset which is a positive set of strictly positive measure.

Proof. Define $E_1 = E$ and set

$$\mu_1 = \sup\{|\mu(A)| \mid A \subseteq E_1 \text{ is measurable and } \mu(A) \le 0\}.$$

Now choose $A_1 \subseteq E_1$ measurable such that

$$\mu(A_1) \le -1 \text{ if } \mu_1 = +\infty,$$

$$\mu(A_1) \le \mu_1/2 \text{ if } \mu_1 < +\infty.$$

Define $E_2 = E_1 \setminus A_1 = E \setminus A_1$. Set

 $\mu_2 = \sup\{|\mu(A)| \mid A \subseteq E_2 \text{ is measurable and } \mu(A) \le 0\}.$

(Note that if $\mu_1 < \infty$ then $\mu_2 \le \mu_1/2$.) Choose $A_2 \subseteq E_2$ measurable such that

$$\mu(A_2) \le -1 \text{ if } \mu_2 = +\infty,$$

 $\mu(A_2) \le \mu_2/2 \text{ if } \mu_2 < +\infty.$

Proceed by induction. Suppose A_1, \ldots, A_n already defined. Set

$$\mu_{n+1} = \sup \{ |\mu(A)| \mid A \subseteq E_n \text{ is measurable and } \mu(A) \le 0 \}.$$

Choose $A_{n+1} \subseteq E_{n+1}$ measurable such that

$$\mu(A_{n+1}) \le -1 \text{ if } \mu_{n+1} = +\infty,$$

$$\mu(A_{n+1}) \le \mu_{n+1}/2 \text{ if } \mu_{n+1} < +\infty.$$

We obtain in this way $\{A_i\}_{i=1}^{\infty}$ pairwise disjoint. Define $\widetilde{E} = E \setminus \prod_{i=1}^{\infty} A_i$. We show that \widetilde{E} is positive and $\mu(\widetilde{E}) > 0$.

Step 1. $\mu_n \xrightarrow[n \to \infty]{} 0$.

Proof. First note that $\exists N \in \mathbb{N}$ such that $\mu_N < +\infty$, for otherwise $\forall n \in \mathbb{N}$, $\mu_n = +\infty$ and so $\mu(A_n) \leq -1$. Hence,

$$0 < \mu(E) = \mu(\widetilde{E} \coprod(\coprod_{i=1}^{\infty} A_i)) = \underbrace{\mu(\widetilde{E})}_{\in [-\infty, +\infty)} + \underbrace{\sum_{i=1}^{\infty} \mu(A_i)}_{=-\infty} = -\infty,$$

which is a contradiction. By the definition of μ_N , $\mu_{N+1} \le \mu_N/2$, so for n > N, $\mu_n \le \mu_N/2^{n-N} \xrightarrow[n \to \infty]{} 0$.

Step 2. \widetilde{E} is positive.

Proof. $E' \subseteq \widetilde{E}$ is measurable. By definition, $E' \subseteq E_n = E \setminus \coprod_{i=1}^{n-1} A_i$, so if $\mu(E') \leq 0$ then $|\mu(E')| \leq \mu_n \xrightarrow[n \to \infty]{} 0$. Thus, all subsets of \widetilde{E} with non-positive measure have measure zero, so \widetilde{E} is positive.

Step 3.
$$\mu(\widetilde{E}) > 0$$

Proof. $0 < \mu(E) = \mu(\widetilde{E}) + \underbrace{\sum_{i=1}^{\infty} \mu(A_i)}_{<0}$.

Theorem. (Hahn's Decomposition Theorem) Let (X, \mathcal{F}, μ) be a signed measure space. There exist sets $X^{\pm} \in \mathcal{F}$ such that $X = X^+ \coprod X^-$, X^+ is positive and X^- is negative. If $X = X_1^+ \coprod X_1^-$ is another such decomposition then $X^+ \Delta X_1^+$ and $X^- \Delta X_1^-$ are null sets.

Proof. Assume without loss of generality that μ omits the value $+\infty$ (else pass to $-\mu$). Define $m = \{\mu(E) \mid E \in \mathcal{F} \text{ is positive }\}$. This is finite because μ omits the value $+\infty$. Choose $E_n \in \mathcal{F}$ positive such that $\mu(E_n) \xrightarrow[n \to \infty]{} m$. Set $X^+ = \bigcup_{n=1}^{\infty} E_n$, $X^- = X \setminus X^+$.

Exercise. Show that a countable union of positive sets is positive.

So X^+ is positive. X^- is negative because otherwise there exists $E' \subseteq X^-$ measurable such that $\mu(E') > 0$. In this case $X^+ \coprod E'$ is a positive set with measure $m + \mu(E') > m$, which contradicts the maximality of m.

This proves the existence of a Hahn decomposition. We now prove uniqueness. Let $X = X_1^+ \coprod X_1^-$ be another Hahn decomposition.

Suppose $E \subseteq X^+ \Delta X_1^+$. Since

$$X^+ \Delta X_1^+ = \left(X^+ \setminus X_1^+\right) \cup \left(X_1^+ \setminus X^+\right) \subseteq X^+ \cup X_1^+,$$

 $\mu(E') \ge 0$ since $X^+ \cup X_1^+$ is positive. But we also have

$$X^+ \Delta X_1^+ = \left(X^+ \cap X_1^-\right) \cup \left(X_1^+ \cap X^-\right) \subseteq X_1^- \cup X^-,$$

so $\mu(E') \le 0$ since $X_1^- \cup X^-$ is negative. So $\mu(E') = 0$. Since E' was arbitrary, $X^+ \Delta X_1^+$ is null. The proof for $X^- \Delta X_1^-$ is similar.

Definition. Let μ, ν be two measures on (X, \mathcal{F}) . We say μ, ν are *mutually singular* and write $\mu \perp \nu$ if $X = X_{\mu} \coprod X_{\nu}$ where $\mu(X_{\nu}) = \nu(X_{\mu}) = 0$. (I.e. μ "lives on" X_{μ}, ν "lives on" $X_{\nu}, X_{\mu} \cap X_{\nu} = \emptyset$).

Exercise. Show that if $\mu \ll v$ then μ and v are not mutually singular.

Theorem. (Jordan's Decomposition Theorem) Let (X, \mathcal{F}, μ) be a signed measure space. There exists a unique decomposition $\mu = \mu^+ - \mu^-$ where μ^+, μ^- are (proper) measures and $\mu^+ \perp \mu^-$.

Proof. Let $X = X^+ \coprod X^-$ be a Hahn decomposition. Define two measures μ^+, μ^- by

$$\mu^+(E) = \mu(E \cap X^+),$$

$$\mu^-(E) = -\mu(E \cap X^-).$$

Exercise. Show μ^+, μ^- are measures.

To see that these measures are mutually singular take $X_{\mu^+} = X^+$, $X_{\mu^-} = X^-$ and observe that $\mu = \mu^+ - \mu^-$.

Suppose $\mu = \mu_1^+ - \mu_1^-$ is another Jordan decomposition. Let $X = X_1^+ \coprod X_1^-$ be a decomposition such that $\mu_1^+(X_1^-) = \mu_1^-(X_1^+) = 0$. We claim that this is a Hahn decomposition.

To see that X_1^+ is positive: $\forall E' \subseteq X_1^+$, $\mu(E') = \mu_1^+(E') - \mu_1^-(E') = \mu_1^+(E') \ge 0$. The negativity of X_1^- is shown similarly.

By the uniqueness part of the Hahn Decomposition Theorem, both $X^+ \Delta X_1^+$ and $X^- \Delta X_1^-$ are null sets. Therefore, for every $E \in \mathcal{F}$,

$$\mu_1^+(E) = \mu_1^+(E \cap X_1^+) - \mu_1^-(E \cap X_1^+)$$
$$= \mu(E \cap X_1^+)$$
$$= \mu(E \cap X^+) \text{since } X^+ \Delta X_1^+ \text{ null}$$
$$= \mu^+(E \cap X^+)$$
$$= \mu^+(E)$$

Similarly for μ_1^-, μ^- .