University of Warwick
MA359 Measure Theory

Autumn Term 2002
Lectured by Doctor Omri Sarig
Typed by Tim Sullivan

Index

0. Introduction 3
1. Lebesgue's Measure 8
2. Integration 27
3. Product Measures 50
4. L^{p} Spaces 61

0 . Introduction

Problem. We wish to assign a numerical size $\mu(E)$ to subsets E of a given space X.
Geometry: $X=\mathbb{R}^{2} ; \mu(E)=\operatorname{Area}(E)$.
Mechanics: $X=\mathbb{R}^{2}=$ model for thin sheet of metal with density $\rho(x, y) ; \mu(E)=$ mass of E.

Probability Theory: $X=$ sample space, collection of possible outcomes; $E \subseteq X$ an "event"; $\mu(E)=$ probability that E happens.

However, there are problems. For instance, what is the area of this?

"Magnification" doesn't help. We encounter similar problems with the idea of mass what is the mass of, say, a sponge? Or, in the case of probability, imagine picking a real number "at random" - what is the probability that the number chosen is rational?

What would we like to have for \mathbb{R} ?
Idea. (1) A function μ with domain $2^{\mathbb{R}}$ and range $[0,+\infty] ; \mu(\varnothing)=0, \mu(\mathbb{R})=\infty$.
(2) Translation-invariance: $\mu(x+E)=\mu(E)$ for all $x \in \mathbb{R}, E \subseteq \mathbb{R}$.
(3) "Consistency":
(i) Monotonicity: $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$;
(ii) $\mu(A \amalg B)=\mu(A)+\mu(B)$;
(iii) σ-additivity: $\mu\left(\amalg_{i \in \mathbb{N}} A_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(A_{i}\right)$;
(iv) $\mu(\varnothing)=0$;

Sad Fact. These requirements are not self-consistent!

Condition (1) is very strong because there are too many subsets:

$$
\left|2^{\mathbb{R}}\right|=2^{2^{\aleph_{0}}} \gg 2^{\aleph_{0}} \gg \aleph_{0}=|\mathbb{N}|
$$

σ-additivity is also asking for a lot because limits are involved.
The standard choice is to relax (1) and keep σ-additivity for the sake of practicality and an easy life. Relaxing (1) means that the domain for μ should only be a subcollection \mathcal{F} of subsets of X. We would like \mathcal{F} to have the following properties:
(1) $\varnothing, X \in \mathcal{F}$;
(2) $A, B \in \mathcal{F} \Rightarrow A \cup B, A \cap B, A \backslash B, A^{\mathrm{C}} \in \mathcal{F}$;
(3) $\left\{A_{i}\right\}_{i=1}^{\infty}$ in $\mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_{i}, \bigcap_{i=1}^{\infty} A_{i} \in \mathcal{F}$.

We do not require that \mathcal{F} be closed under arbitrary unions and intersections, simply countable ones.

Definition. Let X be a set. A σ-algebra of subsets of X is a collection of subsets of X that contains \varnothing and is closed under complementation and countable unions of its members.

Exercise. Prove that a σ-algebra satisfies the properties given above.
Definition. A measurable space is a pair (X, \mathcal{F}), where X is a set and \mathcal{F} is a σ algebra of subsets of X. Elements of \mathcal{F} are called \mathcal{F}-measurable, or simply measurable.

Definition. Let (X, \mathcal{F}) be a measurable space. A measure on (X, \mathcal{F}) is a function $\mu: \mathcal{F} \rightarrow[0,+\infty]$ such that
(1) $\mu(\varnothing)=0$;
(2) μ is σ-additive, i.e. if $A_{i} \in \mathcal{F}$ are pairwise disjoint then $\mu\left(\amalg_{i \in \mathbb{N}} A_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(A_{i}\right)$.

The triple (X, \mathcal{F}, μ) is called a measure space.
Proposition. (Basic properties of measures.) Let (X, \mathcal{F}, μ) be a measure space.
(1) Additivity: $A_{1}, \ldots, A_{n} \in \mathcal{F}$ pairwise disjoint $\Rightarrow \mu\left(\amalg_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)$;
(2) Monotonicity: $A, B \in \mathcal{F}, A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$;
(3) Inclusion-Exclusion Principle: if $A, B \in \mathcal{F}$ and $\mu(A \cap B)<\infty$ then

$$
\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)
$$

(4) Difference Formula: if $A, B \in \mathcal{F}, A \subseteq B, \mu(A)<\infty$ then $\mu(B \backslash A)=\mu(B)-\mu(A)$.

Proof. (1) Define

$$
B_{i}=\left\{\begin{array}{cc}
A_{i} & 1 \leq i \leq n \\
\varnothing & i>n
\end{array}\right.
$$

By σ-additivity,

$$
\begin{aligned}
\mu\left(\amalg_{i=1}^{n} A_{i}\right) & =\mu\left(\amalg_{i=1}^{\infty} B_{i}\right) \\
& =\sum_{i=1}^{\infty} \mu\left(B_{i}\right) \\
& =\sum_{i=1}^{n} \mu\left(A_{i}\right)
\end{aligned}
$$

(2) $\mu(B)=\mu(A \amalg(B \backslash A))=\mu(A)+\mu(B \backslash A) \geq \mu(A)$.
(4) $\mu(B)=\mu(A)+\mu(B \backslash A)$. If $\mu(A)<\infty$ as given we can subtract $\mu(A)$ from both sides to get $\mu(B)-\mu(A)=\mu(B \backslash A)$.
(3)

$$
\begin{aligned}
\mu(A \cup B) & =\mu(A \amalg(B \backslash A)) \\
& =\mu(A)+\mu(B \backslash A) \\
& =\mu(A)+\mu(B \backslash(A \cap B)) \\
& =\mu(A)+\mu(B)-\mu(A \cap B)
\end{aligned}
$$

Definition. (Monotone sequences of sets.) We say that a sequence $\left\{E_{i}\right\}_{i=1}^{\infty}$ increases (respectively decreases) to a set E if

$$
\forall i \in \mathbb{N}, E_{i} \subseteq E_{i+1} \text { and } \bigcup_{i=1}^{\infty} E_{i}=E
$$

and write $E_{i} \uparrow E$ (respectively

$$
\forall i \in \mathbb{N}, E_{i} \supseteq E_{i+1} \text { and } \bigcap_{i=1}^{\infty} E_{i}=E,
$$

and write $\left.E_{i} \downarrow E\right)$.
Proposition. (Continuity of measures.) Let (X, \mathcal{F}, μ) be a measure space and let $\left\{E_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{F}$.
(1) If $E_{i} \uparrow E$ then $\mu(E)=\lim _{i \rightarrow \infty} \mu\left(E_{i}\right)$.
(2) If $E_{i} \downarrow E$ and $\exists i_{0}$ such that $\mu\left(E_{i_{0}}\right)<\infty$ then $\mu(E)=\lim _{i \rightarrow \infty} \mu\left(E_{i}\right)$.

Proof. (1) Assume first that $\mu\left(E_{i}\right)<\infty$ for all i. We claim that

$$
E=\bigcup_{i=1}^{\infty} E_{i}=E_{1} \amalg\left(\amalg_{i=2}^{\infty} E_{i} \backslash E_{i-1}\right) .
$$

Indeed, $\mathrm{LHS} \subseteq$ RHS since if $x \in E$ then there is a minimal i such that $x \in E_{i}$. By minimality, $x \notin E_{i-1}$, so $x \in E_{i} \backslash E_{i-1} \subseteq$ RHS. RHS \subseteq LHS is trivial.

To see that the union on the RHS is pairwise disjoint suppose $i<j$. Then $E_{j} \backslash E_{j-1} \subseteq E_{j} \backslash E_{i} \quad$ since $\quad E_{i} \subseteq E_{i+1} \subseteq \ldots \subseteq E_{j-1} \subseteq E_{j}$. So, since $\quad E_{j} \backslash E_{j-1} \subseteq E_{i}^{\mathrm{C}} \quad$ and $E_{i} \backslash E_{i-1} \subseteq E_{i},\left(E_{j} \backslash E_{j-1}\right) \cap\left(E_{i} \backslash E_{i-1}\right)=\varnothing$.

We now use the σ-additivity of μ to calculate $\mu(E)$:

$$
\begin{aligned}
\mu(E) & =\mu\left(E_{1}\right)+\sum_{i=2}^{\infty} \mu\left(E_{i} \backslash E_{i-1}\right) \\
& =\mu\left(E_{1}\right)+\sum_{i=2}^{\infty}\left(\mu\left(E_{i}\right)-\mu\left(E_{i-1}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\mu\left(E_{1}\right)+\left(\mu\left(E_{2}\right)-\mu\left(E_{1}\right)\right)+\ldots+\left(\mu\left(E_{n}\right)-\mu\left(E_{n-1}\right)\right)\right) \\
& =\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)
\end{aligned}
$$

This proves (1) under the assumption that $\mu\left(E_{i}\right)<\infty$ for all i. If $\exists i_{0}$ such that $\mu\left(E_{i_{0}}\right)=\infty$ then by Monotonicity $i \geq i_{0} \Rightarrow \mu\left(E_{i}\right)=\infty$ and $\mu(E) \geq \mu\left(E_{i}\right)=\infty$, hence

$$
\mu(E)=\infty=\lim _{i \rightarrow \infty} \infty=\lim _{i \rightarrow \infty} \mu\left(E_{i}\right),
$$

thus proving (1).
(2) By de Morgan,

$$
E_{i_{0}} \backslash \bigcap_{i=i_{0}}^{\infty} E_{i}=\bigcup_{i=i_{0}+1}^{\infty}\left(E_{i_{0}} \backslash E_{i}\right)
$$

and

$$
\left(E_{i_{0}} \backslash E_{i}\right) \uparrow\left(E_{i_{0}} \backslash \bigcap_{i=i_{0}}^{\infty} E_{i}\right)
$$

by (1). So

$$
\begin{aligned}
\mu\left(E_{i_{0}}\right)-\mu\left(\bigcap_{i=i_{0}}^{\infty}\right) & =\mu\left(E_{i_{0}} \backslash \bigcap_{i=i_{0}}^{\infty} E_{i}\right) \\
& =\mu\left(\bigcup_{i=i_{0}}^{\infty} E_{i_{0}} \backslash E_{i}\right) \\
& =\lim _{i \rightarrow \infty} \mu\left(E_{i_{i}} \backslash E_{i}\right) \\
& =\mu\left(E_{i_{0}}\right)-\lim _{i \rightarrow \infty} \mu\left(E_{i}\right) \\
\Rightarrow \quad \mu\left(\bigcap_{i=i_{0}}^{\infty} E_{i}\right) & =\lim _{i \rightarrow \infty} \mu\left(E_{i}\right)
\end{aligned}
$$

We observe that $\bigcap_{i=i_{0}}^{\infty} E_{i}=\bigcap_{i=1}^{\infty} E_{i}$.

1. LebesGue's Measure

Aim. Define a measure m on \mathbb{R} such that
(1) $m($ interval $)=$ length (interval $)$;
(2) translation-invariance, i.e. $m(x+E)=m(E)$.

Strategy. 'Do what we must.'
(1) Define the measure on certain basic sets for which the definition is obvious - the intervals.
(2) Extend the definition to all sets by approximating them by countable unions of basic sets.
(3) Restrict to a σ-algebra to get σ-additivity.

Step 1 - Defining the Measure on Intervals
We begin with some notation and definitions.
An interval is a set of the form $(a, b),(a, b],[a, b),[a, b]$ where $a \leq b$. We also allow $\varnothing, \mathbb{R},(a, \infty),[a, \infty),(-\infty, b),(-\infty, b]$. We shall use $\langle a, b\rangle$ to represent all the possibilities above.

$$
\text { Int }=\{E \subseteq \mathbb{R} \mid E \text { is an interval }\}
$$

Let X be a set. A collection $\mathcal{S} \subseteq 2^{X}$ is called a semi-algebra (of subsets of X) if
(1) $\varnothing, X \in \mathcal{S}$;
(2) $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$;
(3) $\forall A \in \mathcal{S}, A^{\mathrm{C}}$ can be written as a finite union of pairwise disjoint elements of \mathcal{S}.

Proposition. Int is a semi-algebra of subsets of \mathbb{R} (but is not a σ-algebra).
Proof. (1) $\varnothing=(0,0), \mathbb{R}=(-\infty,+\infty)$.
(2) The intersection of two intervals is empty, an interval, or a point $[a, a]$.
(3) The complement of an interval is empty, an interval, or the union of two disjoint intervals.

Definition. Let $\ell: \operatorname{Int} \rightarrow[0, \infty]$ be the length function given by

$$
\ell(\langle a, b\rangle)=b-a .
$$

Is $\ell \sigma$-additive on Int? I.e. if $I=\coprod_{k=1}^{\infty} I_{k}$, where $I, I_{k} \in \operatorname{Int}$, does it follow that

$$
\ell(I)=\sum_{k=1}^{\infty} \ell\left(I_{k}\right) ?
$$

Lemma. (1) ℓ is finitely additive: for $I, I_{k} \in \operatorname{Int}$,

$$
I=\coprod_{k=1}^{N} I_{k} \Rightarrow \ell(I)=\sum_{k=1}^{N} \ell\left(I_{k}\right) .
$$

(2) ℓ is σ-sub-additive: for $I, I_{k} \in \operatorname{Int}$,

$$
I=\bigcup_{k=1}^{\infty} I_{k} \Rightarrow \ell(I) \leq \sum_{k=1}^{\infty} \ell\left(I_{k}\right) .
$$

Proof. (1) If I is not bounded then $\ell(I)=\infty$. In this case at least one of the I_{k}, I_{j} say, must be unbounded (because a finite union of bounded sets is bounded). Thus,

$$
\begin{aligned}
& \ell(I)=\infty=\ell\left(I_{j}\right) \leq \sum_{k=1}^{N} \ell\left(I_{k}\right) \\
& \Rightarrow \ell(I)=\infty=\sum_{k=1}^{N} \ell\left(I_{k}\right)
\end{aligned}
$$

From now on, assume I, I_{k} are bounded; $I=\langle a, b\rangle, I_{k}=\left\langle a_{k}, b_{k}\right\rangle$. Re-order so that $a_{1}<a_{2}<\ldots<a_{N}$. Observe that
(i) $\forall k, b_{k} \leq a_{k+1}$ since if not there would be an overlap, $I_{k} \cap I_{k+1} \supseteq\left(a_{k+1}, a_{k+1}+\varepsilon\right]$ would be non-empty;
(ii) $\forall i \leq N-1, b_{k}=a_{k+1}$ since if not there would be a gap, $\left(b_{k}, a_{k+1}\right)$, yet I can have no gaps.

By (ii),

$$
\begin{aligned}
\sum_{k=1}^{N} \ell\left(I_{k}\right) & =\sum_{k=1}^{N}\left(b_{k}-a_{k}\right) \\
& =\sum_{k=1}^{N-1}\left(a_{k+1}-a_{k}\right)+\left(b_{N}-a_{N}\right) \\
& =\left(a_{N}-a_{1}\right)+\left(b_{N}-a_{N}\right) \\
& =b_{N}-a_{1}
\end{aligned}
$$

Since the a_{k} were ordered, $b_{N}=b$ and $a_{1}=a$, so

$$
\ell(I)=\sum_{k=1}^{N} \ell\left(I_{k}\right)=b-a .
$$

(2) Case 1: I is a compact interval $[a, b]$.

Write $I_{i}=\left\langle a_{i}, b_{i}\right\rangle$, fix $\varepsilon>0$ and set $J_{i}=\left(a_{i}-\varepsilon / 2^{i+1}, b_{i}+\varepsilon / 2^{i+1}\right) .\left\{J_{i}\right\}_{i=1}^{\infty}$ is an open cover of the compact interval I. Therefore, by the Heine-Borel Theorem, there exists a finite subcover; fix N and re-order so that $I \subseteq \bigcup_{i=1}^{N} J_{i}$. Write

$$
\begin{aligned}
\alpha_{i} & =a_{i}-\varepsilon / 2^{i+1} \\
\beta_{i} & =b_{i}+\varepsilon / 2^{i+1}
\end{aligned}
$$

$a \in I \subseteq \bigcup_{i=1}^{N} J_{i}$ so $\exists i_{1}$ such that $a \in J_{i_{1}} \Leftrightarrow \alpha_{i_{1}}<a<\beta_{i_{1}}$. If $I \subseteq J_{i_{1}}$ we stop. If not, $\beta_{i_{1}} \in I$ and so $\exists i_{2}$ such that $a \in J_{i_{2}} \Leftrightarrow \alpha_{i_{2}}<\beta_{i_{1}}<\beta_{i_{2}}$. If $I \subseteq J_{i_{1}} \cup J_{i_{2}}$ we stop. If not, $\beta_{i_{2}} \in I$ and so $\exists i_{3}$ such that $a \in J_{i_{3}} \Leftrightarrow \alpha_{i_{3}}<\beta_{i_{2}}<\beta_{i_{3}}$. Continue this process; this process stops eventually and gives us $i_{1}, \ldots, i_{N^{\prime}}, N^{\prime} \leq N$, such that

$$
\begin{gathered}
I \subseteq \bigcup_{k=1}^{N^{\prime}} J_{i_{k}}, \\
\alpha_{i_{1}}<a<\beta_{i_{1}}, \alpha_{i_{k+1}}<\beta_{i_{k}}<\beta_{i_{k+1}}, \alpha_{i_{N^{\prime}}}<b<\beta_{i_{N^{\prime}}} . \\
\bar{a}-
\end{gathered}
$$

Therefore, because of overlaps,

$$
\sum_{k=1}^{N^{\prime}} \ell\left(J_{i_{k}}\right) \geq \ell([a, b])=\ell(I)
$$

Thus,

$$
\begin{aligned}
\ell(I) & \leq \sum_{k=1}^{N^{\prime}} \ell\left(J_{i_{k}}\right) \\
& \leq \sum_{i=1}^{\infty} \ell\left(J_{i}\right) \\
& =\sum_{i=1}^{\infty}\left(\ell\left(I_{i}\right)+2 \frac{\varepsilon}{2^{i+1}}\right) \\
& =\sum_{i=1}^{\infty} \ell\left(I_{i}\right)+\sum_{i=1}^{\infty} \varepsilon / 2^{i} \\
& =\sum_{i=1}^{\infty} \ell\left(I_{i}\right)+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, $\ell(I) \leq \sum_{i=1}^{\infty} \ell\left(I_{i}\right)$. Thus, Case 1 is proved.
Case 2: I is a bounded interval, I_{k} arbitrary intervals.
If I_{k} bounded for all k we are in Case 1. If not $\exists k$ such that $\ell\left(I_{k}\right)=\infty$ and

$$
\ell(I)<\infty=\ell\left(I_{k}\right) \leq \sum_{i=1}^{\infty} \ell\left(I_{k}\right) .
$$

Case 3: General case.
Write $I=\langle a, b\rangle, a, b$ possibly infinite. Choose $a_{k} \downarrow a, b_{k} \uparrow b, a_{k} \leq b_{k}$. Clearly

$$
\left[a_{k}, b_{k}\right] \subseteq\left\langle a_{k}, b_{k}\right\rangle \subseteq \bigcup_{k=1}^{\infty} I_{k} .
$$

By Case 2, $\ell\left(\left[a_{k}, b_{k}\right]\right) \leq \sum_{k=1}^{\infty} \ell\left(I_{k}\right)$. But $\ell\left(\left[a_{k}, b_{k}\right]\right)=b_{k}-a_{k} \underset{k \rightarrow \infty}{\rightarrow} \ell(I)$, so $\ell(I) \leq \sum_{i=1}^{\infty} \ell\left(I_{k}\right)$.

Tricks. (1) $\varepsilon / 2^{i}$ trick - we need summable errors.
(2) Approximating sets from within by compact sets.

We need to check that ℓ is σ-additive on Int otherwise we have no chance of getting a measure out of ℓ.

Proposition. $\ell:$ Int $\rightarrow[0, \infty]$ is σ-additive on Int. I.e., if $I, I_{k} \in \operatorname{Int}$ and $I=\coprod_{k=1}^{\infty} I_{k}$ then $\ell(I)=\sum_{k=1}^{\infty} \ell\left(I_{k}\right)$.

Proof. (\leq) This follows from σ-sub-additivity.
(\geq) It is enough to prove that $\ell(I) \geq \sum_{k=1}^{N} \ell\left(I_{k}\right)$ for each N, since we can then pass to the limit $N \rightarrow \infty$. The idea is to show that $I \backslash \bigcup_{k=1}^{N} I_{k}$ is a finite pairwise disjoint union of intervals. This will do because if

$$
\begin{gather*}
I=\left(\amalg_{k=1}^{N} I_{k}\right) \amalg\left(\amalg_{i=1}^{M} J_{i}\right), \tag{*}\\
\text { with } J_{i} \in \operatorname{Int}
\end{gather*}
$$

then the finite additivity of ℓ on Int would imply

$$
\ell(I)=\sum_{k=1}^{N} \ell\left(I_{k}\right)+\underbrace{\sum_{i=1}^{M} \ell\left(J_{i}\right)}_{\geq 0} \geq \sum_{k=1}^{N} \ell\left(I_{k}\right) .
$$

To prove $(*)$ we can use the properties of Int as a semi-algebra. We claim that

$$
I \backslash \bigcup_{k=1}^{N} I_{k} \underset{\text { de Morgan }}{=} I \cap I_{1}^{\mathrm{C}} \cap I_{2}^{\mathrm{C}} \cap \ldots \cap I_{N}^{\mathrm{C}}
$$

is a finite disjoint union of intervals and prove this by induction on N.

Case $N=1$: Since Int is a semi-algebra $I_{1}^{\mathrm{C}}=\coprod_{k=1}^{n} J_{k}$ for some $J_{k} \in \operatorname{Int}$. Therefore, $I \cap I_{1}^{\mathrm{C}}=\coprod_{k=1}^{n} I \cap J_{k}$, but $I \cap J_{k} \in$ Int .

Induction Step: Assume $I \cap I_{1}^{\mathrm{C}} \cap I_{2}^{\mathrm{C}} \cap \ldots \cap I_{N}^{\mathrm{C}}=\coprod_{k=1}^{n} J_{k}$ with $J_{k} \in$ Int. Since Int is a semi-algebra, $I_{N+1}^{\mathrm{C}}=\coprod_{i=1}^{m} K_{i}, K_{i} \in \operatorname{Int}$. So,

$$
\begin{aligned}
I \cap I_{1}^{\mathrm{C}} \cap I_{2}^{\mathrm{C}} \cap \ldots \cap I_{N+1}^{\mathrm{C}} & =\left(\coprod_{k=1}^{n} J_{k}\right) \cap\left(\coprod_{i=1}^{m} K_{i}\right) \\
& =\coprod_{\substack{1 \leq i \leq m \\
1 \leq k \leq n}}\left(J_{k} \cap K_{i}\right)
\end{aligned}
$$

Exercise. Check that this union is pairwise disjoint.
Since Int is a semi-algebra, $(*)$ is proved, and so is the proposition.

Exercise. Modify the proof of (\geq) to obtain the stronger statement: If $I, I_{j} \in$ Int and $I \supseteq \bigcup_{j=1}^{\infty} I_{j}$ then $\ell(I) \geq \sum_{j=1}^{\infty} \ell\left(I_{j}\right)$.

Step 2 - Outer Measures

Or, "Approximating the measure of an arbitrary set from above".
We want to bound the measure of a general set from above. We do this by considering countable covers by basic sets.

Definition. Lebesgue's outer measure is the function $m^{*}: 2^{\mathbb{R}} \rightarrow[0, \infty]$ given by

$$
m^{*}(A)=\left\{\sum_{k=1}^{\infty} \ell\left(I_{k}\right) \mid A \subseteq \bigcup_{k=1}^{\infty} I_{k}, I_{k} \in \operatorname{Int}\right\} .
$$

Definition. In general, given a set X, an outer measure on X is a function $\mu^{*}: 2^{X} \rightarrow[0, \infty]$ such that
(1) $\mu^{*}(\varnothing)=0$;
(2) monotonicity: $A \subseteq B \Rightarrow \mu^{*}(A) \leq \mu^{*}(B)$;
(3) σ-sub-additivity: $\mu^{*}\left(\cup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)$.

Remark. An outer measure is not, in general, a measure.
Proposition. Lebesgue's outer measure is an outer measure.

Proof. (1) $\varnothing \subseteq \bigcup_{i=1}^{\infty} I_{i}$ where $I_{i}=(1,1)=\varnothing$, and so $m^{*}(\varnothing) \leq \sum_{i=1}^{\infty} 0=0$. Obviously $m^{*}(A) \geq 0 \quad \forall A \subseteq \mathbb{R}$ so $m^{*}(\varnothing)=0$.
(2) Fix $\varepsilon>0$ and find $\left\{I_{i}\right\}_{i=1}^{\infty} \subseteq$ Int for which

$$
\begin{gathered}
B \subseteq \bigcup_{i=1}^{\infty} I_{i} \\
\sum_{i=1}^{\infty} \ell\left(I_{i}\right) \leq m^{*}(B)+\varepsilon .
\end{gathered}
$$

(The cover exists by the definition of infimum.) Since $A \subseteq B \subseteq \bigcup_{i=1}^{\infty} I_{i}$ we must also have

$$
m^{*}(A) \leq \sum_{i=1}^{\infty} \ell\left(I_{i}\right) \leq m^{*}(B)+\varepsilon,
$$

but $\varepsilon>0$ is arbitrary so $m^{*}(A) \leq m^{*}(B)$.
(3) Let $\varepsilon>0$. For each i find $\left\{I_{j}^{(i)}\right\}_{j=1}^{\infty} \subseteq$ Int such that

$$
\begin{gathered}
A_{i} \subseteq \bigcup_{j=1}^{\infty} I_{j}^{(i)}, \\
\sum_{j=1}^{\infty} \ell\left(I_{j}^{(i)}\right) \leq m^{*}\left(A_{i}\right)+\varepsilon / 2^{i} .
\end{gathered}
$$

Clearly,

$$
\bigcup_{i=1}^{\infty} A_{i} \subseteq \bigcup_{i=1}^{\infty}\left(\bigcup_{j=1}^{\infty} I_{j}^{(i)}\right)
$$

The collection $\left\{I_{j}^{(i)} \mid i, j \in \mathbb{N}\right\}$ is countable and so

$$
\begin{aligned}
m^{*}\left(\cup_{i=1}^{\infty} A_{i}\right) & \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \ell\left(I_{j}^{(i)}\right) \\
& \leq \sum_{i=1}^{\infty}\left(m^{*}\left(A_{i}\right)+\varepsilon / 2^{i}\right) \\
& =\sum_{i=1}^{\infty} m^{*}\left(A_{i}\right)+\varepsilon
\end{aligned}
$$

So m^{*} is σ-sub-additive.

Question. Is it true that $m^{*}: 2^{\mathbb{R}} \rightarrow[0, \infty]$ is an extension of the length function, i.e. $\forall I \in \operatorname{Int}, m^{*}(I)=\ell(I)$?

Proposition. The Lebesgue outer measure of an interval is its length. Moreover, if $A=\coprod_{i=1}^{\infty} I_{k}, I_{k} \in \operatorname{Int}$, then $m^{*}(A)=\sum_{k=1}^{\infty} \ell\left(I_{k}\right)$.

Proof. $(\leq) A \subseteq \coprod_{i=1}^{\infty} I_{k}$ so $m^{*}(A) \leq \sum_{k=1}^{\infty} \ell\left(I_{k}\right)$.
(\geq) Fix $\varepsilon>0$ and let $\left\{J_{i}\right\}_{i=1}^{\infty}$ be a cover of $\amalg_{k=1}^{\infty} I_{k}$ by $J_{i} \in$ Int such that

$$
\sum_{i=1}^{\infty} \ell\left(J_{i}\right) \leq m^{*}\left(\amalg_{k=1}^{\infty} I_{k}\right)+\varepsilon .
$$

Since $\quad \amalg_{k=1}^{\infty} I_{k} \subseteq \bigcup_{i=1}^{\infty} J_{i}, \quad I_{k} \subseteq \bigcup_{i=1}^{\infty} J_{i} \cap I_{k} \quad \forall k \in \mathbb{N}$. Since Int is closed under intersections, the sets $J_{i} \cap I_{k}$ are intervals. Therefore, since ℓ is σ-sub-additive on Int,

$$
\ell\left(I_{k}\right) \leq \sum_{i=1}^{\infty} \ell\left(J_{i} \cap I_{k}\right) \quad \forall k \in \mathbb{N} .
$$

Sum over all $k \in \mathbb{N}$:

$$
\sum_{k=1}^{\infty} \ell\left(I_{k}\right) \leq \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \ell\left(J_{i} \cap I_{k}\right)=\sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \ell\left(J_{i} \cap I_{k}\right)
$$

By assumption the I_{k} are pairwise disjoint, so $J_{i} \supseteq \bigsqcup_{k=1}^{\infty} J_{i} \cap I_{k}$. By the earlier exercise, $\ell\left(J_{i}\right) \geq \sum_{k=1}^{\infty} \ell\left(J_{i} \cap I_{k}\right)$. It follows that

$$
\begin{aligned}
\sum_{k=1}^{\infty} \ell\left(I_{k}\right) & \leq \sum_{i=1}^{\infty} \ell\left(J_{i}\right) \\
& \leq m^{*}\left(\amalg_{k=1}^{\infty} I_{k}\right)+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, the proposition follows.

Example. What is $m^{*}(\mathbb{Q})$?
(1) Direct method: enumerate $\mathbb{Q}=\left\{x_{k}\right\}_{k=1}^{\infty}$. Choose intervals

$$
I_{k}=\left(x_{k}-\varepsilon / 2^{k+1}, x_{k}+\varepsilon / 2^{k+1}\right)
$$

for a fixed $\varepsilon>0 .\left\{I_{k}\right\}_{k=1}^{\infty}$ is a cover of \mathbb{Q}.

$$
0 \leq \sum_{k=1}^{\infty} \ell\left(I_{k}\right)=\sum_{k=1}^{\infty} \varepsilon / 2^{k}=\varepsilon \underset{\varepsilon \rightarrow 0}{\rightarrow} 0
$$

(2) By σ-sub-additivity:

$$
m^{*}(\mathbb{Q})=m^{*}\left(\bigcup_{k=1}^{\infty}\left\{x_{k}\right\}\right) \leq \sum_{k=1}^{\infty} \ell\left(\left[x_{k}, x_{k}\right]\right)=0
$$

Exercise. (1) Show that every countable set in \mathbb{R} has zero outer measure.
(2) Show that a countable union of sets with outer measure zero also has outer measure zero.

Summary. We have extended $\ell: \operatorname{Int} \rightarrow[0, \infty]$ to $m^{*}: 2^{\mathbb{R}} \rightarrow[0, \infty] ; m^{*}$ is defined for all subsets of $\mathbb{R} ; m^{*}$ is σ-sub-additive on $2^{\mathbb{R}} ; m^{*}$ is not σ-additive on $2^{\mathbb{R}}$ and so is not a measure.

Step 3 - Obtaining a Measure from m^{*} by Restricting its Domain

Definition. A set $E \subseteq \mathbb{R}$ is called Lebesgue measurable if it satisfies the condition

$$
\forall T \subseteq \mathbb{R}, m^{*}(T)=m^{*}(T \cap E)+m^{*}\left(T \cap E^{\mathrm{C}}\right)
$$

This condition is called Carathéodory's criterion.
Remarks. (1) T is often called a "test set".
(2) Carathéodory's criterion is symmetric with respect to E, so if E is Lebesgue measurable so is E^{C}.
(3) The inequality

$$
m^{*}(T) \leq m^{*}(T \cap E)+m^{*}\left(T \cap E^{\mathrm{C}}\right)
$$

is always true by the σ-sub-additivity of m^{*}.
Notation. $\mathcal{B}_{0}=\{E \subseteq \mathbb{R} \mid E$ is Lebesgue measurable $\}$.

We aim to prove:
(1) \mathcal{B}_{0} is a σ-algebra;
(2) $\left.m^{*}\right|_{\mathcal{B}_{0}}: \mathcal{B}_{0} \rightarrow[0, \infty]$ is σ-additive;
(3) $\mathcal{B}_{0} \supseteq$ Int.

Given these, $\left(\mathbb{R}, \mathcal{B}_{0},\left.m^{*}\right|_{\mathcal{B}_{0}}\right)$ will be a measure space.
Proposition. Let $\mathcal{B}_{0}=\{E \subseteq \mathbb{R} \mid E$ is Lebesgue measurable $\}$. Then
(1) $\varnothing, \mathbb{R} \in \mathcal{B}_{0}$;
(2) $E \in \mathcal{B}_{0} \Rightarrow E^{\mathrm{C}} \in \mathcal{B}_{0}$;
(3) $E_{1}, E_{2} \in \mathcal{B}_{0} \Rightarrow E_{1} \cap E_{2}, E_{1} \cup E_{2}, E_{1} \backslash E_{2} \in \mathcal{B}_{0}$.

Proof. (1) $\varnothing \in \mathcal{B}_{0}$ since $m^{*}(T)=m^{*}(T \cap \varnothing)+m^{*}\left(T \cap \varnothing^{\mathrm{C}}\right)=0+m^{*}(T)$; similarly for \mathbb{R}.
(2) If E is Lebesgue measurable then $\forall T \subseteq \mathbb{R}$,

$$
m^{*}(T)=m^{*}(T \cap E)+m^{*}\left(T \cap E^{\mathrm{C}}\right)=m^{*}\left(T \cap\left(E^{\mathrm{C}}\right)^{\mathrm{C}}\right)+m^{*}\left(T \cap E^{\mathrm{C}}\right)
$$

(3) Let $E_{1}, E_{2} \in \mathcal{B}_{0}$. Then

$$
\begin{aligned}
m^{*}\left(T \cap\left(E_{1} \cup E_{2}\right)\right) & =m^{*}\left(T \cap\left(E_{1} \amalg\left(E_{2} \cap E_{1}^{\mathrm{C}}\right)\right)\right) \\
& \leq m^{*}\left(T \cap E_{1}\right)+m^{*}\left(T \cap\left(E_{2} \cap E_{1}^{\mathrm{C}}\right)\right) \\
m^{*}\left(T \cap\left(E_{1} \cup E_{2}\right)^{\mathrm{C}}\right) & =m^{*}\left(T \cap\left(E_{1}^{\mathrm{C}} \cap E_{2}^{\mathrm{C}}\right)\right) \\
& =m^{*}\left(\left(T \cap E_{1}^{\mathrm{C}}\right) \cap E_{2}^{\mathrm{C}}\right) \\
& =m^{*}\left(T \cap E_{1}^{\mathrm{C}}\right)-m^{*}\left(T \cap E_{1}^{\mathrm{C}} \cap E_{2}\right)
\end{aligned}
$$

because if we apply Carathéodory's criterion for E_{2} using the test set $T \cap E_{1}^{\mathrm{C}}$ we get

$$
m^{*}\left(T \cap E_{1}^{\mathrm{C}}\right)=m^{*}\left(T \cap E_{1}^{\mathrm{C}} \cap E_{2}\right)+m^{*}\left(T \cap\left(E_{1}^{\mathrm{C}} \cap E_{2}^{\mathrm{C}}\right)\right)
$$

Adding these estimates gives

$$
m^{*}\left(T \cap\left(E_{1} \cup E_{2}\right)\right)+m^{*}\left(T \cap\left(E_{1} \cup E_{2}\right)^{\mathrm{C}}\right) \leq m^{*}\left(T \cap E_{1}\right)+m^{*}\left(T \cap E_{1}^{\mathrm{C}}\right)=m^{*}(T)
$$

The reverse inequality is always true (see the remark above) so $E_{1} \cup E_{2} \in \mathcal{B}_{0}$. The remainder (intersections, differences, etc.) follow from that already shown and de Morgan's laws.

Lemma. m^{*} is finitely additive on \mathcal{B}_{0}.

Proof. We require that given $E_{1}, \ldots, E_{n} \in \mathcal{B}_{0}$ pairwise disjoint, $m^{*}\left(\coprod_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} m^{*}\left(E_{i}\right)$. Apply Carathéodory's criterion for E_{n} with test set $T=\coprod_{i=1}^{n} E_{i}$:

$$
\begin{aligned}
m^{*}(T) & =m^{*}\left(T \cap E_{n}\right)+m^{*}\left(T \cap E_{n}^{\mathrm{C}}\right) \\
& =m^{*}\left(E_{n}\right)+m^{*}\left(\amalg_{i=1}^{n-1} E_{i}\right) \\
& =\sum_{i=1}^{n} m^{*}\left(E_{i}\right)
\end{aligned}
$$

and the result follows by induction.

Exercise. Prove that if $E_{1}, \ldots, E_{n} \in \mathcal{B}_{0}$ are pairwise disjoint then $\forall T \subseteq \mathbb{R}$,

$$
m^{*}\left(T \cap \coprod_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} m^{*}\left(T \cap E_{i}\right)
$$

Proposition. \mathcal{B}_{0} is a σ-algebra.
Proof. We already know that \mathcal{B}_{0} is an algebra so we need only check that given $\left\{E_{i}\right\}_{i=1}^{\infty}$ in \mathcal{B}_{0} the union $\bigcup_{i=1}^{\infty} E_{i} \in \mathcal{B}_{0}$.

Step 1: It is possible to assume without loss of generality that this collection of sets is a collection of pairwise disjoint sets.

Proof: Let $E_{i}^{\prime}=E_{i} \backslash \bigcup_{j=1}^{i-1} E_{j}$. These are in \mathcal{B}_{0} because we know that \mathcal{B}_{0} is closed under finite unions and set differences. Also, $\bigcup_{i=1}^{\infty} E_{i}=\bigcup_{i=1}^{\infty} E_{i}^{\prime}$ and $E_{i}^{\prime} \cap E_{j}^{\prime}=\varnothing$ for $i \neq j$.

So we can assume that the E_{i} are pairwise disjoint.
Step 2: $\forall T \subseteq \mathbb{R}, m^{*}(T)=m^{*}\left(T \cap \bigsqcup_{i=1}^{\infty} E_{i}\right)+m^{*}\left(T \backslash \amalg_{i=1}^{\infty} E_{i}\right)$.
Proof: (\leq) follows from the σ-sub-additivity of m^{*}.
$(\geq) \forall N \in \mathbb{N}, \amalg_{i=1}^{N} E_{i} \in \mathcal{B}_{0}$ since \mathcal{B}_{0} is an algebra of sets. Therefore, $\forall T \subseteq \mathbb{R}$,

$$
\begin{aligned}
m^{*}(T) & =m^{*}\left(T \cap \bigsqcup_{i=1}^{N} E_{i}\right)+m^{*}\left(T \backslash \coprod_{i=1}^{N} E_{i}\right) \\
& =\sum_{i=1}^{N} m^{*}\left(T \cap E_{i}\right)+m^{*}\left(T \backslash \coprod_{i=1}^{N} E_{i}\right) \\
& \geq \sum_{i=1}^{N} m^{*}\left(T \cap E_{i}\right)+m^{*}\left(T \backslash \coprod_{i=1}^{\infty} E_{i}\right)
\end{aligned}
$$

So for each $N \in \mathbb{N}, m^{*}(T) \geq \sum_{i=1}^{N} m^{*}\left(T \cap E_{i}\right)+m^{*}\left(T \backslash \coprod_{i=1}^{\infty} E_{i}\right)$. Passing to the limit as $N \rightarrow \infty$:

$$
\begin{aligned}
m^{*}(T) & \geq \sum_{i=1}^{\infty} m^{*}\left(T \cap E_{i}\right)+m^{*}\left(T \backslash \coprod_{i=1}^{\infty} E_{i}\right) \\
& \geq m^{*}\left(T \cap \bigsqcup_{i=1}^{\infty} E_{i}\right)+m^{*}\left(T \backslash \coprod_{i=1}^{\infty} E_{i}\right)
\end{aligned}
$$

Proposition. m^{*} is σ-additive on \mathcal{B}_{0}.

Proof. We need to show that if $\left\{E_{i}\right\}_{i=1}^{\infty}$ in \mathcal{B}_{0} are pairwise disjoint then

$$
m^{*}\left(\amalg_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} m^{*}\left(E_{i}\right) .
$$

(\leq) is the σ-sub-additivity of m^{*}.
(\geq) By monotonicity, $\forall N \in \mathbb{N}, m^{*}\left(\amalg_{i=1}^{\infty} E_{i}\right) \geq m^{*}\left(\amalg_{i=1}^{N} E_{i}\right)$, which equals $\sum_{i=1}^{N} m^{*}\left(E_{i}\right)$ by finite additivity. Since this holds for all $N, m^{*}\left(\amalg_{i=1}^{\infty} E_{i}\right) \geq \sum_{i=1}^{\infty} m^{*}\left(E_{i}\right)$.

Proposition. Intervals are Lebesgue measurable.
Proof. Let $I \in \operatorname{Int}$. We need to show that $\forall T \subseteq \mathbb{R}$,

$$
m^{*}(T)=m^{*}(T \cap I)+m^{*}\left(T \cap I^{\mathrm{C}}\right) .
$$

(\leq) is always true.
(\geq) Fix $\varepsilon>0$ and let $\left\{I_{k}\right\}_{k=1}^{\infty}$ be a cover of T by intervals I_{k} such that $m^{*}(T) \geq \sum_{k=1}^{\infty} \ell\left(I_{k}\right)-\varepsilon$. Then

$$
\begin{gathered}
m^{*}(T \cap I) \leq m^{*}\left(\cup_{k=1}^{\infty} I_{k} \cap I\right) \leq \sum_{k=1}^{\infty} m^{*}\left(I_{k} \cap I\right) \\
m^{*}\left(T \cap I^{\mathrm{C}}\right) \leq \sum_{k=1}^{\infty} m^{*}\left(I_{k} \cap I^{\mathrm{C}}\right)
\end{gathered}
$$

So

$$
m^{*}(T \cap I)+m^{*}\left(T \cap I^{\mathrm{C}}\right) \leq \sum_{k=1}^{\infty}\left(m^{*}\left(I_{k} \cap I\right)+m^{*}\left(I_{k} \cap I^{\mathrm{C}}\right)\right) .
$$

If we knew that $m^{*}\left(I_{k} \cap I\right)+m^{*}\left(I_{k} \cap I^{\mathrm{C}}\right)=m^{*}\left(I_{k}\right)$ then we would have

$$
\mathrm{RHS} \leq \sum_{k=1}^{\infty} m^{*}\left(I_{k}\right) \leq m^{*}(T)+\varepsilon
$$

Passing to the limit as $\varepsilon \rightarrow 0$ would prove (\leq). So we need only prove that $\forall k \in \mathbb{N}$,

$$
m^{*}\left(I_{k} \cap I\right)+m^{*}\left(I_{k} \cap I^{\mathrm{C}}\right)=m^{*}\left(I_{k}\right) .
$$

Int forms a semi-algebra and so $I_{k} \cap I \in \operatorname{Int}, I \cap I^{\mathrm{C}}=\coprod_{i=1}^{n} J_{i}$ with $J_{i} \in \operatorname{Int}$. It follows that

$$
\begin{aligned}
m^{*}\left(I_{k} \cap I\right)+m^{*}\left(I_{k} \cap I^{\mathrm{C}}\right) & =\ell\left(I_{k} \cap I\right)+\sum_{i=1}^{n} \ell\left(J_{i}\right) \\
& =\ell\left(\left(I_{k} \cap I\right) \amalg\left(\amalg_{i=1}^{n} J_{i}\right)\right) \\
& =\ell\left(I_{k}\right) \\
& =m^{*}\left(I_{k}\right)
\end{aligned}
$$

Theorem. There exists a σ-algebra \mathcal{B}_{0} of subsets of \mathbb{R} and a set function $m: \mathcal{B}_{0} \rightarrow[0, \infty]$ such that
(1) $\mathcal{B}_{0} \supseteq$ Int ;
(2) m is σ-additive;
(3) $m(I)=\ell(I)$ for $I \in \operatorname{Int}$.

Notation and Terminology. (1) $m=\left.m^{*}\right|_{\mathcal{B}_{0}}$ is called Lebesgue measure.
(2) \mathcal{B}_{0} is the σ-algebra of Lebesgue measurable subsets.
(3) $\left(\mathbb{R}, \mathcal{B}_{0}, m\right)$ is Lebesgue's measure space (on \mathbb{R}).

Properties of Lebesgue Measure

Proposition. (Translation-invariance) If $E \in \mathcal{B}_{0}$ and $x \in \mathbb{R}$ then $m(E)=m(x+E)$.
Proof. It is obvious that $\ell: \operatorname{Int} \rightarrow[0, \infty]$ is translation-invariant. It follows that m^{*} is translation-invariant. We would like to now say that $m=\left.m^{*}\right|_{\mathcal{B}_{0}}$ is also translationinvariant. However, we don't know that $E \in \mathcal{B}_{0} \Rightarrow x+E \in \mathcal{B}_{0}$. Let $T \subseteq \mathbb{R}$.

$$
\begin{aligned}
m^{*}(T \cap(x+E))+m^{*}(T \backslash(x+E)) & =m^{*}(x+((-x+T) \cap E))+m^{*}\left(x+\left((-x+T) \cap E^{\mathrm{C}}\right)\right) \\
& =m^{*}((-x+T) \cap E)+m^{*}\left((-x+T) \cap E^{\mathrm{C}}\right) \\
& =m^{*}(-x+T) \\
& =m^{*}(T)
\end{aligned}
$$

So m is translation-invariant.

Definition. A measure space (X, \mathcal{F}, μ) is called σ-finite if $\exists F_{i} \in \mathcal{F}$ such that $X=\bigcup_{i=1}^{\infty} F_{i}$ and $\mu\left(F_{i}\right)<\infty$.

A measure space (X, \mathcal{F}, μ) is called a probability space if $\mu(X)=1$.
Proposition. $\left(\mathbb{R}, \mathcal{B}_{0}, m\right)$ is σ-finite.

Proof. Take

$$
F_{n}=\left\{\begin{array}{cc}
{[k, k+1)} & n=2 k \\
{[-k,-k+1)} & n=2 k+1
\end{array}\right.
$$

Definition. Let (X, \mathcal{F}, μ) be a measure space. $A \subseteq X$ is called μ-negligible (or μ-null) if $\inf \{\mu(E) \mid A \subseteq E \in \mathcal{F}\}=0 .(X, \mathcal{F}, \mu)$ is called complete if every μ-null set is in \mathcal{F}.

Proposition. $\left(\mathbb{R}, \mathcal{B}_{0}, m\right)$ is complete.

Proof. Suppose A is a null set. Fix $\varepsilon>0$ and find an $E \in \mathcal{B}_{0}$ such that $A \subseteq E$ and $\mu(E)<\varepsilon / 2$. Since $m=\left.m^{*}\right|_{\mathcal{B}_{0}}$ there must exist a cover of E by a countable collection of intervals $\left\{I_{k}\right\}_{k=1}^{\infty}$ such that

$$
\sum_{k=1}^{\infty} \ell\left(I_{k}\right) \leq m^{*}(E)+\varepsilon / 2<\varepsilon .
$$

Clearly $A \subseteq E$ is covered by $\bigcup_{k=1}^{\infty} I_{k}$ as well. So

$$
m^{*}(A) \leq \sum_{k=1}^{\infty} \ell\left(I_{k}\right)<\varepsilon
$$

Since $\varepsilon>0$ was arbitrary, $m^{*}(A)=0$. This implies that $A \in \mathcal{B}_{0}$ because

$$
\begin{aligned}
m^{*}(T) & \leq m^{*}(T \cap A)+m^{*}(T \backslash A) \\
& \leq m^{*}(A)+m^{*}(T) \\
& =m^{*}(T)
\end{aligned}
$$

and so $m^{*}(T)=m^{*}(T \cap A)=m^{*}(T \backslash A)$.

We will now work towards the following result:
Proposition. Open and closed subsets of \mathbb{R} are Lebesgue measurable.

Lemma. (Lindelöf's Lemma) Every open subset of \mathbb{R} is a countable union of open intervals.

Proof. Fix an open set $U \subseteq \mathbb{R}$. Every $x \in U$ has a neighbourhood such that $\left(x-\varepsilon_{x}, x+\varepsilon_{x}\right) \subseteq U$. Choose $x-\varepsilon_{x}<\alpha_{x}<x<\beta_{x}<x+\varepsilon_{x}$ such that $\alpha_{x}, \beta_{x} \in \mathbb{Q}$. Clearly $U=\bigcup_{x \in \mathbb{Q}}\left(\alpha_{x}, \beta_{x}\right)$. The cardinality of the cover $\left\{\left(\alpha_{x}, \beta_{x}\right)\right\}_{x \in U}$ is at most $|\mathbb{Q} \times \mathbb{Q}|=\aleph_{0}$.

Definition. The smallest σ-algebra of subsets of \mathbb{R} containing all open sets is called the Borel σ-algebra and is denoted $\mathcal{B}(\mathbb{R})$. Elements of $\mathcal{B}(\mathbb{R})$ are called Borel sets.

Remark. Assignment 1 proves that the smallest σ-algebra containing a given collection actually exists.

Lemma. All intervals, open sets and closed sets are Borel sets.
Proof. Open sets are Borel because, by Lindelöf's Lemma, they are countable unions of open intervals. Closed sets are complements of open sets, and so are Borel. Intervals (a, b) and $[a, b]$ are Borel because they are open and closed respectively.

$$
(a, b]=(a, c) \cup[c, b] \text { for any } c \in(a, b)
$$

so $(a, b]$ is Borel. Similarly for $[a, b)$.

Note. We can define the Borel σ-algebra for any topological space (X, \mathcal{T}) : simply close \mathcal{T} under complementation.

Proposition. $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{B}_{0}$; i.e., every Borel set is Lebesgue measurable.
Proof. Define $\mathcal{F}=\left\{E \in \mathcal{B}(\mathbb{R}) \mid E \in \mathcal{B}_{0}\right\}$. We prove that $\mathcal{F} \supseteq \mathcal{B}(\mathbb{R})$ by showing
(1) \mathcal{F} contains the open sets;
(2) \mathcal{F} is a σ-algebra.

The proposition then follows, since $\mathcal{B}(\mathbb{R})$ is the smallest σ-algebra contains the open sets.
(1) Suppose $U \subseteq \mathbb{R}$ is open. By Lindelöf's Lemma there are open intervals $\left\{I_{k}\right\}_{k=1}^{\infty}$ such that $U=\bigcup_{k=1}^{\infty} I_{k}$. Intervals are Lebesgue measurable and \mathcal{B}_{0} is a σ-algebra. So $U \in \mathcal{B}_{0}$. $\mathcal{B}(\mathbb{R}) \supseteq\{$ open sets $\}$ so $U \in \mathcal{B}(\mathbb{R})$ so $U \in \mathcal{F}$.
(2) $\varnothing \in \mathcal{F}$ is trivial.
$E \in \mathcal{F} \Rightarrow E^{\mathrm{C}} \in \mathcal{F}$ since

$$
\begin{aligned}
E & \in \mathcal{F} \Leftrightarrow E \in \mathcal{B}(\mathbb{R}), E \in \mathcal{B}_{0} \\
& \Leftrightarrow E^{\mathrm{C}} \in \mathcal{B}(\mathbb{R}), E \in \mathcal{B}_{0} \\
& \Leftrightarrow E^{\mathrm{C}} \in \mathcal{F}
\end{aligned}
$$

$\left\{E_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} E_{i} \in \mathcal{F}$ because

$$
\begin{aligned}
\left\{E_{i}\right\}_{i=1}^{\infty} & \subseteq \mathcal{F} \Leftrightarrow \forall i, E_{i} \in \mathcal{B}(\mathbb{R}), E_{i} \in \mathcal{B}_{0} \\
& \Rightarrow \bigcup_{i=1}^{\infty} E_{i} \in \mathcal{B}(\mathbb{R}), \bigcup_{i=1}^{\infty} E_{i} \in \mathcal{B}_{0} \\
& \Rightarrow \bigcup_{i=1}^{\infty} E_{i} \in \mathcal{F}
\end{aligned}
$$

Theorem. (Regularity Theorem) If $E \in \mathcal{B}_{0}$, then $\varepsilon>0$ there are sets $F \subseteq E \subseteq U$ such that F is closed, U is open, and $m(U \backslash F)<\varepsilon$. Moreover, if $m(E)<\infty$ then F can be chosen to be compact.

Remark. Informally, this says that every measurable set is approximately open and approximately closed.

Proof. Step 1: Constructing U. Define $E_{n}=[n, n+1)$ for $n \in \mathbb{Z}$. By definition, $m\left(E_{n}\right)=m^{*}\left(E_{n}\right)$, so for every $\varepsilon_{n}>0$ there is a countable cover of E_{n} by intervals $\left\langle a_{k}^{(n)}, b_{k}^{(n)}\right\rangle$ such that

$$
\sum_{k=1}^{\infty} \ell\left(\left\langle a_{k}^{(n)}, b_{k}^{(n)}\right\rangle\right) \leq m^{*}\left(E_{n}\right)+\varepsilon_{n} .
$$

If $I_{k}^{(n)}=\left(a_{k}^{(n)}-\varepsilon_{n} / 2^{k+1}, b_{k}^{(n)}+\varepsilon_{n} / 2^{k+1}\right)$ then $E_{n} \subset \bigcup_{k=1}^{\infty} I_{k}^{(n)}$ and

$$
\begin{aligned}
m\left(E_{n}\right) & \geq \sum_{k=1}^{\infty}\left(\ell\left(I_{k}^{(n)}\right)-2 \frac{\varepsilon_{n}}{2^{t+1}}\right)-\varepsilon_{n} \\
& =\sum_{k=1}^{\infty} \ell\left(I_{k}^{(n)}\right)-2 \varepsilon_{n}
\end{aligned}
$$

Define $U_{n}=\bigcup_{k=1}^{\infty} I_{k}^{(n)}$ and $U=\bigcup_{n \in \mathbb{Z}} U_{n}$. Note that $U \supseteq E$ and that

$$
\begin{aligned}
m(U \backslash E) & \leq \sum_{n \in \mathbb{Z}} m\left(U_{n} \backslash E\right) \\
& \leq \sum_{n \in \mathbb{Z}} m\left(U_{n} \backslash E_{n}\right) \\
& =\sum_{n \in \mathbb{Z}}\left(m\left(U_{n}\right)-m\left(E_{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{n \in \mathbb{Z}} \sum_{k=1}^{\infty} \ell\left(I_{k}^{(n)}\right)-m\left(E_{n}\right) \\
& \leq \sum_{n \in \mathbb{Z}} 2 \varepsilon_{n} \\
& =2 \sum_{n \in \mathbb{Z}} \varepsilon_{n}
\end{aligned}
$$

Now choose $\varepsilon_{n}=\varepsilon / 2^{|n|+10}$ to obtain

$$
m(U \backslash E) \leq 2 \varepsilon\left(\sum_{n=0}^{\infty} \frac{1}{2^{n+10}}+\sum_{n=1}^{\infty} \frac{1}{2^{n+10}}\right)<2 \varepsilon\left(\frac{1}{8}+\frac{1}{8}\right)=\varepsilon / 2
$$

This shows that $\forall E \in \mathcal{B}_{0}, \forall \varepsilon>0, \exists U$ open, such that $U \supseteq E$ and $m(U \backslash E)<\varepsilon / 2$.

Step 2: Constructing F. Apply Step 1 to E^{C} to obtain an open set $V \supseteq E^{\mathrm{C}}$ such that $m\left(V \backslash E^{\mathrm{C}}\right)<\varepsilon / 2$. Then $F=V^{\mathrm{C}}$ satisfies F closed, $F \subseteq E$ and

$$
m(E \backslash F)=m(E \cap V)=m\left(V \backslash E^{\mathrm{C}}\right)<\varepsilon / 2 .
$$

Taken together, Steps 1 and 2 give $F \subseteq E \subseteq U$ such that

$$
\begin{aligned}
m(U \backslash F) & \leq m(U \backslash E)+m(E \backslash F) \\
& <\varepsilon / 2+\varepsilon / 2 \\
& =\varepsilon
\end{aligned}
$$

Step 3: Compact Lower Bound. Suppose $m(E)<\infty$. Use Steps 1 and 2 to obtain F closed such that $m(E \backslash F)<\varepsilon / 2$. For each n set $F_{n}=F \cap[-n, n]$. This set is closed and bounded, hence compact. We also have $F_{n} \uparrow F$, so $E \backslash F_{n} \downarrow E \backslash F$. By assumption, $m(E)<\infty$, so $m\left(E \backslash F_{n}\right) \rightarrow m(E \backslash F)$ as $n \rightarrow \infty$, and $m(E \backslash F)<\varepsilon / 2<\infty$. It follows that we can choose n large enough so that $m\left(E \backslash F_{n}\right)<\varepsilon . F_{n}$ is our suitable compact set.

Corollary. (Structure of Lebesgue Measurable Sets) If $E \in \mathcal{B}_{0}$ then there is a $B \in \mathcal{B}(\mathbb{R})$ and a null set N such that $E=B \Delta N=(B \backslash N) \cup(N \backslash B)$.

Proof. Take $U_{n} \supseteq E$ open such that $m\left(U_{n} \backslash E\right)<1 / n$ and consider $B=\bigcap_{n=1}^{\infty} U_{n}$. Then $E=B \backslash(B \backslash E), B$ is Borel, and $B \backslash E$ is null.

Alternatively, take $F_{n} \subseteq E$ closed such that $m\left(E \backslash F_{n}\right)<1 / n$ and consider $B=\bigcup_{n=1}^{\infty} U_{n}$.

Theorem. (Vitali's Theorem) There exists a subset of $[0,1]$ that is not Lebesgue measurable.

Idea. Show that $[0,1]$ can be written as a countable pairwise disjoint union $[0,1]=\coprod_{k=1}^{\infty} A_{k}$ of sets A_{k} such that if A_{1} is measurable then all A_{k} are measurable and have the same measure as A_{1}. This implies that A_{1} is not measurable because otherwise

$$
1=m([0,1])=m\left(\amalg_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} m\left(A_{k}\right)=m\left(A_{1}\right)+m\left(A_{1}\right)+\ldots
$$

which is impossible since if $m\left(A_{1}\right)>0$ the RHS is infinite, and if $m\left(A_{1}\right)=0$ then RHS is 0 . We construct a suitable A_{1} using the translation-invariance of \mathcal{B}_{0} and m.

Proof. Define a binary operation on $[0,1)$ by

$$
x \oplus y=\left\{\begin{array}{cc}
x+y & x+y \in[0,1) \\
x+y-1 & x+y \geq 1
\end{array}\right.
$$

Step 1. $([0,1), \oplus)$ is an Abelian group.
Proof. $x \oplus y$ is determined by the two conditions $x \oplus y \in[0,1)$ and $e^{2 \pi i(x \oplus y)}=e^{2 \pi i x} e^{2 \pi i y}$.

Commutativity:

$$
\begin{aligned}
e^{2 \pi i(x \oplus y)} & =e^{2 \pi i x} e^{2 \pi i y} \\
& =e^{2 \pi i y} e^{2 \pi i x} \\
& =e^{2 \pi i(y \oplus x)}
\end{aligned}
$$

Associativity:

$$
\begin{aligned}
e^{2 \pi i(x \oplus(y \oplus z))} & =e^{2 \pi i x}\left(e^{2 \pi i y} e^{2 \pi i z}\right) \\
& =\left(e^{2 \pi i x} e^{2 \pi i y}\right) e^{2 \pi i z} \\
& =e^{2 \pi((x \oplus y) \oplus z)}
\end{aligned}
$$

The neutral element is 0 and the inverse of $x,-x=1-x$.
Step 2. \mathcal{B}_{0} and m are \oplus-invariant.

Proof. Write $A=A_{1} \amalg A_{2}$ where $A_{1}=A \cap[0,1-x), A_{2}=A \cap[1-x, 1)$. If $A \in \mathcal{B}_{0}$ then $A_{1}, A_{2} \in \mathcal{B}_{0}$ and

$$
\begin{aligned}
x \oplus A & =x \oplus\left(A_{1} \amalg A_{2}\right) \\
& =\left(x \oplus A_{1}\right) \amalg\left(x \oplus A_{2}\right) \\
& =\left(x+A_{1}\right) \amalg\left((x-1)+A_{2}\right)
\end{aligned}
$$

Since \mathcal{B}_{0} is +-invariant, $x+A_{1},(x-1)+A_{2} \in \mathcal{B}_{0}$ and so $x \oplus A \in \mathcal{B}_{0}$. Since m is +invariant, $m(x \oplus A)=m\left(A_{1}\right)+m\left(A_{2}\right)=m(A)$.

Step 3. Obtain a partition by defining an equivalence relation on $[0,1)$ by $x \sim y \Leftrightarrow x-y \in \mathbb{Q}$ (it is easy to see \sim is an equivalence relation). Let

$$
[x]=\{y \in[0,1) \mid x \sim y\}
$$

be the equivalence class of \sim containing x.
We wish to choose a representative from each class. Formally, let $\mathcal{E}=\{[x] \mid x \in[0,1)\}$ be the collection of equivalence classes. Using the Axiom of Choice find a choice function $f: \mathcal{E} \rightarrow[0,1)$ such that $f([x]) \in[x]$ (f is our law that "chooses" a representative).

Define $A=\{f([x]) \mid x \in[0,1)\}=$ the collection of representatives, and enumerate $\mathbb{Q} \cap[0,1)$ as $\left\{q_{k}\right\}_{k=1}^{\infty}$. We claim that if $A_{k}=q_{k} \oplus A$ then $[0,1)=\coprod_{k=1}^{\infty} A_{k}$, i.e.
(1) $[0,1)=\bigcup_{k=1}^{\infty} A_{k}$;
(2) $i \neq j \Rightarrow A_{i} \cap A_{j}=\varnothing$.

Proof of (1). It is enough to show that $[0,1) \subseteq \bigcup_{k=1}^{\infty} A_{k}$. Suppose $y \in[0,1) . y$ is equivalent to the representative of its class, whence $y-f([x])=q^{\prime} \in \mathbb{Q}$.

If $q^{\prime} \in[0,1)$ set $q=q^{\prime}$ and observe that $y=q+f([y])=q \oplus f([y]) \in q \oplus A$.
If not then $q^{\prime}=y-f([y]) \in(-1,0)$. In this case define $q=q^{\prime}+1 \in \mathbb{Q} \cap[0,1)$ and note that $y=q+f([y])-1=q \oplus f([y]) \in q \oplus A$. In either case, $\exists q \in \mathbb{Q} \cap[0,1)$ such that $y \in q \oplus A$. By definition, $\exists k$ such that $q=q_{k}$ and $y \in q_{k}+A=A_{k}$.

Proof of (2). Suppose $y \in A_{i} \cap A_{j}$. Then $q_{i} \oplus f([y])=y=q_{j} \oplus f([y])$. Add $1-f([y])$ $\bmod 1$ to both sides to obtain $q_{i}=q_{j}$, i.e. $i=j$.

This argument implies that A, A_{1}, A_{2}, \ldots are all non-measurable since if one of them were measurable then by Step 1 all would be measurable with equal measure. This contradicts σ-additivity because we have

$$
1=m([0,1))=m\left(\amalg_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} m\left(A_{k}\right)=\sum_{k=1}^{\infty} m(A) \in\{0, \infty\}
$$

Warning. Whenever the Axiom of Choice is used, measurability problems may arise.

2. Integration

Aim. To define the integral of a suitable function with respect to a measure on a measurable space.

Measurable Functions

Let (X, \mathcal{F}) be a measurable space.
Notation. We use the following shorthand notation for sets: if $f: X \rightarrow[-\infty, \infty]$ is a function then

$$
\begin{aligned}
{[f<t] } & =\{x \in X \mid f(x)<t\} \\
{[f \in B] } & =\{x \in X \mid f(x) \in B\} \\
{[a \leq f \leq b] } & =\{x \in X \mid a \leq f(x) \leq b\}
\end{aligned}
$$

etc.
Definition. Let (X, \mathcal{F}) be a measurable space and $f: X \rightarrow[-\infty, \infty]$ a function. We say that f is \mathcal{F}-measurable if $\forall t \in \mathbb{R},[f<t] \in \mathcal{F}$.

Proposition. The following are all equivalent:
(1) $f: X \rightarrow \mathbb{R}$ is \mathcal{F}-measurable;
(2) $\forall t \in \mathbb{R},[f>t] \in \mathcal{F}$;
(3) $\forall a, b \in \mathbb{R},[a<f<b] \in \mathcal{F}$;
(4) $\forall B \in \mathcal{B}(\mathbb{R}), f^{-1}(B) \in \mathcal{F}$ and $f^{-1}(-\infty), f^{-1}(\infty) \in \mathcal{F}$.

Proof. (1) \Rightarrow (2). Fix t. Then

$$
\begin{aligned}
{[f>t] } & =[f \leq t]^{\mathrm{C}} \\
& =\left[\forall n, f<t+\frac{1}{n}\right] \\
& =\left(\bigcap_{n=1}^{\infty}\left[f<t+\frac{1}{n}\right]\right)^{\mathrm{C}} \\
& \in \mathcal{F}
\end{aligned}
$$

since \mathcal{F} is a σ-algebra.
$(2) \Rightarrow(3)$.

$$
\begin{aligned}
{[a<f<b] } & =[f>a] \cap[f<b] \\
& =[f>a] \cap[f \geq b]^{\mathrm{C}} \\
& =[f>a] \cap\left[\forall n, f>b-\frac{1}{n}\right]^{\mathrm{C}}
\end{aligned}
$$

$$
\begin{aligned}
& =[f>a] \cap\left(\bigcap_{n=1}^{\infty}\left[f>b-\frac{1}{n}\right]\right)^{\mathrm{C}} \\
& \in \mathcal{F}
\end{aligned}
$$

(3) \Rightarrow (4). Define $\mathcal{C}=\left\{B \in \mathcal{B}(\mathbb{R}) \mid f^{-1}(B) \in \mathcal{F}\right\}$. We show
(a) \mathcal{C} contains all open sets;
(b) \mathcal{C} is a σ-algebra;
(c) $\mathcal{B}(\mathbb{R})$ is the smallest σ-algebra containing the open sets, so $\mathcal{C} \supseteq \mathcal{B}(\mathbb{R})$, and we are done once we check that $f^{-1}(-\infty), f^{-1}(\infty) \in \mathcal{F}$.
(a) $(3) \Leftrightarrow f^{-1}(I) \in \mathcal{F}$ for all open intervals I. By Lindelöf, every open set $U \subseteq \mathbb{R}$ can be written as $U=\bigcup_{k=1}^{\infty} I_{k}, I_{k}$ open intervals. Observe

$$
\begin{aligned}
f^{-1}(U) & =f^{-1}\left(\bigcup_{k=1}^{\infty} I_{k}\right) \\
& =\left\{x \in X \mid f(x) \in I_{k} \text { for some } k\right\} \\
& =\bigcup_{k=1}^{\infty}\left\{x \in X \mid f(x) \in I_{k}\right\} \\
& =\bigcup_{k=1}^{\infty} f^{-1}\left(I_{k}\right) \\
& \in \mathcal{F}
\end{aligned}
$$

(b) Exercise.
(c) (a) and (b) imply $B \in \mathcal{B}(\mathbb{R}) \Rightarrow f^{-1}(B) \in \mathcal{F}$. We now need only check that $f^{-1}(-\infty)$ and $f^{-1}(\infty) \in \mathcal{F}$:

$$
\begin{aligned}
f^{-1}(\infty) & =[f=\infty] \\
& =[\forall n, f>n] \\
& =\bigcap_{n=1}^{\infty}[f>n] \\
& \in \mathcal{F} \\
f^{-1}(-\infty) & =[f=-\infty] \\
& =[\forall n, f<-n] \\
& =\bigcap_{n=1}^{\infty}[f<-n] \\
& \in \mathcal{F}
\end{aligned}
$$

$(4) \Rightarrow(1)$ is trivial.

Proposition. Suppose $f_{1}, \ldots, f_{n}: X \rightarrow \mathbb{R}$ are \mathcal{F}-measurable. If

$$
\left\{\left(f_{1}(x), \ldots, f_{n}(x)\right) \in \mathbb{R}^{n} \mid x \in X\right\} \subseteq U
$$

for some open set $U \subseteq \mathbb{R}^{n}$ and if $\phi: U \rightarrow \mathbb{R}:\left(t_{1}, \ldots, t_{n}\right) \mapsto \phi\left(t_{1}, \ldots, t_{n}\right)$ is continuous then $x \mapsto \phi\left(f_{1}(x), \ldots, f_{n}(x)\right)$ is \mathcal{F}-measurable.

Examples. (1) $f_{1}+\ldots+f_{n}$ is \mathcal{F}-measurable (take $\phi\left(t_{1}, \ldots, t_{n}\right)=t_{1}+\ldots+t_{n}$).
(2) $f_{1} f_{2} \ldots f_{n}$ is \mathcal{F}-measurable.
(3) $\arcsin \log \sqrt{f_{1}+f_{2} f_{3}^{1 / 2}}+1$ is \mathcal{F}-measurable provided

$$
\left\{\left(f_{1}(x), f_{2}(x), f_{3}(x)\right) \in \mathbb{R}^{3} \mid x \in X\right\} \subseteq \operatorname{domain}(\phi)
$$

where $\phi\left(t_{1}, t_{2}, t_{3}\right)=\arcsin \log \sqrt{t_{1}+t_{2} t_{3}^{1 / 2}}$.

Proof. Suppose $V \subseteq \mathbb{R}^{n}$ is open. Then there is a countable collection of open boxes

$$
C_{k}=\left(a_{1}^{(k)}, b_{1}^{(k)}\right) \times \ldots \times\left(a_{n}^{(k)}, b_{n}^{(k)}\right)
$$

such that $V=\bigcup_{k=1}^{\infty} C_{k}$ (prove this). Fix $t \in \mathbb{R}$. We show that $\left[\phi\left(f_{1}, \ldots, f_{n}\right)>t\right] \in \mathcal{F}$. Since ϕ is continuous, $V=\left\{\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{R}^{n} \mid \phi\left(s_{1}, \ldots, s_{n}\right)>t\right\}$ is open. Find boxes $\left\{C_{k}\right\}_{k=1}^{\infty}$ such that $V=\bigcup_{k=1}^{\infty} C_{k}$. Now calculate

$$
\begin{aligned}
{\left[\phi\left(f_{1}, \ldots, f_{n}\right)>t\right] } & =\left\{x \in X \mid\left(f_{1}(x), \ldots, f_{n}(x)\right) \in V\right\} \\
& =\left\{x \in X \mid\left(f_{1}(x), \ldots, f_{n}(x)\right) \in \bigcup_{k=1}^{\infty} C_{k}\right\} \\
& =\bigcup_{k=1}^{\infty}\left\{x \in X \mid f_{i}(x) \in\left(a_{i}^{(k)}, b_{i}^{(k)}\right), 1 \leq i \leq n\right\} \\
& =\bigcup_{k=1}^{\infty} \bigcap_{i=1}^{\infty}\left[a_{i}^{(k)}<f_{i}<b_{i}^{(k)}\right] \\
& \in \mathcal{F}
\end{aligned}
$$

This shows that $\forall t \in \mathbb{R},\left[\phi\left(f_{1}, \ldots, f_{n}\right)>t\right] \in \mathcal{F}$.

Recall. For a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$, a limit point is the limit of a subsequence $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$. The limit superior is $\limsup a_{n}=\sup \{$ limit points $\}=\max \{$ limit points $\}$. The limit inferior is $\liminf _{n \rightarrow \infty} a_{n}=\inf \{$ limit points $\}=\max \{$ limit points $\}$. The sequence converges if and only if $\underset{n \rightarrow \infty}{\limsup } a_{n}=\underset{n \rightarrow \infty}{\liminf } a_{n}$. We also have the following formulae:

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} a_{n}=\inf _{N} \sup _{n>N} a_{n}, \\
& \liminf _{n \rightarrow \infty} a_{n}=\sup _{N} \inf _{n>N} a_{N} .
\end{aligned}
$$

Proposition. (Calculus of measurable functions.) If $\left\{f_{n}\right\}_{n=1}^{\infty}$ are \mathcal{F}-measurable functions then the following functions are also \mathcal{F}-measurable:
(1) $f(x)=\sup _{n} f_{n}(x) ; f(x)=\inf _{n} f_{n}(x)$; (It is essential that sup and inf are taken over a countable range of parameters.)
(2) $f(x)=\limsup _{n \rightarrow \infty} f_{n}(x) ; f(x)=\liminf _{n \rightarrow \infty} f_{n}(x)$;
(3) $f_{c}(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ if the limit exists, c otherwise;
(4) $f(x)=\sum_{n=1}^{\infty} f_{n}(x)$ if the sum converges; $f(x)=\prod_{n=1}^{\infty} f_{n}(x)$ if the product converges.

Proof. (1) Suppose $f=\sup _{n} f_{n}$. Then $\forall t \in \mathbb{R}$,

$$
\begin{aligned}
{[f<t] } & =\left[\sup _{n} f_{n}<t\right] \\
& =\left[\exists k \text { s.t. } \forall n, f_{n}<t-\frac{1}{k}\right] \\
& =\bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty}\left[f_{n}<t-\frac{1}{k}\right] \\
& \in \mathcal{F}
\end{aligned}
$$

since $\left[f_{n}<t-\frac{1}{k}\right] \in \mathcal{F}$ and \mathcal{F} is a σ-algebra. Since this holds $\forall t \in \mathbb{R}, f=\sup _{n} f_{n}$ is \mathcal{F} measurable.

In the case of $\inf _{n} f_{n}$, observe that $\inf _{n} f_{n}=-\sup _{n}\left(-f_{n}\right)$. If f_{n} is \mathcal{F}-measurable so is $-f_{n}$, thus the result follows from the above.
(2) Suppose that $f=\limsup _{n \rightarrow \infty} f_{n}$. Recall that $\limsup _{n \rightarrow \infty} a_{n}=\inf _{N} \sup _{n>N} a_{n}$. By (1), $\forall N \in \mathbb{N}$, $x \mapsto \sup _{n>N} f_{n}(x)$ is \mathcal{F}-measurable. Again by (1), $x \mapsto \inf _{N} \sup _{n>N} f_{n}(x)$ is \mathcal{F}-measurable. A similar proof shows that $\liminf _{n \rightarrow \infty} f_{n}$ is \mathcal{F}-measurable.
(3) We start by showing that $\left[\lim _{n \rightarrow \infty} f_{n}(x)\right.$ exists $] \in \mathcal{F}$. This is because

$$
\begin{aligned}
{\left[\lim _{n \rightarrow \infty} f_{n}(x) \text { exists }\right] } & =\left[\lim _{n \rightarrow \infty} f_{n}(x) \text { does not exist }\right]^{\mathrm{C}} \\
& =\left[\limsup _{n \rightarrow \infty} f_{n}>\liminf _{n \rightarrow \infty} f_{n}\right]^{\mathrm{C}} \\
& =\left[\exists q \in \mathbb{Q} \text { s.t. } \limsup _{n \rightarrow \infty} f_{n}>q>\liminf _{n \rightarrow \infty} f_{n}\right]^{\mathrm{C}}
\end{aligned}
$$

$$
=X \backslash \bigcup_{q \in Q}\left(\left[\limsup _{n \rightarrow \infty} f_{n}>q\right] \cap\left[\liminf _{n \rightarrow \infty} f_{n}<q\right]\right)
$$

and by (2) and the fact that \mathcal{F} is a σ-algebra. We now show that $\left[f_{c}<t\right] \in \mathcal{F} \quad \forall t \in \mathbb{R}$. Observe that

$$
\left[f_{c}<t\right]=\left\{\begin{array}{cc}
\left([\lim \text { exists }] \cap\left[\limsup _{n \rightarrow \infty} f_{n}<t\right]\right) \cup[\lim \text { exists }]^{c} & c<t \\
{[\lim \text { exists }] \cap\left[\lim \sup _{n \rightarrow \infty} f_{n}<t\right]} & c \geq t
\end{array}\right.
$$

In both cases $\left[f_{c}<t\right] \in \mathcal{F}$.
(4) Exercise.

Examples of Measurable Functions

Definition. $f: E \rightarrow[-\infty,+\infty]$ is called Lebesgue (respectively Borel) measurable if it is measurable with respect to the Lebesgue (respectively Borel) σ-algebra.

Remarks. (1) Every Borel measurable function is Lebesgue measurable, since $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{B}_{0}$.
(2) Every continuous function $f:[a, b] \rightarrow \mathbb{R}$ is Borel (and hence Lebesgue) since $[f<t]$ is open for all t, and open sets are Borel.
(3) Highly discontinuous functions can be Borel, too, such as the Dirichlet function:

$$
D(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

This is $\operatorname{Borel}\left(D=\mathbf{1}_{\mathbb{Q}}\right)$ but is not continuous.
Definition. If A is a set the indicator function of A is

$$
\mathbf{1}_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A\end{cases}
$$

Proposition. The indicator of A is Borel (respectively Lebesgue) measurable if and only if A is Borel (respectively Lebesgue).

Proof.

$$
\left[\mathbf{1}_{A}<t\right]=\left\{\begin{array}{cc}
\varnothing & t \leq 0 \\
A^{\mathrm{C}} & 0 \leq t \leq 1 \\
\mathbb{R} & 1<t
\end{array}\right.
$$

Definition. Let (X, \mathcal{F}) be a measurable space. A simple function is an $f: X \rightarrow \mathbb{R}$ of the form

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}(x)
$$

for some $n \in \mathbb{N}, \alpha_{i} \in \mathbb{R}, E_{i} \in \mathcal{F}$.
Warning. This is not the same as being a step function. A simple function is a step function if and only if all the E_{i} are intervals.

Theorem. (Basic Approximation) Let (X, \mathcal{F}) be a measurable space. Then $f: X \rightarrow \mathbb{R}$ is bounded and measurable if and only if $\forall \varepsilon>0$ there is a simple function $\phi_{\varepsilon}: X \rightarrow \mathbb{R}$ such that $\forall x \in X,\left|f(x)-\phi_{\varepsilon}(x)\right|<\varepsilon$.

Proof. (\Leftarrow) Suppose $f: X \rightarrow \mathbb{R}$ is the uniform limit of simple functions, i.e. $\forall n \in \mathbb{N}$, $\exists \phi_{n}$ simple such that $\forall x \in X,\left|f(x)-\phi_{n}(x)\right|<1 / n$. Then
(1) f is measurable, because it is the limit of measurable functions.
(2) f is bounded, because $|f(x)| \leq\left|\phi_{1}(x)\right|+1<\sup \left|\phi_{1}\right|+1<\infty$.
(\Rightarrow) Suppose $f: X \rightarrow \mathbb{R}$ is bounded measurable.

(Divide the y-axis evenly by ε-strips, project on to x-axis.)
By assumption, f is bounded, so $M=\sup |f|<\infty$. Fix $\varepsilon>0$ and choose $n \in \mathbb{N}$ such that $\frac{1}{n}<\varepsilon$. Define

This is a simple function. For all $x \in X$ there is a unique k such that $-\lfloor M n\rfloor \leq k<\lceil M n\rceil$ and $\frac{k}{n} \leq f(x)<\frac{k+1}{n}$, and for this $k f(x) \in\left[\frac{k}{n}, \frac{k+1}{n}\right], \phi_{n}(x)=\frac{k}{n}$, and so $\left|f(x)-\phi_{n}(x)\right|<\frac{1}{n}<\varepsilon$.

Properties of Lebesgue Measurable Functions

Definition. Let (X, \mathcal{F}, μ) be a measure space and let P be a property of points $x \in X$. We say that P holds μ-almost everywhere (μ-a.e.) if $\mu(\{x \in X \mid \neg P(x)\})=0$

Examples. (1) $f_{n} \rightarrow f$ a.e. iff $\mu\left(\left\{x \in X \mid f_{n}(x) \rightarrow f(x)\right\}\right)=0$.
(2) $f=g$ a.e. if $\mu([f \neq g])=0$.

Proposition. If $f:[a, b] \rightarrow[-\infty, \infty]$ is Lebesgue measurable and finite m-a.e. then $\forall \varepsilon, \delta>0 \quad \exists \phi \in C^{1}([a, b], \mathbb{R})$ such that $m\{x \in[a, b]||f(x)-\phi(x)|>\varepsilon\}<\delta$.

Example. For the Dirichlet function $D=\mathbf{1}_{\mathbb{Q}}$ take $\phi(x) \equiv 0$ since $m[D-\phi \mid>0]=m(\mathbb{Q})$ $=0$.

Proof. (1) First prove for indicators.
(2) Generalize to simple functions.
(3) Generalize to bounded measurable functions.
(4) Generalize to all a.e.-finite measurable functions.

Step 1 - Indicators. Suppose $f=\mathbf{1}_{E}, E \subseteq[a, b]$ Lebesgue measurable. Using the regularity of Lebesgue measure find $K \subseteq E \subseteq U, K$ compact, U open, such that $m(U \backslash K)<\delta$ for a given fixed $\delta>0$. By Urysohn's Lemma there exists a continuous function ϕ such that $\left.\phi\right|_{K} \equiv 1,\left.\phi\right|_{U^{\mathrm{c}}} \equiv 0$.

If $x \in K$ then $\quad\left|\mathbf{1}_{E}(x)-\phi(x)\right|=|1-1|=0 ; \quad$ if $\quad x \in U^{\mathrm{C}} \quad$ then $\quad\left|\mathbf{1}_{E}(x)-\phi(x)\right|=|0-0|=0$. Therefore,

$$
m\left[\left[\mathbf{1}_{E}-\phi \mid>\varepsilon\right] \leq m\left[\mathbf{1}_{E} \neq \phi\right] \leq m(U \backslash K)<\delta .\right.
$$

Step 2 - Simple Functions. Let $f=\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}$. Find using Step 1 continuous functions ϕ_{i} such that $m\left[\mathbf{1}_{E_{i}}-\phi_{i} \mid>\varepsilon_{i}\right]<\delta_{i}$, where $\varepsilon_{i}, \delta_{i}>0$ will be determined later.

$$
\begin{equation*}
\left[\left|\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}-\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right|>\varepsilon\right] \subseteq \bigcup_{i=1}^{n}\left[\left|\mathbf{1}_{E_{i}}-\phi_{i}\right|>\frac{\varepsilon}{n\left|\alpha_{i}\right|}\right] \tag{*}
\end{equation*}
$$

since if $x \in$ LHS then $\left|\alpha_{i} \mathbf{1}_{E_{i}}(x)-\alpha_{i} \phi_{i}(x)\right|>\frac{\varepsilon}{n}$ for at least one i, for otherwise we would have

$$
\left|\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}(x)-\sum_{i=1}^{n} \alpha_{i} \phi_{i}(x)\right| \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left|\mathbf{1}_{E_{i}}(x)-\phi_{i}(x)\right|<\sum_{i=1}^{n}\left|\alpha_{i}\right| \frac{\varepsilon}{n\left|\alpha_{i}\right|}=\varepsilon .
$$

By (*),

$$
m\left[\left|\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}-\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right|>\varepsilon\right] \leq \sum_{i=1}^{n} m\left[\left|\mathbf{1}_{E_{i}}-\phi_{i}\right|>\frac{\varepsilon}{n\left|\alpha_{i}\right|}\right]
$$

Therefore, if we choose $\varepsilon_{i}=\frac{\varepsilon}{n\left|\alpha_{i}\right|}, \delta_{i}=\frac{\delta}{n}$, then

$$
m\left[\left|\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}-\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right|>\varepsilon\right]<\delta .
$$

Step 3 - Bounded Measurable Functions. Suppose f is bounded measurable. By the Basic Approximation Theorem there is a simple function ϕ_{1} such that $\left|f(x)-\phi_{1}(x)\right|<\varepsilon / 2$ for all x. Using Step 2 find a continuous ϕ such that $m\left[\left|\phi_{1}-\phi\right|>\varepsilon / 2\right]<\delta$. Now note that

$$
[|f-\phi|>\varepsilon] \subseteq\left[\left|f-\phi_{1}\right|>\varepsilon / 2\right] \cup\left[\left|\phi_{1}-\phi\right|>\varepsilon / 2\right]
$$

and so

$$
m[|f-\phi|>\varepsilon] \leq \underbrace{m\left[\left|f-\phi_{1}\right|>\varepsilon / 2\right]}_{=0}+\underbrace{m\left[\phi_{1}-\phi \mid>\varepsilon / 2\right]}_{<\delta} .
$$

Step 4 - General Case. Suppose $f:[a, b] \rightarrow[-\infty, \infty]$ is finite a.e. and measurable. Define

$$
f_{M}(x)=\left\{\begin{array}{cc}
f(x) & |f(x)| \leq M \\
0 & \text { otherwise }
\end{array}\right.
$$

Note that $\left[f \neq f_{M}\right]=[|f|>M] \downarrow[|f|=\infty]$. Since $\left[f \neq f_{1}\right] \subseteq[a, b]$ has finite measure, $m\left[f \neq f_{M}\right] \underset{M \rightarrow \infty}{\rightarrow} m[|f|=\infty]=0$. Now choose M so large that $m\left[f \neq f_{M}\right]<\delta / 2$ and use Step 3 to obtain a continuous ϕ such that $m\left[\left|f_{M}-\phi\right|>\varepsilon\right]<\delta / 2$. The inclusion

$$
[|f-\phi|>\varepsilon] \subseteq\left[\left|f_{M}-\phi\right|>\varepsilon\right] \cup\left[f \neq f_{M}\right]
$$

implies that ϕ provides a suitable approximation.

Theorem. (Egoroff's Theorem) Suppose $f_{n}: E \rightarrow \mathbb{R}$ are Lebesgue measurable and that $E \in \mathcal{B}_{0}$ has finite measure. Assume that $f_{n} \rightarrow f$ a.e. in E. Then $\forall \varepsilon>0 \quad \exists K \subseteq E$ compact such that $m(E \backslash K)<\varepsilon$ and $f_{n} \rightarrow f$ uniformly on K.

Proof. Define $G_{n, k}=\left\{x \in E| | f_{k}(x)-f(x) \left\lvert\,>\frac{1}{n}\right.\right\}$. Set

$$
G_{N}^{(n)}=\bigcup_{k=N+1}^{n} G_{n, k} \equiv\left\{x \in E \mid \exists k>N \text { s.t. }\left|f_{k}(x)-f(x)\right|>\frac{1}{n}\right\} .
$$

Observe that $\left\{G_{N}^{(n)}\right\}_{N=1}^{\infty}$ is a decreasing sequence of sets and that

$$
\bigcap_{N=1}^{\infty} G_{N}^{(n)} \subseteq\left[f_{k} \nrightarrow f\right]
$$

But $f_{k} \rightarrow f$ a.e. so $m\left(G_{N}^{(n)}\right) \underset{N \rightarrow \infty}{\rightarrow} m\left(\bigcap_{N=1}^{\infty} G_{N}^{(n)}\right)=0$. Therefore, $\forall n \in \mathbb{N}, \exists N_{n} \in \mathbb{N}$ such that $m\left(G_{N_{n}}^{(n)}\right)<\varepsilon / 2^{n+1}$. Now consider $E^{\prime}=E \backslash \bigcup_{n=1}^{\infty} G_{N_{n}}^{(n)}$. Then

$$
m\left(E \backslash E^{\prime}\right) \leq m\left(\cup_{n=1}^{\infty} G_{N_{n}}^{(n)}\right)<\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2} .
$$

If $x \in E^{\prime}$ then $x \notin G_{N_{n}}^{(n)}$ and so

$$
k>N_{n} \Rightarrow\left|f_{k}(x)-f(x)\right| \leq \frac{1}{n}
$$

and so $f_{n} \rightarrow f$ uniformly on E^{\prime}. Now apply the regularity of m to obtain a compact $K \subseteq E^{\prime}$ with $m\left(E^{\prime} \backslash K\right)<\varepsilon / 2$. Check that K still satisfies the requirements.

Theorem. (Lusin's Theorem) If $f: E \rightarrow \mathbb{R}$ is Lebesgue measurable and $E \in \mathcal{B}_{0}$ has finite measure then $\forall \varepsilon>0$ there is a compact $K \subseteq E$ such that $\left.f\right|_{K}: K \rightarrow \mathbb{R}$ is uniformly continuous and $m(E \backslash K)<\varepsilon$.

Proof. Exercise.

Exercise. What happens when $f=D=\mathbf{1}_{\mathbb{Q}}$?

The Lebesgue Integral

What is $\int_{0}^{1} f(t) d t$?
The regulated integral:
(1) step functions $\phi=\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{I_{i}}, \alpha_{i} \in \mathbb{R}, I_{i} \in \operatorname{Int}$:

$$
\int \phi=\sum_{i=1}^{n} \alpha_{i} \ell\left(I_{i}\right) .
$$

(2) regulated functions $f=$ uniform limit of step functions ϕ_{n} :

$$
\int f=\lim _{n \rightarrow \infty} \int \phi_{n} .
$$

The Lebesgue integral:
(1) simple functions $\phi=\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}, \alpha_{i} \in \mathbb{R}, E_{i} \in \mathcal{B}_{0}$:

$$
\int \phi=\sum_{i=1}^{n} \alpha_{i} m\left(E_{i}\right) .
$$

(2) bounded measurable functions $f=$ uniform limit of simple functions ϕ_{n} :

$$
\int f=\lim _{n \rightarrow \infty} \int \phi_{n} .
$$

To make these ideas rigorous we start by integrating simple functions:

$$
f=\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}, E_{i} \in \mathcal{B}_{0}
$$

Natural definition:

$$
\int_{E} f=\sum_{i=1}^{n} \alpha_{i} m\left(E_{i} \cap E\right)
$$

Problem. There are many representations of f of the form $\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}$, for instance

$$
\mathbf{1}_{[0,2]}+\mathbf{1}_{[1,3]}=\mathbf{1}_{[0,1)}+2 . \mathbf{1}_{[1,2]}+\mathbf{1}_{(2,3]}
$$

Solution. Choose a canonical representation such as

$$
f(x)=\sum_{y \in f(\mathbb{R})} y \mathbf{1}_{[f=y]}(x)
$$

Example.

$$
\begin{gathered}
\operatorname{sgn}(x)=\left\{\begin{array}{cc}
x /|x| & x \neq 0 \\
0 & x=0
\end{array}\right. \\
\operatorname{sgn}(\mathbb{R})=\{-1,0,1\} \\
{[\operatorname{sgn}=-1]=(-\infty, 0)} \\
{[\operatorname{sgn}=0]=\{0\}} \\
{[\operatorname{sgn}=1]=(0, \infty)}
\end{gathered}
$$

Hence $\operatorname{sgn}(x)=-1 . \mathbf{1}_{(-\infty, 0)}(x)+0 . \mathbf{1}_{\{0\}}(x)+1 . \mathbf{1}_{(0, \infty)}(x)$.
Definition. If f is a (Lebesgue measurable) simple function and $E \in \mathcal{B}_{0}$ has finite measure the integral of f over E with respect to m is

$$
\int_{E} f d m=\sum_{y \in f(\mathbb{R})} y \cdot m(E \cap[f=y]) .
$$

Remark. We require $m(E)<\infty$ to prevent the following problem:

$$
\begin{aligned}
\int_{\mathbb{R}} \operatorname{sgn}(x) d m(x) & =-1 \cdot m((-\infty, 0))+0 \cdot m(\{0\})+1 \cdot m((0, \infty)) \\
& =\infty-\infty \\
& =\text { undefined }
\end{aligned}
$$

Proposition. If f, g are simple functions, $\alpha, \beta \in \mathbb{R}, E \in \mathcal{B}_{0}, m(E)<\infty$, then
(1) linearity: $\int_{E} \alpha f+\beta g=\alpha \int_{E} f+\beta \int_{E} g$;
(2) monotonicity: $f \geq g \Rightarrow \int_{E} f \geq \int_{E} g$;
(3) absolute value property: $\left|\int_{E} f\right| \leq \int_{E}|f|$;
(4) $f=g$ a.e. $\Rightarrow \int_{E} f=\int_{E} g$;
(5) $E=E_{1} \amalg E_{2}, E_{i} \in \mathcal{B}_{0} \Rightarrow \int_{E} f=\int_{E_{1}} f+\int_{E_{2}} f$.

Proof. (1) We start by showing $\int_{E} f+g=\int_{E} f+\int_{E} g$. By definition

$$
\begin{aligned}
& \int_{E} f+g=\sum_{y \in(f+g)(\mathbb{R})} y \cdot m(E \cap[f+g=y]) \\
& =\sum_{y \in f(\mathbb{R})+g(\mathbb{R})} y \cdot m(E \cap[f+g=y]) \\
& =\sum_{\substack{F \in f(\mathbb{R}), G \in g(\mathbb{R}) \\
F+G=y}} y . m(E \cap[f+g=y]) \\
& =\sum_{y \in f(\mathbb{R})+g(\mathbb{R})} y\left(\sum_{\substack{F \in f(\mathbb{R}), G \in g(\mathbb{R}) \\
F+G=y}} m(E \cap[f=F, g=G])\right) \\
& \left(\because[f+g=y]=\coprod_{\substack{F \in f(\mathbb{R}), G \in g(\mathbb{R}) \\
F+G=y}}[f=F, g=G]\right) \\
& =\sum_{F \in f(\mathbb{R}), G \in g(\mathbb{R})}(F+G) m(E \cap[f=F] \cap[g=G]) \\
& =\sum_{F \in f(\mathbb{R})} F \sum_{G \in g(\mathbb{R})} m(E \cap[f=F] \cap[g=G])+\sum_{G \in g(\mathbb{R})} G \sum_{F \in f(\mathbb{R})} m(E \cap[f=F] \cap[g=G]) \\
& =\sum_{F \in f(\mathbb{R})} F \cdot m(E \cap[f=F])+\sum_{G \in g(\mathbb{R})} G \cdot m(E \cap[g=G]) \\
& =\int_{E} f+\int_{E} g
\end{aligned}
$$

Now show that $\int_{E} c f=c \int_{E} f$.

$$
\begin{gathered}
(c f)(\mathbb{R})=\{c y \mid y \in f(\mathbb{R})\} \\
\Rightarrow \quad \int_{E} c f=\sum_{y \in f(\mathbb{R})} c y \cdot m(E \cap[f=y])=c \int_{E} f
\end{gathered}
$$

(2) If $f \geq g, f-g \geq 0$, so all values of $f-g$ are non-negative, so $\int_{E} f-g \geq 0$. Together with (1), this implies that $\int_{E} f-\int_{E} g \geq 0$, so $\int_{E} f \geq \int_{E} g$.
(3) $-|f| \leq f \leq|f|$, so $-\int_{E}|f| \leq \int_{E} f \leq \int_{E}|f|$, so $\left|\int_{E} f\right| \leq \int_{E}|f|$.
(4), (5). Exercises.

We now integrate bounded measurable functions.
Proposition. Let $f: E \rightarrow \mathbb{R}$ be bounded measurable, $E \in \mathcal{B}_{0}, m(E)<\infty$. There exist simple functions $\phi_{n}: E \rightarrow \mathbb{R}$ such that $\phi_{n} \rightarrow f$ uniformly on E and
(1) $\left\{\int_{E} \phi_{n}\right\}$ always converges;
(2) its limit is independent of the choice of $\left\{\phi_{n}\right\}$.

Definition. The integral of f over E with respect to m is $\int_{E} f d m=\lim _{n \rightarrow \infty} \int_{E} \phi_{n} d m$.

Proof. The existence of $\phi_{n} \rightarrow f$ is the content of the Basic Approximation Theorem.
(1) By assumption, $\phi_{n} \rightarrow$ uniformly on E so $\varepsilon_{n}=\sup _{E}\left|\phi_{n}-f\right| \rightarrow 0$. We check that the sequence $\left\{\int_{E} \phi_{n}\right\}$ is Cauchy:

$$
\left|\int_{E} \phi_{m}-\int_{E} \phi_{n}\right| \leq \int_{E}\left|\phi_{m}-\phi_{n}\right| \leq m(E) \sup _{E}\left|\phi_{m}-\phi_{n}\right| .
$$

But $\forall x \in E$,

$$
\left|\phi_{m}(x)-\phi_{n}(x)\right| \leq\left|\phi_{m}(x)-f(x)\right|+\left|f(x)-\phi_{n}(x)\right| \leq \varepsilon_{m}+\varepsilon_{n} .
$$

So

$$
\left|\int_{E} \phi_{m}-\int_{E} \phi_{n}\right| \leq m(E)\left(\varepsilon_{m}+\varepsilon_{n}\right) \underset{n \rightarrow \infty}{\rightarrow} 0 .
$$

(2) Exercise.

Proposition. (Properties of the integral.) If f, g are bounded measurable functions, $\alpha, \beta \in \mathbb{R}, E \in \mathcal{B}_{0}, m(E)<\infty$, then
(1) linearity: $\int_{E} \alpha f+\beta g=\alpha \int_{E} f+\beta \int_{E} g$;
(2) monotonicity: $f \geq g \Rightarrow \int_{E} f \geq \int_{E} g$;
(3) absolute value property: $\left|\int_{E} f\right| \leq \int_{E}|f|$;
(4) $\forall G \in \mathcal{B}_{0}, \int_{E} f . \mathbf{1}_{G}=\int_{E \cap G} f$;
(5) $f=g$ a.e. $\Rightarrow \int_{E} f=\int_{E} g$;
(6) $E=E_{1} \amalg E_{2}, E_{i} \in \mathcal{B}_{0} \Rightarrow \int_{E} f=\int_{E_{1}} f+\int_{E_{2}} f$.

Proof. Let $\left\{\phi_{n}\right\},\left\{\psi_{n}\right\}$ be sequences of simple functions tending to f, g uniformly on E as $n \rightarrow \infty$.
(1) Clearly $\alpha \phi_{n}+\beta \psi_{n} \rightarrow \alpha f+\beta g$ uniformly on E since

$$
\left|\left(\alpha \phi_{n}(x)+\beta \psi_{n}(x)\right)-(\alpha f(x)+\beta g(x))\right| \leq\left|\alpha \left\|\phi_{n}(x)-f(x)\left|+\left|\beta \| \psi_{n}(x)-g(x)\right| .\right.\right.\right.
$$

Thus

$$
\begin{aligned}
\int_{E} \alpha f+\beta g & =\int_{E} \lim _{n \rightarrow \infty}\left(\alpha \phi_{n}+\beta \psi_{n}\right) \\
& =\lim _{n \rightarrow \infty} \int_{E} \alpha \phi_{n}+\beta \psi_{n} \\
& =\alpha \lim _{n \rightarrow \infty} \int_{E} \phi_{n}+\beta \lim _{n \rightarrow \infty} \int_{E} \psi_{n} \\
& =\alpha \int_{E} f+\beta \int_{E} g
\end{aligned}
$$

(2) Suppose $f \geq g$. Fix $\varepsilon>0$. By uniform convergence $\exists N$ such that $n>N \Rightarrow$ $\sup _{E}\left|f-\phi_{n}\right|, \sup _{E}\left|g-\psi_{n}\right|<\varepsilon$. In particular, for $n>N$,

$$
\phi_{n}>f-\varepsilon \geq g-\varepsilon>\psi_{n}-2 \varepsilon .
$$

By Monotonicity for simple functions,

$$
\begin{gathered}
\int_{E} \phi_{n}>\int_{E}\left(\psi_{n}-2 \varepsilon\right)=\int_{E} \psi_{n}=2 \varepsilon m(E) \\
\Rightarrow \quad \int_{E} f=\lim _{n \rightarrow \infty} \int_{E} \phi_{n} \geq \lim _{n \rightarrow \infty} \int_{E} \psi_{n}-2 \varepsilon m(E)=\int_{E} g-2 \varepsilon m(E)
\end{gathered}
$$

Pass to the limit as $\varepsilon \downarrow 0 ; \int_{E} f \geq \int_{E} g$.
(3) Corollary of (2).
(4) First observe that this property holds for simple functions, since

$$
\begin{aligned}
\int_{E}\left(\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}\right) \mathbf{1}_{G} & =\int_{E} \sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i} \cap G} \\
& =\sum_{i=1}^{n} \alpha_{i} m\left(E \cap E_{i} \cap G\right) \\
& =\int_{E \cap G} \sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}
\end{aligned}
$$

Since $\phi_{n} \rightarrow f$ uniformly on $E, \phi_{n} \rightarrow f$ uniformly on $E \cap G$. So

$$
\begin{aligned}
\int_{E \cap G} f & =\lim _{n \rightarrow \infty} \int_{E \cap G} \phi_{n} \\
& =\lim _{n \rightarrow \infty} \int_{E} \phi_{n} \mathbf{1}_{G} \\
& =\int_{E} f \cdot \mathbf{1}_{G}
\end{aligned}
$$

(5) Let $M=\sup _{E} f \vee \sup _{E} g .^{\dagger} \mathrm{By}(1)$,

$$
\int_{E} f=\int_{E} f . \mathbf{1}_{[f=g]}+\int_{E} f . \mathbf{1}_{[f \neq g]}
$$

But $\int_{E} f . \mathbf{1}_{[f \neq g]}=0$ since $\left|\int_{E} f . \mathbf{1}_{[f \neq g]}\right| \leq M . m(E \cap[f \neq g]) \leq M . m[f \neq g]=0$. So

$$
\begin{aligned}
\int_{E} f & =\int_{E} f \cdot \mathbf{1}_{[f=g]} \\
& =\int_{E \cap[f=g]} f \\
& =\int_{E \cap[f=g]} g \\
& =\int_{E \cap[f=g]} g+\int_{E \cap[f \neq g]} g \\
& =\int_{E}\left(g \cdot \mathbf{1}_{[f=g]}+g \cdot \mathbf{1}_{[f \neq g]}\right) \\
& =\int_{E} g
\end{aligned}
$$

(6) Follows from (1) and (4).

Theorem. (Bounded Convergence Theorem) Suppose $\left\{f_{n}\right\}_{n=1}^{\infty}$ are uniformly bounded measurable functions on $E \in \mathcal{B}_{0}$ of finite measure, i.e. $\exists M>0$ such that $\forall x \in E, n \in \mathbb{N}$, $\left|f_{n}(x)\right| \leq M$. If $\forall x \in E, f_{n}(x) \underset{n \rightarrow \infty}{\rightarrow} f(x)$, then $\int_{E} f_{n} \underset{n \rightarrow \infty}{\rightarrow} \int_{E} f$.

[^0]Proof. First note that $\int_{E} f$ is well-defined because
(1) f is measurable, since it is the limit of measurable functions;
(2) f is bounded (by M).

By Egoroff's Theorem, $\forall \varepsilon>0, \exists E_{\varepsilon} \in \mathcal{B}_{0}, \quad E_{\varepsilon} \subseteq E$, such that $m\left(E \backslash E_{\varepsilon}\right)<\varepsilon$ and $\sup _{E_{\varepsilon}}\left|f_{n}-f\right| \underset{n \rightarrow \infty}{\rightarrow} 0$. It follows that

$$
\begin{aligned}
\left|\int_{E} f_{n}-\int_{E} f\right| & \leq \int_{E}\left|f_{n}-f\right| \\
& =\int_{E_{\varepsilon}}\left|f_{n}-f\right|+\int_{E \backslash E_{\varepsilon}}\left|f_{n}-f\right| \\
& \leq \sup _{E_{\varepsilon}}\left|f_{n}-f\right| \cdot m\left(E_{\varepsilon}\right)+\left(\sup _{E}|f|+\sup _{E}\left|f_{n}\right|\right) m\left(E \backslash E_{\varepsilon}\right) \\
& \leq \underbrace{\sup _{E_{\varepsilon}}\left|f_{n}-f\right| \cdot m\left(E_{\varepsilon}\right)}_{\rightarrow 0 \text { as } n \rightarrow \infty}+2 M \varepsilon
\end{aligned}
$$

So $\limsup _{n \rightarrow \infty}\left|\int_{E} f_{n}-\int_{E} f\right| \leq 2 M \varepsilon \underset{\varepsilon \downarrow 0}{\rightarrow} 0$. Hence $\left|\int_{E} f_{n}-\int_{E} f\right| \underset{n \rightarrow \infty}{\rightarrow} 0$.

Exercise. Suppose f is continuous on $[a, b]$. Show that the Lebesgue and regulated integrals of f agree, i.e.

$$
\int_{[a, b]} f d m=\int_{a}^{b} f(x) d x
$$

We now proceed to integrate unbounded functions, and begin with the non-negative case to prevent $\infty-\infty$ problems such as with $\int_{\mathbb{R}} \operatorname{sgn} d m$.

Definition. Suppose $f: E \rightarrow[0, \infty]$ is measurable and $E \in \mathcal{B}_{0}$ (not necessarily of finite measure). Then the integral of f over E with respect to m is

$$
\int_{E} f d m=\sup \left\{\int_{[h \neq 0]} h d m \mid h \text { bdd. meas., } m[h \neq 0]<\infty, 0 \leq h \leq f . \mathbf{1}_{E}\right\} .
$$

Proposition. (Properties of the integral.) If $f, g: E \rightarrow[0, \infty], \alpha, \beta>0, E \in \mathcal{B}_{0}$, then
(1) linearity: $\int_{E} \alpha f+\beta g=\alpha \int_{E} f+\beta \int_{E} g$;
(2) monotonicity: $f \geq g \Rightarrow \int_{E} f \geq \int_{E} g$;
(3) $\forall G \in \mathcal{B}_{0}, \int_{E} f . \mathbf{1}_{G}=\int_{E \cap G} f$;
(4) $f=g$ a.e. $\Rightarrow \int_{E} f=\int_{E} g$.

Proof. All trivial apart from $\int_{E} f+g=\int_{E} f+\int_{E} g$.
(\geq) Take $0 \leq F \leq f . \mathbf{1}_{E}, \quad 0 \leq G \leq g . \mathbf{1}_{E}$ bounded measurable such that $m[F \neq 0]$, $m[G \neq 0]<\infty$ and

$$
\begin{aligned}
& \int_{[F \neq 0]} \geq \int_{E} f-\frac{\varepsilon}{2}, \\
& \int_{[G \neq 0]} G_{E} \geq \int_{E} g-\frac{\varepsilon}{2} .
\end{aligned}
$$

The function $F+G$ is bounded measurable, satisfies $0 \leq F+G \leq(f+g) . \mathbf{1}_{E}$ and $m[F+G \neq 0]=m([F \neq 0] \cup[G \neq 0])<\infty$. Therefore,

$$
\begin{aligned}
\int_{E} f+g & \geq \int_{[F+G \neq 0]} F+G \\
& =\int_{[F+G \neq 0]}^{F}+\int_{[F+G \neq 0]}^{G} \\
& =\int_{[F \neq 0]}^{F}+\int_{[G \neq 0]}^{G} \\
& \geq \int_{E} f+\int_{E} g-\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, $\int_{E} f+g \geq \int_{E} f+\int_{E} g$.
(\leq) We show that for every bounded measurable function $0 \leq h \leq(f+g) \cdot \mathbf{1}_{E}$ such that $m[h \neq 0]<\infty, \int_{[h \neq 0]} h \leq \int_{E} f+\int_{E} g$. We then pass to the supremum over all such h to deduce (\leq).

The idea is to "split" h into two lower bounds, one for f and one for g. Define $F=h \wedge f, G=h-F$. Note that

$$
\begin{aligned}
h=0 & \Rightarrow F=0, G=0 ; \\
0<h \leq f & \Rightarrow F=h \leq f, G=0 ; \\
f<h \leq f+g & \Rightarrow F=f, G=h-f \leq g .
\end{aligned}
$$

Therefore, $0 \leq F \leq f$ and $0 \leq G \leq g$, and since $F, G \leq h \leq f . \mathbf{1}_{E}$ we also have $0 \leq F \leq f . \mathbf{1}_{E}, 0 \leq G \leq g . \mathbf{1}_{E}$. It is clear that F, G are bounded measurable, that $[F \neq 0]$, $[G \neq 0] \subseteq[h \neq 0]$ and that $F+G=h$. So

$$
\begin{aligned}
\int_{[h \neq 0]} h & =\int_{[h \neq 0]} F+G \\
& =\int_{[h \neq 0]}+\int_{[h \neq 0]} G \\
& \leq \int_{E} f+\int_{E} g
\end{aligned}
$$

So $\int_{E} f+g \leq \int_{E} f+\int_{E} g$.

Theorem. (Fatou's Lemma) Suppose $\left\{f_{n}\right\}_{n=1}^{\infty}$ are non-negative measurable functions on $E \in \mathcal{B}_{0}$. Then

$$
\int_{E} \liminf _{n \rightarrow \infty} f_{n} \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n} .
$$

Proof. It is enough to show that for every bounded measurable $0 \leq h \leq \liminf _{n \rightarrow \infty} f_{n} \cdot \mathbf{1}_{E}$ such that $m[h \neq 0]<\infty, \int_{E} h \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n}$ because we can take the supremum over all such h.

Define $h_{n}=h \wedge f_{n}$. For every $\varepsilon>0 \quad \exists N=N(x)$ such that $n>N(x) \Rightarrow f_{n}(x)>h(x)-\varepsilon$ because $h(x) \leq \liminf _{n \rightarrow \infty} f_{n}(x)(*)$. Therefore, $h_{n}(x) \leq \liminf _{n \rightarrow \infty} f_{n}(x)$. But the h_{n} are bounded measurable and $m[h \neq 0]<\infty$ so $\int_{E} h_{n} \leq \int_{E} \liminf _{n \rightarrow \infty} f_{n}$.

Note that $h_{n}=h \wedge f_{n} \rightarrow h$ by $(*)$. Since $\sup h_{n} \leq \sup h$ the Bounded Convergence Theorem tells us $\int_{E} h_{n} \rightarrow \int_{n \rightarrow \infty} h$. But $h_{n} \leq f_{n}$ by construction. So

$$
\int_{E} h=\lim _{n \rightarrow \infty} \int_{E} h_{n} \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n} .
$$

Lemma. If $f: \mathbb{R} \rightarrow[0, \infty]$ is measurable and $\int_{E} f<\infty$ then f is a.e. finite in E.

Proof. Obviously, $\forall n \in \mathbb{N}$, $n . \mathbf{1}_{[f=\infty]} \leq f$. By monotonicity, $n . m(E \cap[f=\infty]) \leq \int_{E} f$ and so $m(E \cap[f=\infty]) \leq \frac{1}{n} \int_{E} f \underset{n \rightarrow \infty}{\rightarrow} 0$. So $m[f=\infty]=0$.

Corollary. Suppose $f_{n}: E \rightarrow[0, \infty]$ are measurable. If $\liminf _{n \rightarrow \infty} \int_{E} f_{n}<\infty$ then $\liminf _{n \rightarrow \infty} f_{n}(x)<\infty$ a.e. in E.

Remark. The following example may aid in remembering Fatou's Lemma: consider $f_{n}=\mathbf{1}_{[n, n+1)} . \liminf _{n \rightarrow \infty} f_{n} \equiv 0$, so $\int_{\mathbb{R}} \liminf _{n \rightarrow \infty} f_{n}=0 ; \int_{\mathbb{R}} f_{n} \equiv 1$, so $\liminf _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}=1$.

Theorem. (Monotone Convergence Theorem) (1) If $f_{n} \geq 0$ are measurable and $f_{n}(x) \leq f_{n+1}(x)$ for all $n \in \mathbb{N}$ and all $x \in E \in \mathcal{B}_{0}$ then

$$
\int_{E} \lim _{n \rightarrow \infty} f_{n}(x) d m(x)=\lim _{n \rightarrow \infty} \int_{E} f_{n}(x) d m(x) .
$$

(2) If $u_{n} \geq 0$ are measurable then

$$
\int_{E} \sum_{n=1}^{\infty} u_{n}(x) d m(x)=\sum_{n=1}^{\infty} \int_{E} u_{n}(x) d m(x) .
$$

(3) If $E=山_{n=1}^{\infty} E_{n}, E_{n} \in \mathcal{B}_{0}$, then for all $f \geq 0$ measurable,

$$
\int_{E} f=\sum_{n=1}^{\infty} \int_{E_{n}} f .
$$

Proof. (1) Define $f(x)=\lim _{n \rightarrow \infty} f_{n}(x) \in[0, \infty]$. This is well-defined because $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ is monotone. This f is a non-negative measurable function and so $\int_{E} f$ is well-defined. Since $f_{n} \leq f_{n+1}, \int_{E} f_{n} \leq \int_{E} f_{n+1}$ and so $\left\{\int_{E} f_{n}\right\}_{n=1}^{\infty}$ is monotone. It follows that $\lim _{n \rightarrow \infty} \int_{E} f_{n}$ exists.
(\leq) Since $f_{n} \leq f, \int_{E} f_{n} \leq \int_{E} f$ and so $\lim _{n \rightarrow \infty} \int_{E} f_{n} \leq \int_{E} f$.
(\geq) By Fatou's Lemma, $\int_{E} f=\int_{E} \liminf _{n \rightarrow \infty} f_{n} \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n}$ and so $\lim _{n \rightarrow \infty} \int_{E} f_{n} \geq \int_{E} f$.
(2) Follows from (1) with $f_{n}=u_{1}+\ldots+u_{n}$.
(3) Follows from (2) with $u_{n}=f . \mathbf{1}_{E_{n}}$.

We now proceed to the general case of integrating multi-signed unbounded functions. Recall that the problem here is one of avoiding $\infty-\infty$. For example,

$$
\int_{-\infty}^{\infty} \operatorname{sgn}=\int_{-\infty}^{\infty} 1+\int_{-\infty}^{\infty}(-1)=\infty-\infty .
$$

Note that we cannot solve this by simply taking limits of domains of integration because

$$
\int_{-\infty}^{\infty} \operatorname{sgn}=\lim _{n \rightarrow \infty} \int_{-n}^{n} \operatorname{sgn}=0 \neq 1=\lim _{n \rightarrow \infty} \int_{-n}^{n+1} \operatorname{sgn} .
$$

Definition. Let f be a real-valued function. The positive part of f is $f^{+}=f \vee 0$ $=f . \mathbf{1}_{[f \geq 0]}$. The negative part of f is $f^{-}=-f \wedge 0=-f . \mathbf{1}_{[f<0]}$. (Note that both f^{+}and f^{-}are positive.)

Exercise. Verify that $f=f^{+}-f^{-},|f|=f^{+}+f^{-}$.
Definition. Let $f: E \rightarrow[-\infty, \infty]$ be some function, $E \in \mathcal{B}_{0} . f$ is called absolutely integrable on E if it is measurable and $\int_{E} f^{+}, \int_{E} f^{-}<\infty . f$ is called one-sided integrable on E if at least one of $\int_{E} f^{+}, \int_{E} f^{-}$is finite. In each of these cases define the integral of f over E to be

$$
\int_{E} f=\int_{E} f^{+}-\int_{E} f^{-} .
$$

Exercise. Prove that a measurable function f is absolutely integrable on E if and only if $\int_{E}|f|<\infty$.

Proposition. (Properties of the integral.) If f, g are absolutely integrable on $E \in \mathcal{B}_{0}$, $\alpha, \beta \in \mathbb{R}$, then
(1) linearity: $\alpha f+\beta g$ is absolutely integrable on E and $\int_{E} \alpha f+\beta g=\alpha \int_{E} f+\beta \int_{E} g$;
(2) monotonicity: $f \geq g \Rightarrow \int_{E} f \geq \int_{E} g$;
(3) $\forall G \in \mathcal{B}_{0}, \int_{E} f . \mathbf{1}_{G}=\int_{E \cap G} f$;
(4) $f=g$ a.e. $\Rightarrow \int_{E} f=\int_{E} g$;
(5) $E=E_{1} \amalg E_{2}, E_{i} \in \mathcal{B}_{0} \Rightarrow \int_{E} f=\int_{E_{1}} f+\int_{E_{2}} f$.

Proof. As usual, everything is trivial except for $\int_{E}(f+g)=\int_{E} f+\int_{E} g$. First note that $f+g$ is absolutely integrable since $\int_{E}|f+g| \leq \int_{E}|f|+|g|=\int_{E}|f|+\int_{E}|g|<\infty$. By definition,

$$
\begin{aligned}
& \int_{E}(f+g)=\int_{E}(f+g)^{+}-\int_{E}(f+g)^{-} \\
& \begin{aligned}
\int_{E}(f+g)^{+} & \left.\left.=\int_{E}(f+g) \cdot \mathbf{1}_{\left[\left(f+-f^{-}\right.\right.}\right)\left(g^{+}-g^{-}\right)>0\right] \\
& =\int_{E n\left[f^{+}+g^{+}>f^{-}+g^{-}\right]}\left(f^{+}+g^{+}-f^{-}-g^{-}\right) \\
& =\int_{E \cap\left[f^{+}+g^{+}>f^{-}+g^{-}\right]}\left(\left(f^{+}+g^{+}\right)-\left(f^{-}+g^{-}\right)\right)
\end{aligned}
\end{aligned}
$$

Note that if $F, G, F-G>0$ then $\int(F-G)+\int G=\int(F-G+G)=\int F$. Therefore,

$$
\int_{E}(f+g)^{+}=\int_{E\left[\left[f^{+}+g^{+}>f^{-}+g^{-}\right]\right.}\left(f^{+}+g^{+}\right)-\int_{E\left[f^{+}+g^{+}>f^{+}+g^{-}\right]}\left(f^{-}+g^{-}\right) .
$$

In the same way we obtain

$$
\int_{E}(f+g)^{-}=\int_{E \cap\left[f^{+}+g^{+}<f^{-}+g^{-}\right]}\left(f^{-}+g^{-}\right)-\int_{E \cap\left[f^{+}+g^{+}<f^{-}+g^{-}\right]}\left(f^{+}+g^{+}\right) .
$$

Thus

$$
\begin{aligned}
\int_{E}(f+g) & =\int_{E}(f+g)^{+}-\int_{E}(f+g)^{-} \\
& =\int_{E}\left(f^{+}+g^{+}\right)-\int_{E}\left(f^{-}+g^{-}\right) \\
& =\int_{E} f^{+}-\int_{E} f^{-}+\int_{E} g^{+}-\int_{E} g^{-} \\
& =\int_{E} f+\int_{E} g
\end{aligned}
$$

Theorem. (Lebesgue's Dominated Convergence Theorem) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions such that $f_{n}(x) \underset{n \rightarrow \infty}{\rightarrow} f(x)$ for all $x \in E \in \mathcal{B}_{0}$. If $\left|f_{n}(x)\right| \leq g(x)$, where g is absolutely integrable on E, then $\int_{E} \lim _{n \rightarrow \infty} f_{n}=\lim _{n \rightarrow \infty} \int_{E} f_{n}$.

Proof. First note that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ is absolutely integrable since
(1) it is a limit of measurable functions, and so is measurable;
(2) $\int_{E}|f| \leq \int_{E}|g|<\infty$ since $|f|=\lim _{n \rightarrow \infty}\left|f_{n}\right| \leq|g|$.

We show that $\int_{E} f_{n} \underset{n \rightarrow \infty}{\rightarrow} \int_{E} f$ by proving

$$
\int_{E} f \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n} \leq \limsup _{n \rightarrow \infty} \int_{E} f_{n} \leq \int_{E} f_{n} .
$$

Since $\left|f_{n}\right| \leq g$ we have $-g \leq f_{n} \leq g$. Therefore, $g+f_{n} \geq 0$ and by Fatou's Lemma,

$$
\begin{aligned}
\int_{E} g+\int_{E} f & =\int_{E}(g+f) \\
& =\int_{E} \liminf _{n \rightarrow \infty}\left(g+f_{n}\right) \\
& \leq \liminf _{n \rightarrow \infty} \int_{E}\left(g+f_{n}\right) \\
& \leq \int_{E} g+\liminf _{n \rightarrow \infty} \int_{E} f_{n}
\end{aligned}
$$

Since $\int_{E}|g|<\infty, \int_{E} f \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n}$. The functions $g-f_{n}$ are also non-negative.

$$
\begin{aligned}
\int_{E} g-\int_{E} f & =\int_{E}(g-f) \\
& =\int_{E} \liminf _{n \rightarrow \infty}\left(g-f_{n}\right) \\
& \leq \liminf _{n \rightarrow \infty}\left(\int_{E} g-\int_{E} f_{n}\right) \\
& =\int_{E} g-\limsup _{n \rightarrow \infty} \int_{E} f_{n}
\end{aligned}
$$

So $\int_{E} f \geq \limsup _{n \rightarrow \infty} \int_{E} f_{n}$. Hence, $\int_{E} f=\lim _{n \rightarrow \infty} \int_{E} f_{n}$.

Exercise. Show that the Dominated Convergence Theorem implies both the Monotone Convergence Theorem and the Bounded Convergence Theorem.

Summary. (1) If f is absolutely integrable then $\int_{E} f=\int_{E} f^{+}-\int_{E} f^{-}$, so calculating $\int_{E} f$ can be done by considering non-negative functions.
(2) Given a non-negative f we can find simple functions $0 \leq h_{n} \leq f$ such that $h_{n}(x) \uparrow f(x)$. Simply take

$$
h_{n}(x)=\sum_{k=0}^{n^{2}} \frac{k}{n} \mathbf{1}_{\left[\frac{k}{n} \leq f \ll \frac{k+1}{n}\right]}(x) .
$$

By the Dominated Convergence Theorem, $\int_{E} f=\lim _{n \rightarrow \infty} \int_{E} h_{n}$.

Remark. Although we worked in $\left(\mathbb{R}, \mathcal{B}_{0}, m\right)$ everything we did works almost verbatim for a general σ-finite measure space (X, \mathcal{F}, μ).

3. Product Measures

Question. How can we measure the size of subsets of \mathbb{R}^{n} ? More generally, given two σ-finite measure spaces (X, \mathcal{C}, μ) and (Y, \mathcal{D}, v) we seek a construction of a measure space on $X \times Y$.

Approach. (1) Define the measure of "basic sets" of the form $C \times D, C \in \mathcal{C}, D \in \mathcal{D}$ as $\lambda(C \times D)=\mu(C) \nu(D)$.
(2) Use the Carathéodory Extension Theorem to obtain a full measure out of this. (See Assignment 2.)

Definition. A measurable rectangle is a set of the form $C \times D$ where $C \in \mathcal{C}, D \in \mathcal{D}$. Denote by \mathcal{R} the collection of all measurable rectangles.

Proposition. \mathcal{R} is a semi-algebra.
Proof. (1) $\varnothing, X \times Y \in \mathcal{R}$ obvious.
(2) Intersections: $(C \times D) \cap\left(C^{\prime} \times D^{\prime}\right)=\left(C \cap C^{\prime}\right) \times\left(D \cap D^{\prime}\right)$.
(3) Complements: $(X \times Y) \backslash(C \times D)=((X \backslash C) \times D) \amalg(C \times(Y \backslash D))$.

Proposition. The algebra generated by \mathcal{R} is

$$
\mathcal{A}(\mathcal{R})=\left\{\coprod_{i=1}^{n} C_{i} \times D_{i} \mid C_{i} \in \mathcal{C}, D_{i} \in \mathcal{D}, n \in \mathbb{N}\right\} .
$$

Proof. See Assignment 2.

Definition. $\lambda: \mathcal{A}(\mathcal{R}) \rightarrow[0,+\infty]$ is defined as

$$
\lambda\left(\amalg_{i=1}^{n} C_{i} \times D_{i}\right)=\sum_{i=1}^{n} \mu\left(C_{i}\right) \nu\left(D_{i}\right)
$$

with the convention that $0 \infty=\infty 0=0$.

Proposition. This λ is
(1) properly defined, i.e.

$$
\coprod_{i=1}^{n} C_{i} \times D_{i}=\coprod_{i=1}^{n^{\prime}} C_{i}^{\prime} \times D_{i}^{\prime} \Rightarrow \sum_{i=1}^{n} \mu\left(C_{i}\right) \nu\left(D_{i}\right)=\sum_{i=1}^{n^{\prime}} \mu\left(C_{i}^{\prime}\right) \nu\left(D_{i}^{\prime}\right)
$$

(2) σ-additive on $\mathcal{A}(\mathcal{R})$
(3) σ-finite if μ, ν are σ-finite.

Proof. (1) Suppose $\coprod_{i=1}^{n} C_{i} \times D_{i}=\coprod_{i=1}^{n^{\prime}} C_{i}^{\prime} \times D^{\prime}$. Then

$$
\sum_{i=1}^{n} \mathbf{1}_{C_{i}}(x) \mathbf{1}_{D_{i}}(y) \equiv \sum_{i=1}^{n^{\prime}} \mathbf{1}_{C_{i}^{\prime}}(x) \mathbf{1}_{D_{i}^{\prime}}(y) \equiv \mathbf{1}_{\amalg_{i=1}^{n} C_{i} \times D_{i}}(x, y)
$$

Fix y and integrate over all x w.r.t. μ. By linearity,

$$
\sum_{i=1}^{n} \mu\left(C_{i}\right) \mathbf{1}_{D_{i}}(y)=\sum_{i=1}^{n^{\prime}} \mu\left(C_{i}^{\prime}\right) \mathbf{1}_{D_{i}^{\prime}}(y) .
$$

Integrate over y w.r.t. v :

$$
\sum_{i=1}^{n} \mu\left(C_{i}\right) \nu\left(D_{i}\right)=\sum_{i=1}^{n^{\prime}} \mu\left(C_{i}^{\prime}\right) \nu\left(D_{i}^{\prime}\right)
$$

(2) Suppose $\amalg_{i=1}^{n} C_{i} \times D_{i}=\coprod_{k=1}^{\infty} \amalg_{j=1}^{\infty} C_{j}^{(k)} \times D_{j}^{(k)}$. Again

$$
\sum_{i=1}^{n} \mathbf{1}_{C_{i}}(x) \mathbf{1}_{D_{i}}(y) \equiv \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mathbf{1}_{C_{j}^{(k)}}(x) \mathbf{1}_{D_{j}^{(k)}}(y) .
$$

Integrating over x w.r.t. μ we have

$$
\begin{aligned}
\sum_{i=1}^{n} \mu\left(C_{i}\right) \mathbf{1}_{D_{i}}(y) & =\int_{X} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mathbf{1}_{C_{j}^{(k)}}(x) \mathbf{1}_{D_{j}^{(k)}}(y) d \mu(x) \\
& =\sum_{k=1}^{\infty} \int_{X}^{\infty} \sum_{j=1}^{\infty} \mathbf{1}_{C_{j}^{(k)}}(x) \mathbf{1}_{D_{j}^{(k)}}(y) d \mu(x) \\
& =\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mu\left(C_{j}^{(k)}\right) \mathbf{1}_{D_{j}^{(k)}}(y)
\end{aligned}
$$

Now integrate over y w.r.t v. By the Monotone Convergence Theorem:

$$
\begin{gathered}
\sum_{i=1}^{n} \mu\left(C_{i}\right) \nu\left(D_{i}\right)=\sum_{k=1}^{\infty} \sum_{j=1}^{n_{k}} \mu\left(C_{j}^{(k)}\right) \nu\left(D_{j}^{(k)}\right) \\
\mathrm{LHS}=\lambda \coprod_{i=1}^{n} C_{i} \times D_{i} \\
\mathrm{RHS}=\sum_{k=1}^{\infty} \lambda \amalg_{j=1}^{n_{k}} C_{j}^{(k)} \times D_{j}^{(k)}
\end{gathered}
$$

$\Rightarrow \sigma$-additivity on $\mathcal{A}(\mathcal{R})$.
(3) $(X, \mathcal{C}, \mu) \sigma$-finite $\Rightarrow \exists X_{i} \in \mathcal{C}$ s.t. $X=\coprod_{i=1}^{\infty} X_{i}$ and $\mu\left(X_{i}\right)<\infty$. $(Y, \mathcal{D}, v) \sigma$-finite $\Rightarrow \quad \exists Y_{j} \in \mathcal{D} \quad$ s.t. $\quad Y=\coprod_{j=1}^{\infty} Y_{j} \quad$ and $\quad \mu\left(Y_{j}\right)<\infty$. Then $\quad X \times Y=\amalg_{i, j=1}^{\infty} X_{i} \times Y_{j} \quad$ where $X_{i} \times Y_{j} \in \mathcal{R}$ and $\lambda\left(X_{i} \times Y_{j}\right)=\mu\left(X_{i}\right) \nu\left(Y_{j}\right)<\infty$.

Definition. The product σ-algebra $\mathcal{C} \otimes \mathcal{D}$ is the minimal σ-algebra containing the collection $\{C \times D \mid C \in \mathcal{C}, D \in \mathcal{D}\}$.

Theorem. Let $(X, \mathcal{C}, \mu),(Y, \mathcal{D}, v)$ be two σ-finite measure spaces. There exists a unique measure, called the product measure, $\mu \times v$ on $(X \times Y, \mathcal{C} \otimes \mathcal{D})$ such that

$$
(\mu \times v)(C \times D)=\mu(C) v(D)
$$

for all $C \in \mathcal{C}$ and $D \in \mathcal{D}$, and this measure is σ-finite.
Proof. Apply the Carathéodory Extension Theorem to $\lambda: \mathcal{A}(\mathcal{R}) \rightarrow[0,+\infty]$.

We would like to define the Lebesgue measure on \mathbb{R}^{2} as $m \times m$ on $\mathcal{B}_{0} \otimes \mathcal{B}_{0}$ but we have a technical problem:

The Completion Problem. Recall that a measure space (X, \mathcal{F}, μ) is complete if every null set is measurable, a null set being an $A \subset X$ such that $\exists E \in \mathcal{F}$ such that $A \subset E$ and $\mu(E)=0$.

The Lebesgue measure on \mathbb{R} is complete, but $m \times m$ on $\mathcal{B}_{0} \otimes \mathcal{B}_{0}$ is not complete: take $A \subset[0,1]$ not Lebesgue-measurable and consider $A_{0}=A \times\{1\}$. This is a null set because $A_{0} \subset[0,1] \times\{1\}$, which has measure zero, yet $A \notin \mathcal{B}_{0} \otimes \mathcal{B}_{0}$.

Solution. The completion procedure:
Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Define $\mu^{*}: 2^{\Omega} \rightarrow[0,+\infty]$ by

$$
\mu^{*}(A)=\inf \{\mu(E) \mid A \subseteq E \in \mathcal{F}\}
$$

Definition. The completion of $(\Omega, \mathcal{F}, \mu)$ is $\left(\Omega, \mathcal{F}_{0}, \mu_{0}\right)$, where
(1) $\mathcal{F}_{0}=\left\{E_{0} \subseteq \Omega \mid \exists E \in \mathcal{F}\right.$ s.t. $\left.\mu^{*}\left(E \Delta E_{0}\right)=0\right\}$,
(2) $\mu_{0}=\left.\mu^{*}\right|_{\mathcal{F}_{0}}$.

Exercise. Prove that $\left(\Omega, \mathcal{F}_{0}, \mu_{0}\right)$ is a complete measure space.
Exercise. Show that $\left(\mathbb{R}, \mathcal{B}_{0}, m\right)$ is the completion of $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$. (Hint: Show that $\forall E_{0} \in \mathcal{B}_{0} \exists G=\bigcap_{n=1}^{\infty} U_{n}$ such that U_{n} open, $E_{0} \subseteq G, m\left(G \backslash E_{0}\right)=0$.)

Definition. (Lebesgue's Measure on \mathbb{R}^{n}). This is the measure space

$$
(\mathbb{R}^{n},(\underbrace{\mathcal{B}_{0} \otimes \ldots \otimes \mathcal{B}_{0}}_{n})_{0},(\underbrace{m \times \ldots \times m}_{n})_{0})
$$

i.e. the completion of the product space $\prod_{i=1}^{n}\left(\mathbb{R}, \mathcal{B}_{0}, m\right)$.

Definition. Given a product space $(X \times Y, \mathcal{C} \otimes \mathcal{D}, \mu \times v), E \subseteq X \times Y, x \in X, y \in Y$,
(1) the x-section of E is $E_{x}=\{y \in Y \mid(x, y) \in E\}$;
(2) the y-section of E is $E^{y}=\{x \in X \mid(x, y) \in E\}$.

Exercise. Verify
(1) $(A \cup B)_{x}=A_{x} \cup B_{x}$;
(2) $(A \cap B)_{x}=A_{x} \cap B_{x}$;
(3) $\left(A^{\mathrm{C}}\right)_{x}=\left(A_{x}\right)^{\mathrm{C}}$;
(4) $(A \backslash B)_{x}=A_{x} \backslash B_{x}$;
(5) $\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right)_{x}=\bigcup_{\lambda \in \Lambda}\left(A_{\lambda}\right)_{x}$
etc. and similarly for y-sections.
Our aim is to prove that

$$
E \in \mathcal{C} \otimes \mathcal{D} \Rightarrow \int_{X} v\left(E_{x}\right) d \mu(x)=\int_{Y} \mu\left(E^{y}\right) d v(y)
$$

Two problems:
(1) Is $E_{x} \in \mathcal{D}$? Is $E^{y} \in \mathcal{C}$?
(2) Is $x \mapsto v\left(E_{x}\right) \mathcal{C}$-measurable? Is $y \mapsto \mu\left(E^{y}\right) \mathcal{D}$-measurable?

Proposition. If $E \in \mathcal{C} \otimes \mathcal{D}$ then for all $x \in X$ and $y \in Y, E_{x} \in \mathcal{D}$ and $E^{y} \in \mathcal{C}$.
Proof. We only prove the result for x-sections: the proof for y-sections is analogous.
Recall that $\mathcal{C} \otimes \mathcal{D}$ is the minimal σ-algebra containing the collection $\mathcal{R}=\{C \times D \mid C \in \mathcal{C}, D \in \mathcal{D}\}$. It is, therefore, enough to show that

$$
\mathcal{F}=\left\{E \in \mathcal{C} \otimes \mathcal{D} \mid \forall x \in X, E_{x} \in \mathcal{D}\right\}
$$

is a σ-algebra containing \mathcal{R}.
Step 1: $\mathcal{F} \supseteq \mathcal{R}$.
Fix $C \times D \in \mathcal{R}$. Then

$$
(C \times D)_{x}= \begin{cases}D & x \in C \\ \varnothing & x \notin C\end{cases}
$$

and $\varnothing, D \in \mathcal{D}$.
Step 2: \mathcal{F} is a σ-algebra.
(a) $\varnothing \in \mathcal{F}$ is trivial.
(b) $E \in \mathcal{F} \Rightarrow E^{\mathrm{C}} \in \mathcal{F}$ since $\left(E^{\mathrm{C}}\right)_{x}=\left(E_{x}\right)^{\mathrm{C}}=Y \backslash E_{x} \in \mathcal{D}$.
(c) $\left\{E_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} E_{i} \in \mathcal{F}$ since $\left(\bigcup_{i=1}^{\infty} E_{i}\right)_{x}=\bigcup_{i=1}^{\infty}\left(E_{i}\right)_{x} \in \mathcal{D}$.

Remark. It is not true that $E \in(\mathcal{C} \otimes \mathcal{D})_{0} \Rightarrow \forall x \in X, E_{x} \in \mathcal{D}$.

Example. Take $A \subset(0,1)$ non-measurable. Then $A \times\{1\} \in\left(\mathcal{B}_{0} \otimes \mathcal{B}_{0}\right)_{0}$ since $(m \times m)(A \times\{1\})=0$, but $(A \times\{1\})^{1}=A \notin \mathcal{B}_{0}$.

Proposition. Let $(X, \mathcal{C}, \mu),(Y, \mathcal{D}, v)$ be two σ-finite measure spaces. If $E \in \mathcal{C} \otimes \mathcal{D}$ then (1) $x \mapsto v\left(E_{x}\right)$ is \mathcal{C}-measurable and $\int_{X} v\left(E_{x}\right) d \mu(x)=(\mu \times v)(E)$;
(2) $y \mapsto \mu\left(E^{y}\right)$ is \mathcal{D}-measurable and $\int_{Y} \mu\left(E^{y}\right) d v(y)=(\mu \times v)(E)$.

Proof. Again, we prove (1) only.
Assume first that $\mu(X), \nu(Y)<\infty$. Define $\mathcal{F}=\{E \in \mathcal{C} \otimes \mathcal{D} \mid$ (1) holds $\}$. We prove $\mathcal{F} \supseteq \mathcal{R}$ and \mathcal{F} is a σ-algebra.

Step 1: $\mathcal{F} \supseteq \mathcal{R}$.
Fix $C \times D \in \mathcal{R}$. Then

$$
(C \times D)_{x}= \begin{cases}D & x \in C \\ \varnothing & x \notin C\end{cases}
$$

Hence $v\left((C \times D)_{x}\right)=v(D) \mathbf{1}_{C}(x)$. Obviously $x \mapsto v\left((C \times D)_{x}\right)$ is measurable and

$$
\begin{aligned}
\int_{X} v\left((C \times D)_{x}\right) d \mu(x) & =v(D) \int_{X} \mathbf{1}_{C}(x) d \mu(x) \\
& =\mu(C) v(D) \\
& =(\mu \times v)(C \times D)
\end{aligned}
$$

So (1) holds for $C \times D$.
Step 2: \mathcal{F} is a σ-algebra.

Suppose $\left\{E_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{F}$. We show that $v\left(\left(\bigcup_{i} E_{i}\right)_{x}\right)=v\left(\bigcup_{i}\left(E_{i}\right)_{x}\right)$ is measurable in x. If the union were disjoint we could use σ-additivity.

First attempt: Write $\bigcup_{i=1}^{\infty} E_{i}=\coprod_{i=1}^{\infty}\left(E_{i} \backslash \bigcup_{j=1}^{i-1} E_{j}\right)$ - but we can't be sure that $E_{i} \backslash \bigcup_{j=1}^{i-1} E_{j} \in \mathcal{F}$ because we still don't know that \mathcal{F} is an algebra!

Second attempt: We show that \mathcal{F} is a monotone class.
(a) $\varnothing \in \mathcal{F}$: trivial.
(b) $E_{n} \in \mathcal{F}, E_{n} \uparrow E \Rightarrow E \in \mathcal{F}:$ if $E_{n} \in \mathcal{F}$ and $E_{n} \uparrow E$ then $\left(E_{n}\right)_{x} \uparrow E_{x}$. By the continuity of measures, $v\left(\left(E_{n}\right)_{x}\right) \uparrow v\left(E_{x}\right)$. It follows that $x \mapsto v\left(E_{x}\right)$ is measurable because it is the limit of measurable functions.

By the Monotone Convergence Theorem,

$$
\begin{aligned}
\int v\left(E_{x}\right) & =\int \lim _{n \rightarrow \infty} v\left(\left(E_{n}\right)_{x}\right) \\
& =\lim _{n \rightarrow \infty} \int v\left(\left(E_{n}\right)_{x}\right) \\
& =\lim _{n \rightarrow \infty}(\mu \times v)\left(E_{n}\right) \\
& =(\mu \times v)(E)
\end{aligned}
$$

Thus $E \in \mathcal{F}$.
(c) $E_{n} \in \mathcal{F}, E_{n} \downarrow E \Rightarrow E \in \mathcal{F}:$ Again $\left(E_{n}\right)_{x} \downarrow E_{x}$, so by the continuity of measures and since $v\left(\left(E_{n}\right)_{x}\right) \leq v(Y)<\infty, v\left(\left(E_{n}\right)_{x}\right) \rightarrow \underset{n \rightarrow \infty}{\rightarrow} v\left(E_{x}\right)$. It follows that $x \mapsto v\left(E_{x}\right)$ is measurable.

Note $v\left(\left(E_{n}\right)_{x}\right) \leq v\left(E_{x}\right)$ and $\int_{X} v(Y)<\infty$. By the Dominated Convergence Theorem,

$$
\begin{aligned}
\int_{X} v\left(E_{x}\right) d \mu(x) & =\int_{X} \lim _{n \rightarrow \infty} v\left(\left(E_{n}\right)_{x}\right) d \mu(x) \\
& =\lim _{n \rightarrow \infty} \int_{X} v\left(\left(E_{n}\right)_{x}\right) d \mu(x) \\
& =\lim _{n \rightarrow \infty}(\mu \times v)\left(E_{n}\right) \\
& =(\mu \times v)(E)
\end{aligned}
$$

by the continuity of $\mu \times v$ and $(\mu \times v)\left(E_{1}\right) \leq(\mu \times v)(X \times Y)=\mu(X) v(Y)<\infty$.
This shows that \mathcal{F} is a monotone class. By the Monotone Class Theorem \mathcal{F} contains a σ-algebra containing \mathcal{R}, so $\mathcal{F} \supseteq \mathcal{C} \otimes \mathcal{D}$.

We now treat the σ-finite case: assume $(X, \mathcal{C}, \mu),(Y, \mathcal{D}, v) \sigma$-finite. $\exists X_{i} \in \mathcal{C}$ s.t. $X=\coprod_{i=1}^{\infty} X_{i}$ and $\mu\left(X_{i}\right)<\infty ; \exists Y_{j} \in \mathcal{D}$ s.t. $Y=\coprod_{j=1}^{\infty} Y_{j}$ and $\mu\left(Y_{j}\right)<\infty$. Define

$$
\begin{gathered}
\mathcal{C}_{i}=\left\{E \cap X_{i} \mid E \in \mathcal{C}\right\} \\
\mu_{i}=\left.\mu\right|_{\mathcal{C}_{i}} \\
\mathcal{D}_{j}=\left\{E \cap Y_{j} \mid E \in \mathcal{D}\right\} \\
v_{j}=\left.v\right|_{\mathcal{D}_{j}}
\end{gathered}
$$

Exercise. Prove
(1) $\left(X_{i}, \mathcal{C}_{i}, \mu_{i}\right),\left(Y_{j}, \mathcal{D}_{j}, v_{j}\right)$ are finite measure spaces;
(2) $\mathcal{C}_{i} \otimes \mathcal{D}_{j}=\left\{E \cap\left(X_{i} \times Y_{j}\right) \mid E \in \mathcal{C} \otimes \mathcal{D}\right\}$;
(3) $\forall E \in \mathcal{C} \otimes \mathcal{D},(\mu \times v)(E)=\sum_{i, j}\left(\mu_{i} \times v_{j}\right)\left(E \cap\left(X_{i} \times Y_{j}\right)\right)$.

Now consider some set $E \in \mathcal{C} \otimes \mathcal{D}$.

$$
\begin{aligned}
v\left(E_{x}\right) & =\sum_{j=1}^{\infty} v\left(E_{x} \cap Y_{j}\right) \\
& =\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \mathbf{1}_{X_{i}}(x) v\left(E_{x} \cap\left(X_{i} \times Y_{j}\right)_{x}\right) \\
& =\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \mathbf{1}_{X_{i}}(x) \underbrace{v_{i}\left(E_{x} \cap\left(X_{i} \times Y_{j}\right)_{x}\right)}_{\mathcal{C}_{i} \text {-measurable by } \sigma \text {-finite case }}
\end{aligned}
$$

Since $\mathcal{C}_{i} \subseteq \mathcal{C}$ every \mathcal{C}_{i}-measurable function is \mathcal{C}-measurable. Therefore, since

$$
\begin{equation*}
\nu\left(E_{x}\right)=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \mathbf{1}_{X_{i}}(x) \nu_{i}\left(\left(E \cap\left(X_{i} \times Y_{j}\right)\right)_{x}\right), \tag{*}
\end{equation*}
$$

$x \mapsto v\left(E_{x}\right)$ is \mathcal{C}-measurable. Now integrate $(*)$ over $x \in X$. By the Monotone Convergence Theorem,

$$
\begin{aligned}
\int_{X} v\left(E_{x}\right) d \mu(x) & =\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \int_{X_{i}} v_{i}\left(\left(E \cap\left(X_{i} \times Y_{j}\right)\right)_{x}\right) d \mu(x) \\
& =\sum_{j=1}^{\infty} \sum_{i=1}^{\infty}(\mu \times v)\left(E \cap\left(X_{i} \times Y_{j}\right)\right) \\
& =(\mu \times v)(E)
\end{aligned}
$$

The proof for y-sections is analogous.

Fubini's Theorem: We want to show that

$$
\int_{X \times Y} f(x, y) d(\mu \times v)(x, y)=\int_{X} \int_{Y} f(x, y) d v(y) d \mu(x) .
$$

Problems:
(1) Is $f(x, \cdot) v$-integrable for all x ?
(2) Is $x \mapsto \int_{Y} f(x, y) d v(y) \mu$-integrable?

Theorem. (Fubini's Theorem) Suppose $(X, \mathcal{C}, \mu),(Y, \mathcal{D}, v)$ are σ-finite measure spaces and that $f: X \times Y \rightarrow[-\infty,+\infty]$ is $\mathcal{C} \otimes \mathcal{D}$-measurable with $\int_{X \times Y}|f| d(\mu \times v)<\infty$. Then (1) $\forall x \in X, y \mapsto f(x, y)$ is \mathcal{D}-measurable; $\forall y \in Y, x \mapsto f(x, y)$ is \mathcal{C}-measurable;
(2) for μ-a.e. $x \in X, y \mapsto f(x, y)$ is v-absolutely integrable; for v-a.e. $y \in Y$, $x \mapsto f(x, y)$ is μ-absolutely integrable;
(3) $x \mapsto \int_{Y} f(x, y) d v(y)$ is \mathcal{C}-measurable and μ-absolutely integrable;
$y \mapsto \int_{X} f(x, y) d \mu(x)$ is \mathcal{D}-measurable and v-absolutely integrable;

$$
\begin{equation*}
\int_{Y} \int_{X} f(x, y) d \mu(x) d v(y)=\int_{X \times Y} f(x, y) d(\mu \times v)(x, y)=\int_{X} \int_{Y} f(x, y) d v(y) d \mu(x) . \tag{4}
\end{equation*}
$$

Proof. We prove this first for indicator functions, then simple functions, then nonnegative functions, then absolutely integrable functions.

Indicators: Suppose $f(x, y)=\mathbf{1}_{E}(x, y), E \in \mathcal{C} \otimes \mathcal{D} . f(x, \cdot)=\mathbf{1}_{E_{x}(\cdot)}$. So, by the previous proposition, $f(x, \cdot)$ is \mathcal{D}-measurable since $E_{x} \in \mathcal{D}$. [(1) done.] The same proposition says that

$$
\int_{Y} f(x, \cdot) d v(\cdot)=v\left(E_{x}\right)
$$

is \mathcal{C}-measurable. [(2) done.] Again, the previous proposition gives

$$
\begin{aligned}
\int_{X} \int_{Y} f(x, \cdot) d v(\cdot) d \mu(x) & =\int_{X} v\left(E_{x}\right) d \mu(x) \\
& =(\mu \times v)(E) \\
& =\int_{X \times Y} f d(\mu \times v) \\
& <\infty
\end{aligned}
$$

[(3), (4) done.] The proof is the same for y-sections.
Simple Functions: Follows from the previous case (indicators) by linearity.
Non-negative Measurable Functions: Suppose $f(x, y) \geq 0$ is $\mathcal{C} \otimes \mathcal{D}$-measurable. There exist simple functions $0 \leq h_{n}(x, y) \leq h_{n+1}(x, y)$ such that $h_{n}(x, y) \uparrow f(x, y)$. For instance, take

$$
h_{n}(x, y)=\sum_{k=1}^{n^{2}} \frac{k}{n} \mathbf{1}_{\left[\frac{k}{n} \leq f<f<\frac{k+1}{n}\right]}(x, y) .
$$

$f(x, \cdot)=\lim _{n \rightarrow \infty} h_{n}(x, \cdot)$ so $f(x, \cdot)$ is \mathcal{D}-measurable since the h_{n} are \mathcal{D}-measurable. [(1) done.] Since $h_{n} \uparrow f$, by the Monotone Convergence Theorem,

$$
\begin{aligned}
\int_{Y} f(x, \cdot) d v(\cdot) & =\int_{Y} \lim _{n \rightarrow \infty} h_{n}(x, \cdot) d v(\cdot) \\
& =\lim _{n \rightarrow \infty} \int_{Y} h_{n}(x, \cdot) d v(\cdot)
\end{aligned}
$$

Since $h_{n}(x, y)$ simple, previous case shows $x \mapsto \int_{Y} h_{n}(x, \cdot) d v(\cdot)$ is \mathcal{C}-measurable, so $x \mapsto \int_{Y} f(x, \cdot) d v(\cdot)$ is \mathcal{C}-measurable. [(2) done.] By the Monotone Convergence Theorem, $\int_{Y} h_{n}(x, \cdot) d v(\cdot) \uparrow \int_{Y} f(x, \cdot) d v(\cdot)$. Again by the Monotone Convergence Theorem,

$$
\begin{aligned}
\int_{X} \int_{Y} f d v d \mu & =\int_{X} \lim _{n \rightarrow \infty} \int_{Y} h_{n} d v d \mu \\
& =\lim _{n \rightarrow \infty} \int_{X} \int_{Y} h_{n} d v d \mu \\
& =\lim _{n \rightarrow \infty} \int_{X \times Y} h_{n} d(\mu \times v) \\
& =\int_{X \times Y} \lim _{n \rightarrow \infty} h_{n} d(\mu \times v) \\
& =\int_{X \times Y} f d(\mu \times v)
\end{aligned}
$$

[(3), (4) done.] Similarly for the other order of integration.
General Case: Suppose f is $(\mu \times v)$-absolutely integrable. Decompose $f=f^{+}-f^{-}$and apply the previous case to f^{+}, f^{-}.

Remark. Remember this trick of approximating a non-negative function by a monotone sequence of simple functions.

Theorem. (Tonelli's Theorem) Suppose $(X, \mathcal{C}, \mu),(Y, \mathcal{D}, v)$ are σ-finite measure spaces and that $f: X \times Y \rightarrow[-\infty,+\infty]$ is $\mathcal{C} \otimes \mathcal{D}$-measurable. If $\int_{X} \int_{Y}|f| d v d \mu<\infty$ then $\int_{X \times Y}|f| d(\mu \times v)<\infty$.

Proof. Since $(X, \mathcal{C}, \mu),(Y, \mathcal{D}, v)$ are σ-finite so is $(X \times Y, \mathcal{C} \otimes \mathcal{D}, \mu \times v)$. So $\exists F_{n} \in \mathcal{C} \otimes \mathcal{D}$ with finite measure such that $F_{n} \uparrow X \times Y$. Now define $\phi_{n}=\mathbf{1}_{F_{n}} \cdot(|f| \wedge n)$. Check that $\int_{X \times Y}\left|\phi_{n}\right| d(\mu \times v)<\infty$ and that $\phi_{n}(x, y) \uparrow|f(x, y)|$. By the Monotone Convergence Theorem,

$$
\begin{aligned}
\int_{X \times Y}|f| d(\mu \times v) & =\int_{X \times Y} \lim _{n \rightarrow \infty} \phi_{n} d(\mu \times v) \\
& =\lim _{n \rightarrow \infty} \int_{X \times Y} \phi_{n} d(\mu \times v) \\
& =\lim _{n \rightarrow \infty} \int_{X} \int_{Y} \phi_{n} d v d \mu \\
& \leq \int_{X} \int_{Y}|f| d v d \mu \\
& <\infty
\end{aligned}
$$

So f is $(\mu \times v)$-absolutely integrable.

Corollary. (The Fubini-Tonelli Theorem) If one of the following integrals exists then all three exist and are equal:

$$
\int_{Y} \int_{X} f d \mu d v, \int_{X \times Y} f d(\mu \times v), \int_{X} \int_{Y} f d v d \mu .
$$

4. L^{p} Spaces

Convexity Inequalities

Definition. A function $\phi:[a, b] \rightarrow \mathbb{R}$ is called convex if $\forall x, y \in[a, b], \forall t \in[0,1]$,

$$
\phi(t x+(1-t) y) \leq t \phi(x)+(1-t) \phi(y) .
$$

Proposition. ϕ is convex in $[a, b]$ iff for all $a \leq x<y \leq z<w \leq b$,

$$
\frac{\phi(x)-\phi(y)}{x-y} \leq \frac{\phi(z)-\phi(w)}{z-w} \text {. }
$$

Proof. Enough to prove inequalities in the case $y=z$. Assume $a<x<z<w<b$. Solve for t in

$$
\begin{gathered}
z=t x+(1-t) w \\
z=t(x-w)+w \\
t=\frac{z-w}{x-w} \\
1-t=\frac{x-w-w+w}{x-w}=\frac{x-z}{x-w}
\end{gathered}
$$

Observe,

$$
\begin{array}{lc}
& \phi(t x+(1-t) w) \leq t \phi(x)+(1-t) \phi(w) \\
\Leftrightarrow & \phi(z) \leq t \phi(x)+(1-t) \phi(w) \\
\Leftrightarrow & 0 \leq t(\phi(x)-\phi(z))+(1-t)(\phi(w)-\phi(z)) \\
\Leftrightarrow & 0 \leq \frac{z-w}{x-w}(\phi(x)-\phi(z))+\frac{x-z}{x-w}(\phi(w)-\phi(z)) \\
\Leftrightarrow & 0 \geq(z-w)(\phi(x)-\phi(z))+(x-z)(\phi(w)-\phi(z)) \\
\Leftrightarrow & 0 \geq \frac{\phi(x)-\phi(z)}{x-z}+\frac{\phi(w)-\phi(z)}{z-w} \\
\because & z=t x+(1-t) w, \\
\Leftrightarrow & \phi(t x+(1-t) w) \leq t \phi(x)+(1-t) \phi(w) \\
\Leftrightarrow & \frac{\phi(x)-\phi(z)}{x-z} \leq \frac{\phi(w)-\phi(z)}{w-z}
\end{array}
$$

Corollary. If $\phi:[a, b] \rightarrow \mathbb{R}$ is C^{2} then ϕ is convex on $[a, b]$ iff $\phi^{\prime \prime}(x) \geq 0$.
Examples. (1) $t \mapsto e^{t}$ is convex on \mathbb{R}.
(2) $t \mapsto t^{\alpha}$ is convex $[0, \infty)$ if $\alpha \geq 1$, but not convex if $\alpha<1$.

Proposition. (Supporting lines.) If $\phi:[a, b] \rightarrow \mathbb{R}$ is convex then $\forall x_{0} \in[a, b] \exists m \in \mathbb{R}$ such that $\forall x \in[a, b]$

$$
\phi(x) \geq \phi\left(x_{0}\right)+m\left(x-x_{0}\right) .
$$

Proof. Fix $x_{0} \in[a, b]$. Define $\hat{m}(x)=\frac{\phi(x)-\phi\left(x_{0}\right)}{x-x_{0}}$ for $x \neq x_{0}$. This is increasing in x by the previous proposition. So the following numbers exist and are finite:

$$
\begin{aligned}
m^{+} & =\inf _{x>x_{0}} \hat{m}(x) \\
m^{-} & =\sup _{x<x_{0}} \hat{m}(x)
\end{aligned}
$$

Also, $m^{-} \leq m^{+}$. Now choose $m^{-} \leq m \leq m^{+}$and note that

$$
\begin{aligned}
& x>x_{0} \Rightarrow \frac{\phi(x)-\phi\left(x_{0}\right)}{x-x_{0}} \geq m^{+} \geq m \Rightarrow \phi(x) \geq \phi\left(x_{0}\right)+m\left(x-x_{0}\right) \\
& x<x_{0} \Rightarrow \frac{\phi\left(x_{0}\right)-\phi(x)}{x_{0}-x} \leq m^{-} \leq m \Rightarrow \phi(x) \geq \phi\left(x_{0}\right)+m\left(x-x_{0}\right)
\end{aligned}
$$

Theorem. (Jensen's Inequality) If (X, \mathcal{F}, μ) is a measure space, $E \in \mathcal{F}$ has finite measure and $f: E \rightarrow \mathbb{R}$ is absolutely integrable, then for any convex function ϕ,

$$
\phi\left(\frac{1}{\mu(E)} \int_{E} f d \mu\right) \leq \frac{1}{\mu(E)} \int_{E} \phi \circ f d \mu .
$$

Proof. If $x_{0}=\frac{1}{\mu(E)} \int_{E} \phi \circ f d \mu$ and $m_{x_{0}}\left(x-x_{0}\right)+\phi\left(x_{0}\right)$ is a supporting line for ϕ then for all ξ,

$$
\phi(f(\xi)) \geq \phi\left(x_{0}\right)+m_{x_{0}}\left(f(\xi)+\frac{1}{\mu(E)} \int_{E} f d \mu\right) .
$$

So,

$$
\begin{aligned}
\frac{1}{\mu(E)} \int_{E} \phi \circ f d \mu & \geq \phi\left(x_{0}\right) \\
& =\phi\left(\frac{1}{\mu(E)} \int_{E} f d \mu\right)+m_{x_{0}}\left(\frac{1}{\mu(E)} \int_{E} f d \mu-\frac{1}{\mu(E)} \int_{E} f d \mu\right) \\
& =\phi\left(\frac{1}{\mu(E)} \int_{E} f d \mu\right)
\end{aligned}
$$

Hölder's Inequality. Let (X, \mathcal{F}, μ) be a measure space and suppose $p, q>1, \frac{1}{p}+\frac{1}{q}=1$. For every $f, g: X \rightarrow[-\infty,+\infty] \mathcal{F}$-measurable,

$$
\int_{X}|f g| d \mu \leq\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}\left(\int_{X}|g|^{q} d \mu\right)^{1 / q}
$$

(Here we take $0 \infty=0$.)
Proof. We first prove Young's Inequality:

$$
\begin{aligned}
& a, b \geq 0 \Rightarrow a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \\
a b & =\exp \left(\frac{1}{p} \log a^{p}+\frac{1}{q} \log b^{q}\right) \\
& \leq \frac{1}{p} \exp \log a^{p}+\frac{1}{q} \exp \log b^{q} \\
& =a^{p} / p+b^{q} / q
\end{aligned}
$$

by the convexity of exp. By Young's Inequality, if $A=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}$, $B=\left(\int_{X}|g|^{q} d \mu\right)^{1 / q}$ then $\forall x \in X$,

$$
\frac{|f(x)|}{A} \left\lvert\, \frac{|g(x)|}{B} \leq \frac{1}{p} \frac{|f(x)|^{p}}{A^{p}}+\frac{1}{q} \frac{\mid g(x))^{q}}{b^{q}}\right.
$$

Integrating w.r.t. μ over X gives, by monotonicity,

$$
\frac{\int|f g| d \mu}{\left(\int|f|^{p} d \mu\right)^{\mu p}\left(\int|g|^{q} d \mu\right)^{1 / q}} \leq \frac{1}{p} \frac{\int|f|^{p} d \mu}{\int|f|^{p} d \mu}+\left.\frac{1}{q} \int|g|^{\varphi} d \mu\right|^{q} d \mu=\frac{1}{p}+\frac{1}{q}=1
$$

Cauchy-Schwartz Inequality. If (X, \mathcal{F}, μ) is a measure space then for every $f, g: X \rightarrow[-\infty,+\infty] \mathcal{F}$-measurable,

$$
\int_{X}|f g| d \mu \leq\left(\int_{X}|f|^{2} d \mu\right)^{1 / 2}\left(\int_{X}|g|^{2} d \mu\right)^{1 / 2} .
$$

Proof. Hölder with $p=q=2$.
Minkowski's Inequality. Let (X, \mathcal{F}, μ) be a measure space and $p \geq 1$. Then for every $f, g: X \rightarrow[-\infty,+\infty] \mathcal{F}$-measurable,

$$
\left(\int_{X}|f+g|^{p} d \mu\right)^{1 / p} \leq\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}+\left(\int_{X}|g|^{p} d \mu\right)^{1 / p} .
$$

Proof. Define $A=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}, B=\left(\int_{X}|g|^{p} d \mu\right)^{1 / p}$. For every $x \in X$,

$$
\begin{aligned}
\frac{|f(x)+g(x)|^{p}}{(A+B)^{p}} & \leq\left(\frac{|f(x)|+g(x) \mid}{A+B}\right)^{p} \\
& =\left(\frac{A}{A+B} \frac{|f(x)|}{A}+\frac{B}{A+B} \frac{|g(x)|}{B}\right)^{p} \\
& \leq \frac{A}{A+B} \frac{\mid f(x)^{p}}{A^{p}}+\frac{B}{A+B} \frac{|g(x)|^{p}}{B^{p}}
\end{aligned}
$$

by the convexity of $t \mapsto t^{p}$. Integrate:

$$
\frac{\left(\int|f+g|^{p} d \mu\right)^{1 / p}}{\left(\int|f|^{p} d \mu\right)^{p /}\left(\int|g|^{p} d \mu\right)^{1 / p}} \leq \frac{A}{A+B} \frac{\int|f|^{p} d \mu}{\int|f|^{p} d \mu}+\frac{B}{A+B} \frac{\int|g|^{p} d \mu}{\int|g|^{p} d \mu}=1
$$

$$
\mathcal{L}^{p} \text { and } L^{p} \text { Spaces }
$$

Minkowski's Inequality looks like a triangle inequality for a "norm":

$$
\|f\|_{p}=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}
$$

This suggests the following:
Definitions. Fix a measure space (X, \mathcal{F}, μ) and $1 \leq p \leq \infty$.
(1) For $f: X \rightarrow[-\infty,+\infty]$ define

$$
\begin{gathered}
\|f\|_{p}=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p} \text { for } 1 \leq p<\infty \\
\|f\|_{\infty}=\inf \left\{\sup _{x \in X}\left|f^{\prime}(x)\right| \mid f^{\prime}=f \mu \text {-a.e. }\right\}
\end{gathered}
$$

(2) $\mathcal{L}^{p}(X, \mathcal{F}, \mu)=\left\{f: X \rightarrow[-\infty,+\infty] \mid f\right.$ is \mathcal{F} - measurable, $\left.\|f\|_{p}<\infty\right\}$.

Example. The Dirichlet function

$$
D(x)=\mathbf{1}_{\mathbb{Q}}(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

has \mathcal{L}^{∞} norm $\|D\|_{\infty}=0$ because $D=0 m$-a.e.
Remark. $\|f\|_{\infty}$ is sometimes called the essential supremum of f and thus denoted $\operatorname{ess} \sup f$.

Exercise. Show that if $\|f\|_{\infty}<\infty$ there is a bounded measurable function g such that $f=g$ a.e.

Proposition. $\mathcal{L}^{p}(X, \mathcal{F}, \mu)$ is a vector space over \mathbb{R} and $\|\cdot\|_{p}$ is a seminorm on $\mathcal{L}^{p}(X, \mathcal{F}, \mu)$. I.e.
(1) $\forall f \in \mathcal{L}^{p}(X, \mathcal{F}, \mu),\|f\|_{p} \geq 0$;
(2) $\forall f \in \mathcal{L}^{p}(X, \mathcal{F}, \mu), \lambda \in \mathbb{R},\|\lambda f\|_{p}=\mid \lambda\|f\|_{p}$;
(3) $\forall f, g \in \mathcal{L}^{p}(X, \mathcal{F}, \mu),\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$.

Note. $\|\cdot\|_{p}$ is not a norm since $\exists f \in \mathcal{L}^{p}(X, \mathcal{F}, \mu)$ such that $\|f\|_{p}=0$ but $f \not \equiv 0$, for instance $f(x)=\mathbf{1}_{\{0\}}(x)$.

Proof. $\mathcal{L}^{p}(X, \mathcal{F}, \mu)$ is a vector space since $\forall f, g \in \mathcal{L}^{p}(X, \mathcal{F}, \mu), \alpha, \beta \in \mathbb{R}$, Minkowski's Inequality says

$$
\begin{aligned}
\|\alpha f+\beta g\|_{p} & =\left(\int_{X}|\alpha f+\beta g|^{p} d \mu\right)^{1 / p} \\
& \leq\left(\int_{X}|\alpha f|^{p} d \mu\right)^{1 / p}+\left(\int_{X}|\beta g|^{p} d \mu\right)^{1 / p} \\
& =\left|\alpha\|f\|_{p}+\right| \beta\|g\|_{p}<\infty
\end{aligned}
$$

Properties (1) and (2) are trivial. Property (3) is Minkowski's Inequality.

Proposition. $\|f-g\|_{p}=0 \Leftrightarrow f=g \mu$ - a.e.

Proof. $p=\infty$ is easy, so let $1 \leq p<\infty$.
(\Leftarrow) If $f=g$ a.e. then $|f-g|^{p}=0$ a.e. and so

$$
\|f-g\|_{p}=\left(\int_{X}|f-g|^{p} d \mu\right)^{1 / p}=0 .
$$

(\Rightarrow) Suppose $\|f-g\|_{p}=0$. Then $\int_{X}|f-g|^{p} d \mu=0$. Observe that

$$
\begin{equation*}
\mu\left[|f-g|^{p} \neq 0\right] \leq \sum_{n=1}^{\infty} \mu\left[|f-g|^{p}>1 / n\right] \tag{*}
\end{equation*}
$$

Now,

$$
\mu\left[|f-g|^{p}>1 / n\right] \leq \int_{\left[|f-g|^{p}>1 / n\right]} n|f-g|^{p} d \mu
$$

because the integrand is ≥ 1 on $\left[|f-g|^{p}>1 / n\right]$. Therefore,

$$
\mu\left[|f-g|^{p}>1 / n\right] \leq n \int_{X}|f-g|^{p} d \mu=n\|f-g\|_{p}^{p}=0 .
$$

$\operatorname{By}(*), f=g$ a.e.

This suggests that we consider $f, g \in \mathcal{L}^{p}$ with $\|f-g\|_{p}=0$ as equivalent.
Define a relation \sim on $\mathcal{L}^{p}(X, \mathcal{F}, \mu)$ by $f \sim g$ iff $f=g \quad \mu$-a.e. (iff $\|f-g\|_{p}=0$).

Exercise. Prove that \sim is an equivalence relation.
Define $[f]=\left\{g \in \mathcal{L}^{p} \mid f \sim g\right\}$.
Definition. The L^{p}-space of (X, \mathcal{F}, μ) is

$$
L^{p}(X, \mathcal{F}, \mu)=\left\{[f] \mid f \in \mathcal{L}^{p}(X, \mathcal{F}, \mu)\right\}
$$

with the operations

$$
\begin{gathered}
{[f]+[g]=[f+g]} \\
\lambda[f]=[\lambda f] \\
\|[f]\|_{p}=\|f\|_{p}
\end{gathered}
$$

Proposition. This is a proper definition that makes $L^{p}(X, \mathcal{F}, \mu)$ into a normed vector space over \mathbb{R}.

Proof. (1) Addition well-defined: Suppose $f \sim f^{\prime}, g \sim g^{\prime}$. Show $f+g=f^{\prime}+g^{\prime} \mu$-a.e.

$$
\mu\left[f+g \neq f^{\prime}+g^{\prime}\right] \leq \mu\left[f \neq f^{\prime}\right]+\mu\left[g \neq g^{\prime}\right]=0
$$

(2) Multiplication well-defined: Exercise.
(3) Norm well-defined: Suppose $f \sim f^{\prime}$. Then $|f|^{p}=\left|f^{\prime}\right|^{p} \mu$-a.e. So

$$
\|f\|_{p}=\left(\int|f|^{p}\right)^{1 / p}=\left(\int\left|f^{\prime}\right|^{p}\right)^{1 / p}=\left\|f^{\prime}\right\|_{p}
$$

(4) L^{p} a vector space: By Minkowski's Inequality.
(5) $\|\cdot\|_{p}$ a norm: $\|[f]-[g]\|_{p}=0 \Rightarrow\|[f-g]\|_{p}=0 \Rightarrow\|f-g\|_{p}=0 \Rightarrow f=g$ a.e. $\Rightarrow[f]=[g]$.

Remark. It is traditional to drop the [] and refer to L^{p}-elements as "functions":
(1) L^{p}-functions are not functions;
(2) L^{p}-functions cannot be evaluated at a point;
(3) L^{p}-functions can be integrated against other functions, since if $f \sim f^{\prime}, f g=f^{\prime} g$ a.e., and so $\int_{E} f g d \mu=\int_{E} f^{\prime} g d \mu$.

L^{p} Convergence

Definition. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of L^{p}-functions. We say that f_{n} converges in L^{p} to f, and write $f_{n} \xrightarrow[n \rightarrow \infty]{L^{p}} f$, if $\left\|f_{n}-f\right\|_{p} \rightarrow 0$.

Remarks. (1) There is an analogous notion for \mathcal{L}^{p}.
(2) L^{p}-convergence neither implies nor is implied by convergence almost everywhere.

Examples. Take $f_{n}=\mathbf{1}_{[n, n+1]} \in L^{p}\left(\mathbb{R}, \mathcal{B}_{0}, m\right) . \quad f_{n}(x) \underset{n \rightarrow \infty}{\rightarrow 0}$ for all $x \in \mathbb{R}$, but $\underset{n}{\stackrel{L^{p}}{\rightarrow}} 0$ because $\left\|f_{n}\right\|_{p}=\left(\int_{n}^{n+1} d x\right)^{1 / p}=1$ so $\left\|f_{n}-0\right\|_{p} \underset{n \rightarrow \infty}{\rightarrow} 0$.

However, consider the following array:

$$
\begin{gathered}
f_{1,0}=\mathbf{1}_{[0,1]} \\
f_{2,0}=\mathbf{1}_{[0,1 / 2]}, f_{2,1}=\mathbf{1}_{[1 / 2,1]} \\
f_{3,0}=\mathbf{1}_{[0,1 / 3]}, f_{3,1}=\mathbf{1}_{[1 / 3,2 / 3]}, f_{3,2}=\mathbf{1}_{[2 / 3,1]} \\
\vdots \\
f_{n, k}=\mathbf{1}_{[k / n,(k+1) / n]} \text { for } k=0,1, \ldots, n-1
\end{gathered}
$$

Let $\left\{g_{n}\right\}$ be the sequence $f_{1,0}, f_{2,0}, f_{2,1}, f_{3,0}, \ldots$. Then for all x

$$
\liminf _{n \rightarrow \infty} g_{n}(x)=0, \limsup _{n \rightarrow \infty} g_{n}(x)=1
$$

but $\left\|g_{n}\right\|_{p} \xrightarrow[n \rightarrow \infty]{\rightarrow} 0$ for $1 \leq p<\infty$ because

$$
\left\|f_{n, k}\right\|_{p}=\left\|\mathbf{1}_{[k / n,(k+1) / n]}\right\|_{p}=\frac{1}{n} \underset{n \rightarrow \infty}{\rightarrow} 0 .
$$

Definitions. Let $(V,\|\cdot\|)$ be a normed vector space.
(1) A Cauchy sequence in V is a $\left\{v_{n}\right\}_{n=1}^{\infty} \subseteq V$ such that $\left\|v_{m}-v_{n}\right\|_{m, n \rightarrow \infty} 0$.
(2) $(V,\|\cdot\|)$ is complete if every Cauchy sequence converges in norm to some $v \in V$.
(3) A complete normed vector space $(V,\|\cdot\|)$ is called a Banach space.

Theorem. (Riesz-Fischer) If (X, \mathcal{F}, μ) is σ-finite then $L^{p}(X, \mathcal{F}, \mu)$ is complete with respect to $\|\cdot\|_{p}, 1 \leq p \leq \infty$.

Proof. We only consider the $1 \leq p<\infty$ case as the $p=\infty$ case is easy and left as an exercise. Suppose $\left\{f_{n}\right\}_{n=1}^{\infty}$ is Cauchy, i.e. $\left\|f_{m}-f_{n}\right\|_{p m, n \rightarrow \infty} 0$.

The idea is first to find a candidate for a limit, then show that this limit lies in L^{p}, then establish convergence.

Consider the following identity:

$$
f_{N_{k}}=f_{N_{0}}+\left(f_{N_{1}}-f_{N_{0}}\right)+\ldots+\left(f_{N_{k}}-f_{N_{k-1}}\right)
$$

This suggests the "formula":

$$
" \lim _{k \rightarrow \infty} f_{N_{k}}=f_{N_{0}}+\sum_{k=1}^{\infty}\left(f_{N_{k}}-f_{N_{k-1}}\right) "
$$

The sum on the RHS is, in general, divergent. We find $N_{k} \uparrow \infty$ such that this sum converges absolutely a.e.. Choose N_{i}^{\prime} so large that

$$
m, n \geq N_{i}^{\prime} \Rightarrow\left\|f_{m}-f_{n}\right\|_{p}<1 / 2^{i}
$$

We force the sequence to be increasing by setting $N_{i}=\max _{1 \leq j \leq i} N_{i}^{\prime}$. Now,

$$
\begin{aligned}
\left(\int\left(\left|f_{N_{0}}\right|+\sum_{k=1}^{\infty}\left|f_{N_{k}}-f_{N_{k-1}}\right|\right)^{p} d \mu\right)^{1 / p} & =\left(\int_{n \rightarrow \infty}\left(\left|f_{N_{0}}\right|+\sum_{k=1}^{n}\left|f_{N_{k}}-f_{N_{k-1}}\right|\right)^{p} d \mu\right)^{1 / p} \\
& \leq \lim _{n \rightarrow \infty}\left(\int\left(\left|f_{N_{0}}\right|+\sum_{k=1}^{n}\left|f_{N_{k}}-f_{N_{k-1}}\right|\right)^{p} d \mu\right)^{1 / p} \text { by Fatou } \\
& =\lim _{n \rightarrow \infty}| | f_{N_{0}}\left|+\sum_{k=1}^{n}\right| f_{N_{k}}-f_{N_{k-1}} \|_{p} \\
& \leq \lim _{n \rightarrow \infty}\left(\left\|f_{N_{0}}\right\|_{p}+\sum_{k=1}^{n}\left\|f_{N_{k}}-f_{N_{k-1}}\right\| \|_{p}\right) \text { by Minkowski } \\
& =\left\|f_{N_{0}}\right\|_{p}+\sum_{k=1}^{\infty}\left\|f_{N_{k}}-f_{N_{k-1}}\right\|_{p} \\
& <\infty
\end{aligned}
$$

Therefore, the integrand $\left|f_{N_{0}}\right|+\sum_{k=1}^{\infty}\left|f_{N_{k}}-f_{N_{k-1}}\right|$ must be finite a.e., for otherwise its L^{p} norm would be ∞. This proves that

$$
f(x)=\lim _{k \rightarrow \infty} f_{N_{k}}(x)
$$

is well-defined a.e. This is our candidate.

This is an L^{p} function (i.e. the norm is finite) because

$$
\begin{aligned}
\|f\|_{p} & =\left(\int \lim _{k \rightarrow \infty}\left|f_{N_{k}}\right|^{p}\right)^{1 / p} \\
& \leq \liminf _{k \rightarrow \infty}\left(\int\left|f_{N_{k}}\right|^{p}\right)^{1 / p} \\
& =\liminf _{k \rightarrow \infty}\left\|f_{N_{k}}\right\|_{p}
\end{aligned}
$$

and $\left\{\left\|f_{N_{k}}\right\|_{p}\right\}$ is bounded.

Our sequence converges to f in norm:

$$
\begin{aligned}
\left\|f-f_{n}\right\|_{p} & =\left\|\lim _{k \rightarrow \infty}\left(f_{N_{k}}-f_{n}\right)\right\|_{p} \\
& \leq \liminf _{k \rightarrow \infty}\left\|f_{N_{k}}-f_{n}\right\|_{p}
\end{aligned}
$$

If $n>N_{l}$ then for $k>l,\left\|f_{N_{k}}-f_{n}\right\|_{p}<1 / 2^{l}$. So $n>N_{l} \Rightarrow\left\|f-f_{n}\right\|_{p}<1 / 2^{l}$. So $\left\|f_{n}-f\right\|_{p} \rightarrow 0$.

Corollary. If $f_{n} \xrightarrow[n \rightarrow \infty]{L^{p}} f$ then $\exists N_{k} \uparrow \infty$ such that $f_{N_{k}} \xrightarrow[k \rightarrow \infty]{\rightarrow} f$ a.e.
Corollary. $\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{p}<\infty \Rightarrow\left\{\sum_{n=1}^{N} f_{n}\right\}_{N=1}^{\infty}$ converges in L^{p}. (The limit is denoted by $\sum_{n=1}^{\infty} f_{n}$.

Exercise. Reconcile the first corollary with the second example above.

$$
\text { The Case } p=2
$$

Suppose (X, \mathcal{F}, μ) is σ-finite. We can define an inner product on $L^{2}(X, \mathcal{F}, \mu)$ via

$$
(f, g)=\int_{X} f g d \mu
$$

This is well-defined:
(1) If $f=f^{\prime}$ a.e. and $g=g^{\prime}$ a.e. then $f g=f^{\prime} g^{\prime}$ a.e. and so $\int f g=\int f^{\prime} g^{\prime}$.
(2) $f g$ is absolutely integrable since

$$
\int_{X}|f g| d \mu \leq\left(\int_{X}|f|^{2} d \mu\right)\left(\int_{X}|g|^{2} d \mu\right)=\|f\|_{2}\|g\|_{2}<\infty
$$

and it is related to the L^{2} norm in the right way: $\|f\|_{2}=(f, f)^{1 / 2}$.

Definition. A complete inner product space $(V,(\cdot)$,$) is called a Hilbert space.$
Definition. A bounded linear functional on L^{2} is a linear function $\phi: L^{2} \rightarrow \mathbb{R}$ such that $\exists A>0$ such that $|\phi(f)| \leq A\|f\|_{2}$ for all $f \in L^{2}$.

Example. If $g_{0} \in L^{2}$ is fixed then $\phi_{g_{0}}(f)=\left(f, g_{0}\right)=\int_{X} f g_{0} d \mu$ is a bounded linear functional.

Proof. It is clear that $\phi_{g_{0}}(f)$ is independent of the choice of representative. It is also clear that $\phi_{g_{0}}$ is linear. It is bounded because the Cauchy-Schwarz Inequality says

$$
\left|\phi_{g_{0}}(f)\right| \leq \int_{X}\left|f g_{0}\right| d \mu=\|f\|_{2}\left\|g_{0}\right\|_{2} .
$$

The converse to this is the Riesz Representation Theorem:
Theorem. (Riesz Representation Theorem) If (X, \mathcal{F}, μ) is σ-finite then every bounded linear functional on $L^{2}(X, \mathcal{F}, \mu)$ is of the form $f \mapsto \int_{X} f g d \mu$ for some fixed $g \in L^{2}(X, \mathcal{F}, \mu)$.

Absolute Continuity

Basic Example. Let (X, \mathcal{F}, v) be a σ-finite measure space and suppose $f: X \rightarrow \mathbb{R}$ is non-negative and measurable. Define $\mu: \mathcal{F} \rightarrow \mathbb{R}$ by $\mu(E)=\int_{E} f d \nu$.

Exercise. (1) Prove that μ is a measure.
(2) Show that (X, \mathcal{F}, μ) is σ-finite.

Definition. Let μ, v be two σ-finite measures on (X, \mathcal{F}). We say that μ is absolutely continuous with respect to v, and write $\mu \ll v$, if $v(E)=0 \Rightarrow \mu(E)=0$.

Examples. (1) If $\mu(E)=\int_{E} f d v$ for all $E \in \mathcal{F}$ then $\mu \ll v$.
(2) Let v be Lebesgue measure on \mathbb{R}, let $\mathbb{Q}=\left\{q_{n}\right\}_{n=1}^{\infty}$ be an enumeration of \mathbb{Q}, and define

$$
\mu(E)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \mathbf{1}_{E}\left(q_{n}\right) .
$$

Exercise. (1) Show that μ is a finite measure.
(2) Show that μ is not absolutely continuous with respect to v. (Hint: calculate $\mu(\mathbb{Q})$ and $\nu(\mathbb{Q})$.)

Theorem. (Radon-Nikodym) Let μ, v be two σ-finite measures on (X, \mathcal{F}). If $\mu \ll v$ then there exists a non-negative measurable function $f: X \rightarrow \mathbb{R}$ such that for all μ absolutely integrable functions g,

$$
\int_{X} g d \mu=\int_{X} g f d v
$$

Moreover, f is unique up to μ-null sets.
Definition. In this case we write $d \mu=f d \nu, f=\frac{d \mu}{d v}$, and call $f=\frac{d \mu}{d v}$ the RadonNikodym derivative of μ with respect to v.

Proof. We only treat the finite measure case $\mu(X), v(X)<\infty$; the general case is handled in the standard way by breaking X into \aleph_{0} pieces of finite $(\mu+v)$-measure.

Define $\lambda=\mu+\nu$ and let $\phi: L^{2}(X, \mathcal{F}, \lambda) \rightarrow \mathbb{R}$ be the functional

$$
\phi(f)=\int_{X} f d \mu
$$

We need to show that ϕ is a well-defined bounded linear functional:
ϕ is well defined, for suppose $f_{1}=f_{2} \lambda$-a.e. Then

$$
0=\lambda\left[f_{1} \neq f_{2}\right]=\mu\left[f_{1} \neq f_{2}\right]+v\left[f_{1} \neq f_{2}\right] \geq \mu\left[f_{1} \neq f_{2}\right] .
$$

It follows that $f_{1}=f_{2} \mu$-a.e. and so $\phi\left(f_{1}\right)=\int_{X} f_{1} d \mu=\int_{X} f_{2} d \mu=\phi\left(f_{2}\right)$. The linearity of ϕ is clear. To see that it is bounded use the Cauchy-Schwarz Inequality:

$$
|\phi(f)| \leq \int|f| d \mu \leq \int|f| d \lambda \leq \sqrt{\int 1^{2} d \lambda} \sqrt{\int|f|^{2} d \lambda}=\sqrt{\lambda(X)}\|f\|_{2}<\infty
$$

By the Riesz Representation Theorem, $\exists h \in L^{2}(X, \mathcal{F}, \lambda)$ such that $\forall f \in L^{2}(X, \mathcal{F}, \lambda)$, $\phi(f)=(f, h)$. I.e., for $f \in L^{2}(X, \mathcal{F}, \lambda)$,

$$
\begin{array}{cc}
& \int f d \mu=\int f h d \lambda=\int f h d \mu+\int f h d v \\
\Rightarrow & \int f(1-h) d \mu=\int f h d v \tag{*}
\end{array}
$$

This suggests $(1-h) d \mu=h d \nu$, and so $d \mu=\frac{h}{1-h} d \nu$. We make this manipulation rigorous:

Claim. $0 \leq h<1 \quad \lambda$-a.e.
Proof. We start by noting that $\forall E \in \mathcal{F}, \mathbf{1}_{E} \in L^{2}(X, \mathcal{F}, \lambda)$, and so

$$
\begin{gather*}
\mu(E)=\phi\left(\mathbf{1}_{E}\right)=\int_{E} h d \lambda \tag{A}\\
v(E)=\lambda(E)=\mu(E)=\int_{E}(1-h) d \lambda \tag{B}
\end{gather*}
$$

Now
$(\mathrm{A}) \Rightarrow$
$0 \geq \int_{[h<0]} h d \lambda=\mu[h<0] k \geq 0$
$\Rightarrow \quad \int_{[h<0]} h d \lambda=0$
$\Rightarrow \quad \lambda[h<0]=0$

Exercise. Prove the last implication.
$(\mathrm{B}) \Rightarrow$
$0 \geq \int_{[h \geq 1]}(1-h) d \lambda=v[h \geq 1] \geq 0$
$\Rightarrow \quad \nu[h \geq 1]=0$

Since $\mu \ll v, \mu[h \geq 1]=0$ as well, so $\lambda[h \geq 1]=0$. Hence $0 \leq h<1 \quad \lambda$-a.e. This proves the claim.

Since $\lambda(X)<\infty$, every indicator function is in $L^{2}(X, \mathcal{F}, \lambda)$, and so $(*)$ implies that for each $E \in \mathcal{F}, \int \mathbf{1}_{E} \cdot(1-h) d \mu=\int \mathbf{1}_{E} \cdot h d v$. By linearity, for all simple functions f,

$$
\int f \cdot(1-h) d \mu=\int f h d v
$$

If f is non-negative measurable then choose simple $0 \leq \phi_{n} \uparrow f$. Note that $0 \leq \phi_{n} h \uparrow f h$, $0 \leq \phi_{n} \cdot(1-h) \uparrow f \cdot(1-h)$. Then

$$
\begin{aligned}
\int f \cdot(1-h) d \mu & =\lim _{n \rightarrow \infty} \int \phi_{n} \cdot(1-h) d \mu \text { by MCT } \\
& =\lim _{n \rightarrow \infty} \int \phi_{n} h d v \text { since } \phi_{n} \text { simple } \\
& =\int f h d v \text { by MCT }
\end{aligned}
$$

This proves that for $f \geq 0$ measurable,

$$
\begin{equation*}
\int f \cdot(1-h) d \mu=\int f h d v \tag{**}
\end{equation*}
$$

But if f is non-negative measurable then so is $f \cdot \frac{h}{1-h}$. Therefore, by $(* *)$,

$$
\begin{aligned}
\int f d \mu & =\int \frac{f}{1-h} \cdot(1-h) d \mu \\
& =\int \frac{f}{1-h} h d v \\
& =\int f \frac{h}{1-h} d v
\end{aligned}
$$

for all f non-negative measurable.
Exercise. Generalize to all μ-absolutely integrable functions $f=f^{+}-f^{-}$.

Exercise. Show the Radon-Nikodym derivative is unique modulo λ. (Hint: suppose $\int f g_{i} d \mu=\int f g_{i} d v$ for $i=1,2$ and evaluate $\left.\int\left(\operatorname{sgn}\left(g_{1}-g_{2}\right)\right)\left(g_{1}-g_{2}\right) d v.\right)$

Signed Measures

Imagine that electric charge is distributed in space. It makes sense to define $\mu(E)$ to be the total charge within the region E. However, this μ is not a measure because it is not, in general, non-negative.

Definition. Let (X, \mathcal{F}) be a measurable space. A signed measure is a set function $\mu: \mathcal{F} \rightarrow[-\infty,+\infty]$ such that
(1) μ attains at most one of the values $\pm \infty$;
(2) $\mu(\varnothing)=0$;
(3) σ-additivity: if $E=\coprod_{i=1}^{\infty} E_{i}$ with $E_{i} \in \mathcal{F}$ then $\mu(E)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)$, where
(a) if $|\mu(E)|=\infty$ then the convergence of $\sum_{i=1}^{\infty} \mu\left(E_{i}\right)$ to $\mu(E)$ is meant,
(b) if $|\mu(E)|<\infty$ then the absolute convergence of $\sum_{i=1}^{\infty} \mu\left(E_{i}\right)$ to $\mu(E)$ is meant.

Remarks. (1) was added to prevent the existence of two disjoint sets $A, B \in \mathcal{F}$ such that $\mu(A)=+\infty, \mu(B)=-\infty$, for in this case $\mu(A \amalg B)=\infty-\infty$.
(3) was strengthened to make sure all sums converge.

Definitions. Let (X, \mathcal{F}, μ) be a signed measure space.
(1) $E \in \mathcal{F}$ is called a null set if $\forall E^{\prime} \subseteq E$ measurable, $\mu\left(E^{\prime}\right)=0$. (This is stronger than saying $\mu(E)=0$.)
(2) $E \in \mathcal{F}$ is positive if $\forall E^{\prime} \subseteq E$ measurable, $\mu\left(E^{\prime}\right) \geq 0$.
(3) $E \in \mathcal{F}$ is positive if $\forall E^{\prime} \subseteq E$ measurable, $\mu\left(E^{\prime}\right) \leq 0$.

Lemma. (Exhaustion Lemma) Let (X, \mathcal{F}, μ) be a signed measure space. Every $E \in \mathcal{F}$ with $0<\mu(E)<\infty$ contains a subset which is a positive set of strictly positive measure.

Proof. Define $E_{1}=E$ and set

$$
\mu_{1}=\sup \left\{|\mu(A)| \mid A \subseteq E_{1} \text { is measurable and } \mu(A) \leq 0\right\} .
$$

Now choose $A_{1} \subseteq E_{1}$ measurable such that

$$
\begin{gathered}
\mu\left(A_{1}\right) \leq-1 \text { if } \mu_{1}=+\infty \\
\mu\left(A_{1}\right) \leq \mu_{1} / 2 \text { if } \mu_{1}<+\infty .
\end{gathered}
$$

Define $E_{2}=E_{1} \backslash A_{1}=E \backslash A_{1}$. Set

$$
\mu_{2}=\sup \left\{|\mu(A)| \mid A \subseteq E_{2} \text { is measurable and } \mu(A) \leq 0\right\}
$$

(Note that if $\mu_{1}<\infty$ then $\mu_{2} \leq \mu_{1} / 2$.) Choose $A_{2} \subseteq E_{2}$ measurable such that

$$
\begin{gathered}
\mu\left(A_{2}\right) \leq-1 \text { if } \mu_{2}=+\infty \\
\mu\left(A_{2}\right) \leq \mu_{2} / 2 \text { if } \mu_{2}<+\infty
\end{gathered}
$$

Proceed by induction. Suppose $A_{1}, \ldots A_{n}$ already defined. Set

$$
\mu_{n+1}=\sup \left\{|\mu(A)| \mid A \subseteq E_{n} \text { is measurable and } \mu(A) \leq 0\right\} .
$$

Choose $A_{n+1} \subseteq E_{n+1}$ measurable such that

$$
\begin{gathered}
\mu\left(A_{n+1}\right) \leq-1 \text { if } \mu_{n+1}=+\infty \\
\mu\left(A_{n+1}\right) \leq \mu_{n+1} / 2 \text { if } \mu_{n+1}<+\infty .
\end{gathered}
$$

We obtain in this way $\left\{A_{i}\right\}_{i=1}^{\infty}$ pairwise disjoint. Define $\widetilde{E}=E \backslash \coprod_{i=1}^{\infty} A_{i}$. We show that \widetilde{E} is positive and $\mu(\widetilde{E})>0$.

Step 1. $\mu_{n} \rightarrow 0$.

Proof. First note that $\exists N \in \mathbb{N}$ such that $\mu_{N}<+\infty$, for otherwise $\forall n \in \mathbb{N}, \mu_{n}=+\infty$ and so $\mu\left(A_{n}\right) \leq-1$. Hence,

$$
0<\mu(E)=\mu\left(\widetilde{E} \amalg\left(\amalg_{i=1}^{\infty} A_{i}\right)\right)=\underbrace{\mu(\widetilde{E})}_{\in[-\infty,+\infty)}+\underbrace{\sum_{i=1}^{\infty} \mu\left(A_{i}\right)}_{=-\infty}=-\infty,
$$

which is a contradiction. By the definition of $\mu_{N}, \mu_{N+1} \leq \mu_{N} / 2$, so for $n>N$, $\mu_{n} \leq \mu_{N} / 2^{n-N} \underset{n \rightarrow \infty}{\rightarrow} 0$.

Step 2. \widetilde{E} is positive.
Proof. $E^{\prime} \subseteq \widetilde{E}$ is measurable. By definition, $E^{\prime} \subseteq E_{n}=E \backslash \coprod_{i=1}^{n-1} A_{i}$, so if $\mu\left(E^{\prime}\right) \leq 0$ then $\left|\mu\left(E^{\prime}\right)\right| \leq \mu_{n} \rightarrow 0$. Thus, all subsets of \widetilde{E} with non-positive measure have measure zero, so \widetilde{E} is positive.

Step 3. $\mu(\widetilde{E})>0$.
Proof. $0<\mu(E)=\mu(\widetilde{E})+\underbrace{\sum_{i=1}^{\infty} \mu\left(A_{i}\right)}_{<0}$.

Theorem. (Hahn's Decomposition Theorem) Let (X, \mathcal{F}, μ) be a signed measure space. There exist sets $X^{ \pm} \in \mathcal{F}$ such that $X=X^{+} \amalg X^{-}, X^{+}$is positive and X^{-}is negative. If $X=X_{1}^{+} \amalg X_{1}^{-}$is another such decomposition then $X^{+} \Delta X_{1}^{+}$and $X^{-} \Delta X_{1}^{-}$are null sets.

Proof. Assume without loss of generality that μ omits the value $+\infty$ (else pass to $-\mu$). Define $m=\{\mu(E) \mid E \in \mathcal{F}$ is positive $\}$. This is finite because μ omits the value $+\infty$. Choose $E_{n} \in \mathcal{F}$ positive such that $\mu\left(E_{n}\right) \underset{n \rightarrow \infty}{\rightarrow} m$. Set $X^{+}=\bigcup_{n=1}^{\infty} E_{n}, X^{-}=X \backslash X^{+}$.

Exercise. Show that a countable union of positive sets is positive.
So X^{+}is positive. X^{-}is negative because otherwise there exists $E^{\prime} \subseteq X^{-}$measurable such that $\mu\left(E^{\prime}\right)>0$. In this case $X^{+} \amalg E^{\prime}$ is a positive set with measure $m+\mu\left(E^{\prime}\right)>m$, which contradicts the maximality of m.

This proves the existence of a Hahn decomposition. We now prove uniqueness. Let $X=X_{1}^{+} \amalg X_{1}^{-}$be another Hahn decomposition.

Suppose $E \subseteq X^{+} \Delta X_{1}^{+}$. Since

$$
X^{+} \Delta X_{1}^{+}=\left(X^{+} \backslash X_{1}^{+}\right) \cup\left(X_{1}^{+} \backslash X^{+}\right) \subseteq X^{+} \cup X_{1}^{+},
$$

$\mu\left(E^{\prime}\right) \geq 0$ since $X^{+} \cup X_{1}^{+}$is positive. But we also have

$$
X^{+} \Delta X_{1}^{+}=\left(X^{+} \cap X_{1}^{-}\right) \cup\left(X_{1}^{+} \cap X^{-}\right) \subseteq X_{1}^{-} \cup X^{-},
$$

so $\mu\left(E^{\prime}\right) \leq 0$ since $X_{1}^{-} \cup X^{-}$is negative. So $\mu\left(E^{\prime}\right)=0$. Since E^{\prime} was arbitrary, $X^{+} \Delta X_{1}^{+}$ is null. The proof for $X^{-} \Delta X_{1}^{-}$is similar.

Definition. Let μ, ν be two measures on (X, \mathcal{F}). We say μ, ν are mutually singular amd write $\mu \perp v$ if $X=X_{\mu} \amalg X_{v}$ where $\mu\left(X_{v}\right)=v\left(X_{\mu}\right)=0$. (I.e. μ "lives on" X_{μ}, v "lives on" $X_{v}, X_{\mu} \cap X_{v}=\varnothing$).

Exercise. Show that if $\mu \ll v$ then μ and v are not mutually singular.
Theorem. (Jordan's Decomposition Theorem) Let (X, \mathcal{F}, μ) be a signed measure space. There exists a unique decomposition $\mu=\mu^{+}-\mu^{-}$where μ^{+}, μ^{-}are (proper) measures and $\mu^{+} \perp \mu^{-}$.

Proof. Let $X=X^{+} \amalg X^{-}$be a Hahn decomposition. Define two measures μ^{+}, μ^{-}by

$$
\begin{gathered}
\mu^{+}(E)=\mu\left(E \cap X^{+}\right), \\
\mu^{-}(E)=-\mu\left(E \cap X^{-}\right) .
\end{gathered}
$$

Exercise. Show μ^{+}, μ^{-}are measures.

To see that these measures are mutually singular take $X_{\mu^{+}}=X^{+}, X_{\mu^{-}}=X^{-}$and observe that $\mu=\mu^{+}-\mu^{-}$.

Suppose $\mu=\mu_{1}^{+}-\mu_{1}^{-}$is another Jordan decomposition. Let $X=X_{1}^{+} \amalg X_{1}^{-}$be a decomposition such that $\mu_{1}^{+}\left(X_{1}^{-}\right)=\mu_{1}^{-}\left(X_{1}^{+}\right)=0$. We claim that this is a Hahn decomposition.

To see that X_{1}^{+}is positive: $\forall E^{\prime} \subseteq X_{1}^{+}, \mu\left(E^{\prime}\right)=\mu_{1}^{+}\left(E^{\prime}\right)-\mu_{1}^{-}\left(E^{\prime}\right)=\mu_{1}^{+}\left(E^{\prime}\right) \geq 0$. The negativity of X_{1}^{-}is shown similarly.

By the uniqueness part of the Hahn Decomposition Theorem, both $X^{+} \Delta X_{1}^{+}$and $X^{-} \Delta X_{1}^{-}$are null sets. Therefore, for every $E \in \mathcal{F}$,

$$
\begin{aligned}
\mu_{1}^{+}(E) & =\mu_{1}^{+}\left(E \cap X_{1}^{+}\right)-\mu_{1}^{-}\left(E \cap X_{1}^{+}\right) \\
& =\mu\left(E \cap X_{1}^{+}\right) \\
& =\mu\left(E \cap X^{+}\right) \text {since } X^{+} \Delta X_{1}^{+} \text {null } \\
& =\mu^{+}\left(E \cap X^{+}\right) \\
& =\mu^{+}(E)
\end{aligned}
$$

Similarly for μ_{1}^{-}, μ^{-}.

[^0]: ${ }^{\dagger}$ Shorthand notation: $(a \vee b)(x)=\max \{a(x), b(x)\} ;(a \wedge b)(x)=\min \{a(x), b(x)\}$.

