University of Warwick
 MA3B8 Complex Analysis

Autumn Term 2002
Lectured by Doctor Young-Eun Choi
Typed by Tim Sullivan

Index

1. Differentiability and the Cauchy-Riemann Equations 3
2. Complex Contour Integration 9
3. Poles, Residues and Integrals 24
4. Conformal Maps 37
5. Harmonic Maps 51

1. DifFerentiability and the Cauchy-Riemann Equations

Definitions. A domain $\mathcal{D} \subseteq \mathbb{C}$ is an open subset of the complex plane. I.e.,

$$
\forall z_{0} \in \mathcal{D} \quad \exists \varepsilon>0 \text { such that }\left\{z \in \mathbb{C}\left|\left|z-z_{0}\right|<\varepsilon\right\} \subseteq \mathcal{D}\right.
$$

We denote $\left\{z \in \mathbb{C}\left|\left|z-z_{0}\right|<\varepsilon\right\}\right.$ by $B_{\varepsilon}\left(z_{0}\right)$ and call it the ε-ball centred at z_{0}.

Definitions. A function $f: \mathcal{D} \rightarrow \mathbb{C}$ is called differentiable (or holomorphic) at $z_{0} \in \mathcal{D}$ if

$$
\lim _{\delta \rightarrow 0} \frac{f\left(z_{0}+\delta\right)-f\left(z_{0}\right)}{\delta}
$$

exists, in which case the limit is called the derivative of f at z_{0}, denoted $f^{\prime}\left(z_{0}\right)$.
Exercises. Show that if $f(z)=u(z)+i v(z)=u(x, y)+i v(x, y)$

$$
\begin{equation*}
\lim _{h \rightarrow 0 \text { in } \mathbb{R}} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}=\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+i \frac{\hat{\partial}}{\partial x}\left(x_{0}, y_{0}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{k \rightarrow 0 \text { in } \mathbb{R}} \frac{f\left(z_{0}+i k\right)-f\left(z_{0}\right)}{i k}=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)-i \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right) \tag{2}
\end{equation*}
$$

and hence that the Cauchy-Riemann equations hold at z_{0} :

$$
\frac{\frac{\partial u}{\partial x}}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Theorem 1.1. Let $f=u+i v: \mathcal{D} \rightarrow \mathbb{C}$. Suppose that
(1) $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ all exist in some neighborhood of $\left(x_{0}, y_{0}\right) \in \mathcal{D}$ and are continuous at $\left(x_{0}, y_{0}\right)$;
(2) u, v satisfy the Cauchy-Riemann equations.

Then f is differentiable at $\left(x_{0}, y_{0}\right)$.
Later we will see that if is (once) differentiable then it is differentiable infinitely many times.

Proposition 1.2. If $f=u+i v$ is holomorphic then u, v are harmonic functions.

Proof.

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial y}\right)=\frac{\partial^{2} v}{\partial x \partial y} \\
\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right)=-\frac{\partial}{\partial y}\left(\frac{\partial v}{\partial x}\right)=-\frac{\partial^{2} v}{\partial y \partial x}
\end{gathered}
$$

The equation $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$ is Laplace's equation for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

We can perform an identification of \mathbb{C} with \mathbb{R}^{2} so that

$$
f: \underset{\substack{\mathcal{R}}}{\mathcal{D}} \rightarrow \underset{\substack{\mathbb{R}^{2}}}{\mathbb{C}}
$$

Recall. Let $F: \mathcal{D} \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $\left(x_{0}, y_{0}\right) \in \mathcal{D}$. We say F is differentiable at $\left(x_{0}, y_{0}\right)$ is there exists a linear function $L_{\left(x_{0}, y_{0}\right)}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
\lim _{(h, k) \rightarrow 0} \frac{\left\|F\left(x_{0}+h, y_{0}+k\right)-F\left(x_{0}, y_{0}\right)-L_{\left(x_{0}, y_{0}\right)}(h, k)\right\|}{\|(h, k)\|}=0 .
$$

$L_{\left(x_{0}, y_{0}\right)}$ is called the derivative of F at $\left(x_{0}, y_{0}\right), d F_{\left(x_{0}, y_{0}\right)}$.
If $F=\left(F_{1}, F_{2}\right)$ is differentiable at $\left(x_{0}, y_{0}\right)$ then $\frac{\partial F_{1}}{\partial x}, \frac{\partial F_{1}}{\partial y}, \frac{\partial F_{2}}{\partial x}, \frac{\partial F_{2}}{\partial y}$ exist at $\left(x_{0}, y_{0}\right)$ and

$$
L_{\left(x_{0}, y_{0}\right)}=\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial x} & \frac{\partial F_{1}}{\partial y} \\
\frac{\partial F_{2}}{\partial x} & \frac{\partial F_{2}}{\partial y}
\end{array}\right)_{\left(x_{0}, y_{0}\right)}
$$

If for $F=\left(F_{1}, F_{2}\right): \mathcal{D} \rightarrow \mathbb{R}^{2}$ the partial derivatives $\frac{\partial F_{1}}{\partial x}, \frac{\partial F_{1}}{\partial y}, \frac{\partial F_{2}}{\partial x}, \frac{\partial F_{2}}{\partial y}$ exist in a neighbourhood of $\left(x_{0}, y_{0}\right)$ and are continuous at $\left(x_{0}, y_{0}\right)$ then F is differentiable at $\left(x_{0}, y_{0}\right)$.

If $f: \mathcal{D} \rightarrow \mathbb{C}, f=u+i v$, is holomorphic then consider the corresponding \mathbb{R}^{2}-valued function; it derivative matrix will be of the form

$$
\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

Given $a+i b$ we have a map $\mathbb{C} \rightarrow \mathbb{C}: z \mapsto(a+i b) z$ and a linear map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$: $(x, y) \mapsto(a x-b y, b x+a y)$.

$$
\binom{x}{y} \mapsto\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)\binom{x}{y}
$$

Examples. Power series such as

$$
\begin{gathered}
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, a_{n} \in \mathbb{C}, \\
g(z)=\sum_{n=1}^{\infty} b_{n}\left(z-z_{0}\right)^{n}, z_{0}, b_{n} \in \mathbb{C},
\end{gathered}
$$

are holomorphic functions.
Theorem 1.3. For any power series $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad \exists R \in[0, \infty]$ called the radius of convergence such that
(1) $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges absolutely for $\left|z-z_{0}\right|<R$;
(2) $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ diverges for $\left|z-z_{0}\right|>R$.

$$
\begin{aligned}
R & =1 / \limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} \\
& =1 / \lim _{n \rightarrow \infty}\left(\left|a_{n+1}\right| /\left|a_{n}\right|\right)
\end{aligned}
$$

if the limit exists.
Theorem 1.4. Let $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ have radius of convergence $R>0$. Then f is holomorphic on $B_{R}\left(z_{0}\right)$ with derivative $f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n}\left(z-z_{0}\right)^{n-1}$, and this derived series has radius of convergence R.

Example. The real function $f(x)=e^{x}$ has the Taylor expansion

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}+\ldots
$$

and $R=\infty$, so we define

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\ldots+\frac{z^{n}}{n!}+\ldots
$$

Note that for $y \in \mathbb{R}$,

$$
\begin{aligned}
e^{i y} & =1+(i y)+\frac{(i y)^{2}}{2!}+\frac{(i y)^{3}}{3!}+\ldots \\
& =\left(1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}-\ldots\right)+i\left(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\ldots\right) \\
& =\cos y+i \sin y
\end{aligned}
$$

Also,

$$
\begin{gathered}
e^{z+w}=e^{z} e^{w} \\
e^{z}=e^{x+i y}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)
\end{gathered}
$$

We would like to define $z \mapsto \log z$ as the inverse of $z \mapsto e^{z}$. However, there is a problem, since $e^{z+2 \pi i n}=e^{z}$ for $n \in \mathbb{Z} . e^{z}=e^{w} \Rightarrow e^{z-w}=1 \Rightarrow z-w=2 \pi$ in for some $n \in \mathbb{Z}$.

Definition. The multi-valued function $h: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ that assigns to each w the values $h(w)$ such that $e^{h(w)}=w$ is the logarithm function, log. It is well-defined up to multiples of $2 \pi i$

How does the exponential function transform the complex plane?

We can find, for each $w \in \mathbb{C} \backslash\{0\}$, a z such that $e^{z}=w$ and $y_{0} \leq \operatorname{Im} z<y_{0}+2 \pi$. This is called choosing a branch of \log; the usual choice is $-\pi$ to π.

The function on $\mathbb{C} \backslash\{x \in \mathbb{R} \mid x \leq 0\}$ that gives the unique $z \in \mathbb{C}$ such that $e^{z}=w$ and $-\pi<\operatorname{Im} z<\pi$ is called the principal branch of \log and is denoted Log.

If $w=r e^{i \theta}$ where $-\pi<\theta<\pi$ then $\log w=\log r+i \theta$, where $\log r$ is the usual real logarithm of r.

Exercise. Show Log: $\mathbb{C} \backslash\{x \in \mathbb{R} \mid x \leq 0\} \rightarrow \mathbb{C}$ is holomorphic. (Hint: use the relations $\left.\operatorname{ReLog}(x+i y)=\log \sqrt{x^{2}+y^{2}}, \operatorname{ImLog}(x+i y)=\arctan \left(\frac{y}{x}\right).\right)$

The problem of finding a maximal domain on which a given holomorphic function can be defined leads to the study of Riemann surfaces.

A distinguishing property of a domain is whether or not it has a "hole".
Examples. These domains have "holes":
(1) $\mathbb{C} \backslash 0$;
(2) $A_{r_{1}, r_{2}}(z)=\left\{w \in \mathbb{C}\left|r_{1}<|z-w|<r_{2}\right\}\right.$;
(3) $B_{2}(0) \backslash \overline{B_{1 / 2}(i)}$.

Examples. These domains have no "holes":
(1) $D=B_{1}(0)$;
(2) \mathbb{C}.

Definition. An open set \mathcal{D} is called simply connected if it has no "holes" and multiply connected if it has at least one hole. (More precisely, \mathcal{D} is simply connected if $\pi_{1}(\mathcal{D}, z)=\{0\}$ for all $z \in \mathcal{D}$ - see MA3F1 Introduction to Topology for an explanation of the fundamental group.)

Definition. $\mathcal{D} \subseteq \mathbb{C}$ is connected if it cannot be expressed as the disjoint union of two non-empty open proper subsets.

Definition. $\mathcal{D} \subseteq \mathbb{C}$ is path connected if any two points $z, z^{\prime} \in \mathcal{D}$ can be joined by a path in \mathcal{D}, a continuous $\gamma:[a, b] \rightarrow \mathcal{D}$ such that $\gamma(a)=z, \gamma(b)=z^{\prime}$.

Definition. $\mathcal{D} \subseteq \mathbb{C}$ is step path connected if any two points $z, z^{\prime} \in \mathcal{D}$ can be joined by a step path in \mathcal{D}, a path consisting of a finite number of pieces, each of which is parallel to either the real or imaginary axis.

Proposition 1.5. A domain $\mathcal{D} \subseteq \mathbb{C}$ is path connected if and only if it is step path connected.

Proof. (\Leftarrow) A step path is a path, so this direction is trivial.
(\Rightarrow) Suppose \mathcal{D} is path connected and let $z, z^{\prime} \in \mathcal{D}$. We require a step path from z to z^{\prime}. Let $\gamma:[0,1] \rightarrow \mathcal{D}$ be a path from z to z^{\prime}. For each $t \in[0,1]$ choose a ball $B_{\varepsilon(t)}(\gamma(t)) \subseteq \mathcal{D} . \bigcup_{t \in[0,1]} B_{\varepsilon(t)}(\gamma(t))$ is a cover of the curve in \mathcal{D}. [0,1] is compact, so $\gamma([0,1])$ is compact, so this cover admits a finite subcover $\bigcup_{k=1}^{n} B_{\varepsilon\left(t_{k}\right)}\left(\gamma\left(t_{k}\right)\right)$. We can choose a sequence of points $\left(s_{i}\right)$,

$$
t_{1}=s_{1}<s_{2}<\ldots<s_{n-1}<s_{n}=t_{n}
$$

such that $\gamma\left(\left[s_{i}, s_{i+1}\right]\right) \subseteq B_{\varepsilon\left(t_{i}\right)}\left(\gamma\left(t_{i}\right)\right)$. We can replace $\gamma\left(\left[s_{i}, s_{i+1}\right]\right)$ with a step path in $B_{\varepsilon\left(t_{i}\right)}\left(\gamma\left(t_{i}\right)\right)$ (since balls are clearly step path connected) to obtain a step path in \mathcal{D}.

2. Complex Contour Integration

Definition. Let $f: \mathcal{D} \rightarrow \mathbb{C}$ be a continuous function and let $\gamma:[a, b] \rightarrow \mathcal{D}$ be a (piecewise) C^{1} path. Then we define the contour integral of f over γ by

$$
\int_{\gamma} f=\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

where

$$
\begin{aligned}
& \gamma(t)=x(t)+i y(t) \Rightarrow \gamma^{\prime}(t)=x^{\prime}(t)+i y^{\prime}(t), \\
& \int_{a}^{b} u(t)+i v(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
\end{aligned}
$$

Examples. (1) $f(z)=\frac{1}{z}, \gamma:[0,2 \pi] \rightarrow \mathbb{C}: t \mapsto r_{0} e^{i t}$.

$$
\begin{aligned}
\int_{\gamma} f & =\int_{\gamma} \frac{1}{z} d z \\
& =\int_{0}^{2 \pi} \frac{\gamma^{\prime}(t)}{\gamma(t)} d t \\
& =\int_{0}^{2 \pi} \frac{i_{0} e^{i t}}{r_{0} e^{i t}} d t \\
& =2 \pi i
\end{aligned}
$$

(2) $f(z)=|z|^{2}, \gamma_{1}(t)=(1+i) t, t \in[0,1]$.

$$
\begin{aligned}
\int_{\gamma_{1}} f & =\int_{0}^{1}|(1+i) t|^{2}(1+i) d t \\
& =|1+i|^{2}(1+i) \int_{0}^{1} t^{2} d t \\
& =\frac{2}{3}(1+i)
\end{aligned}
$$

$\gamma_{2}(t)=t+i t^{2}, t \in[0,1]$.

$$
\begin{aligned}
\int_{\gamma_{2}} f & =\int_{0}^{1}\left(t^{2}+t^{4}\right)(1+2 t i) d t \\
& =\int_{0}^{1} t^{2}+t^{4} d t+i \int_{0}^{1} 2 t^{3}+2 t^{5} d t \\
& =\left(\frac{1}{3}+\frac{1}{5}\right)+i\left(\frac{2}{4}+\frac{2}{6}\right) \\
& =\frac{8}{15}+i \frac{5}{6}
\end{aligned}
$$

Definition. If γ is a "sum of curves" $\gamma=\gamma_{1}+\gamma_{2}+\ldots+\gamma_{n}$ then

$$
\int_{\gamma} f=\sum_{k=1}^{n} \int_{\gamma_{k}} f .
$$

Theorem 2.1. (The Fundamental Theorem of Contour Integrals) Let $f: \mathcal{D} \rightarrow \mathbb{C}$ be continuous. Then the following are equivalent:
(1) f has an anti-derivative on \mathcal{D}, i.e. $\exists F: \mathcal{D} \rightarrow \mathbb{C}$ such that $F^{\prime}=f$;
(2) $\int_{\gamma} f$ is dependent only on the endpoints of γ.

Proof. (1) $\Rightarrow(2)$: Suppose $F^{\prime}=f$. Choose $z_{0}, z_{1} \in \mathcal{D}$ and $\gamma:[a, b] \rightarrow \mathcal{D}$ a path joining them.

$$
\begin{aligned}
\int_{\gamma} f & =\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t
\end{aligned}
$$

By the Chain Rule,

$$
\begin{aligned}
\int_{\gamma} f & =\int_{a}^{b} \frac{d}{d t} F(\gamma(t)) d t \\
& =F(\gamma(b))-F(\gamma(a)) \\
& =F\left(z_{1}\right)-f\left(z_{0}\right)
\end{aligned}
$$

and this depends only on z_{0} and z_{1}, not γ.
$(2) \Rightarrow(1)$: Choose $z_{0} \in \mathcal{D}$. Define $F(z)=\int_{z_{0}}^{z} f(w) d w$. Choose δ_{0} such that $B_{\delta_{0}}(z) \subseteq \mathcal{D}$. Then for $\delta<\delta_{0}$, take $\gamma(t)=z+\delta t, t \in[0,1]$:

$$
\begin{aligned}
\frac{F(z+\delta)-F(z)}{\delta} & =\frac{1}{\delta}\left(\int_{z_{0}}^{z} f+\int_{z}^{z+\delta} f-\int_{z_{0}}^{z} f\right) \\
& =\frac{1}{\delta} \int_{z}^{z+\delta} f \\
& =\frac{1}{\delta} \int_{\gamma} f(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\frac{1}{\delta} \int_{0}^{1} f(z+\delta t) \delta d t \\
& =\int_{0}^{1} f(z+\delta t) d t
\end{aligned}
$$

Now use continuity to obtain

$$
\begin{aligned}
\lim _{\delta \rightarrow 0} \frac{F(z+\delta)-F(z)}{\delta} & =\int_{0}^{1} f(z) d t \\
& =f(z)
\end{aligned}
$$

Corollary 2.2. $f(z)=\frac{1}{z}$ does not have an anti-derivative on $\mathbb{C} \backslash\{0\}$.
Proposition 2.3. Let $f: \mathcal{D} \rightarrow \mathbb{C}$ be continuous. Then the following are equivalent:
(1) $\int_{\beta} f=0$ for every closed curve (contour) β;
(2) $\int_{\gamma} f$ depends only upon the endpoints of γ, γ a path.

Proof. $(2) \Rightarrow(1):$ Let $\beta:[a, c] \rightarrow \mathcal{D}$ be a closed curve. We require $\int_{\beta} f=0$. Let $b \in(a, c) \cdot \beta(b)$

Let $\beta_{1}=\beta_{[a, b]}$ and $\beta_{2}=\beta_{[b, c]}$ be the two resulting paths.

$$
\int_{\beta} f=\int_{\beta_{1}} f+\int_{\beta_{2}} f
$$

Let $-\beta_{2}$ be the curve β_{2} traversed in the reverse direction: $-\beta_{2}:[0,1] \rightarrow \mathcal{D}$, $-\beta_{2}(t)=\beta_{2}(c+t(b-c))$.

$$
\begin{aligned}
\int_{-\beta_{2}} f & =\int_{0}^{1} f\left(\beta_{2}(c+t(b-c))\right) \beta_{2}^{\prime}(c+t(b-c))(b-c) d t \\
& =\int_{0}^{1} f\left(\beta_{2}(u)\right) \beta_{2}^{\prime}(u) \frac{d u}{d t} d t \\
& =\int_{c}^{b} f\left(\beta_{2}(u)\right) \beta_{2}^{\prime}(u) d u \\
& =-\int_{b}^{c} f\left(\beta_{2}(u)\right) \beta_{2}^{\prime}(u) d u \\
& =-\int_{\beta_{2}} f
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\int_{\beta} f & =\int_{\beta_{1}} f+\int_{\beta_{2}} f \\
& =\int_{\beta_{1}} f-\int_{-\beta_{2}} f \\
& =0
\end{aligned}
$$

$(1) \Rightarrow(2)$: Suppose γ_{1}, γ_{2} are two paths in \mathcal{D} starting and finishing at the same points respectively.

Let β be the path γ_{1} then $-\gamma_{2}$.

$$
0=\int_{\beta} f=\int_{\gamma_{1}} f+\int_{-\gamma_{2}} f=\int_{\gamma_{1}} f-\int_{\gamma_{2}} f .
$$

Look at $f(z)=\frac{1}{z}$; this has no anti-derivative on $\mathbb{C} \backslash\{0\}$. Let $F(z)=\log z ; F$ is defined on $\mathbb{C} \backslash\{x \in \mathbb{R} \mid x \leq 0\}$.

Exercise. Show $\log ^{\prime}(z)=\frac{1}{z}$.
The difference lies in the existence of holes as opposed to simple connectedness.
Ultimately, we will prove Cauchy's Theorem:
Cauchy's Theorem. If $f: \mathcal{U} \rightarrow \mathbb{C}$ is holomorphic on a simply connected domain \mathcal{U} then $\int_{\gamma} f=0$ for every closed curve γ in \mathcal{U}.

Definition. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a closed curve not passing through $0 \in \mathbb{C}$. Then the winding number of γ around 0 is the (integer) number of times that γ winds around 0 in the counter-clockwise direction.

$$
w(\gamma, 0)=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z} d z
$$

Definition. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a closed curve not passing through $z_{0} \in \mathbb{C}$. Then the winding number of γ around z_{0} is

$$
w\left(\gamma, z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-z_{0}} d z .
$$

We could write $\gamma(t)=z_{0}+r(t) e^{i \theta(t)}$, where $\theta(t)$ is a continuous choice of argument. Then

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-z_{0}} & =\frac{1}{2 \pi} \int_{a}^{b} \frac{\left(r(t) e^{i \theta(t)}\right)^{\prime}}{r(t) e^{i \theta(t)}} d t \\
& =\frac{1}{2 \pi} \int_{a}^{b} \frac{r^{\prime}(t) e^{i \theta(t)}}{r(t) e^{i \theta(t)}}+i \frac{r(t) \theta^{\prime}(t) e^{i \theta(t)}}{r(t) e^{i(t)}} d t \\
& =\frac{1}{2 \pi \int_{a}} \frac{r^{r^{\prime}(t)}}{r(t)}+i \theta^{\prime}(t) d t \\
& =\frac{1}{2 \pi i}(\log r(b)-\log r(a)+i \theta(b)-i \theta(a)) \\
& =\frac{1}{2 \pi}(\theta(b)-\theta(a)) \\
& =\text { change in angle } / 2 \pi
\end{aligned}
$$

Definition. Let $\mathcal{U} \subseteq \mathbb{C}$ be connected. \mathcal{U} is simply connected if $w\left(\gamma, z_{0}\right)=0$ for all closed curves γ in \mathcal{U} and $z_{0} \notin \mathcal{U}$.

Theorem 2.4. Suppose $\mathcal{U} \subseteq \mathbb{C}$ is simply connected and γ is a triangular path in \mathcal{U}. If $f: \mathcal{U} \rightarrow \mathbb{C}$ is holomorphic then $\int_{\gamma} f=0$.

Lemma 2.5. Let $f: \mathcal{D} \rightarrow \mathbb{C}$ be continuous and γ a path in \mathcal{D}. If $|f(\gamma(t))| \leq M$ then $\left|\int_{\gamma} f\right| \leq M \ell(\gamma)$, where $\ell(\gamma)$ is the length of the path γ.

Proof of 2.5.

$$
\begin{aligned}
\left|\int_{\gamma} f\right| & =\left|\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t\right| \\
& \leq \int_{a}^{b}|f(\gamma(t))| \gamma^{\prime}(t) \mid d t \\
& \leq M \int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t \\
& =M \ell(\gamma)
\end{aligned}
$$

Proof of 2.4. By taking midpoints of the edges we have four new paths:

$$
\begin{gathered}
\gamma=\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4} \\
\int_{\gamma} f=\int_{\gamma_{1}} f+\int_{\gamma_{2}} f+\int_{\gamma_{3}} f+\int_{\gamma_{4}} f
\end{gathered}
$$

We show $\int_{\gamma} f=0$ by showing $\left|\int_{\gamma} f\right|=0$.

$$
\left|\int_{\gamma} f\right| \leq\left|\int_{\gamma_{1}} f\right|+\left|\int_{\gamma_{2}} f\right|+\left|\int_{\gamma_{3}} f\right|+\left|\int_{\gamma_{4}} f\right|
$$

Choose k such that $\left|\int_{\gamma_{k}} f\right| \geq \frac{1}{4}\left|\int_{\gamma} f\right|$. Label $\gamma_{k}=\gamma^{1}$. Note that $\ell\left(\gamma^{1}\right)=\frac{1}{2} \ell(\gamma)$. Continue the subdivision process to find a sequence of triangular paths $\left(\gamma^{n}\right)$ such that

$$
\begin{aligned}
\left|\int_{\gamma^{n}} f\right| & \geq\left(\frac{1}{4}\right)^{n}\left|\int_{\gamma} f\right|, \\
\ell\left(\gamma^{n}\right) & =\left(\frac{1}{2}\right)^{n} \ell(\gamma)
\end{aligned}
$$

Let T^{n} be the triangle bounded by γ^{n}. Since $\ell\left(\gamma^{n}\right) \rightarrow 0$ we have $\bigcap_{n=1}^{\infty} T^{n}=\left\{z_{0}\right\}$ by Baire's Theorem. Now since f is holomorphic (at z_{0}), given $\varepsilon>0, \exists \delta>0$ such that for $\left|z-z_{0}\right|<\delta,\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-f^{\prime}\left(z_{0}\right)\right|<\varepsilon$, i.e.

$$
\left|f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)\right|<\varepsilon\left|z-z_{0}\right| .
$$

Since the T^{n} are shrinking to $\left\{z_{0}\right\}, \exists N \in \mathbb{N}$ such that $n>N \Rightarrow T^{n} \subseteq B_{\delta}\left(z_{0}\right)$. Hence, for $n>N$ and $z \in \gamma^{n}$,

$$
\left|f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)\right|<\varepsilon \ell\left(\gamma^{n}\right) .
$$

Thus, by Lemma 2.5,

$$
\left|\int_{\gamma^{n}} f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right) d z\right| \leq \varepsilon \ell\left(\gamma^{n}\right) \ell\left(\gamma^{n}\right)=\varepsilon\left(\frac{1}{4}\right)^{n} \ell(\gamma)^{2} .
$$

Observe that $\int_{\gamma^{n}}-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right) d z=0$, so

$$
\begin{array}{cc}
& \left|\int_{\gamma^{n}} f\right| \leq \varepsilon\left(\frac{1}{4}\right)^{n} \ell(\gamma)^{2} \\
\Rightarrow & \left(\frac{1}{4}\right)^{n}\left|\int_{\gamma} f\right| \leq \varepsilon\left(\frac{1}{4}\right)^{n} \ell(\gamma)^{2} \\
\Rightarrow & \left|\int_{\gamma} f\right| \leq \varepsilon \ell(\gamma)^{2} \\
\Rightarrow & \left|\int_{\gamma} f\right|=0
\end{array}
$$

Corollary 2.6. Let $f: B_{r}\left(z_{0}\right) \rightarrow \mathbb{C}$ be holomorphic. Then f has an anti-derivative on $B_{r}\left(z_{0}\right)$.

Proof. Let γ_{z} be the radial path in $B_{r}\left(z_{0}\right)$ from z_{0} to z and define $F(z)=\int_{\gamma_{z}} f$. We wish to show that $F^{\prime}(z)=f(z)$.

$$
\begin{aligned}
\frac{F(z+\delta)-F(z)}{\delta} & =\frac{1}{\delta}\left(\int_{\gamma_{z+\delta}} f-\int_{\gamma_{z}} f\right) \\
& =\frac{1}{\delta}\left(\int_{\gamma_{z+\delta}} f+\int_{-\gamma_{z}} f\right) \\
& =\frac{1}{\delta}\left(\int_{\nabla} f+\int_{z \leftarrow z+\delta} f\right) \\
& =\frac{1}{\delta} \int_{z \leftarrow z+\delta} f \\
& =\frac{1}{\delta} \int_{0}^{1} f(z+t \delta) \delta d t \\
& =\int_{0}^{1} f(z+t \delta) d t \\
& \underset{\delta \rightarrow 0}{\rightarrow} f(z)
\end{aligned}
$$

Corollary 2.7. If $f: \mathcal{U} \rightarrow \mathbb{C}$ is holomorphic on a simply connected domain \mathcal{U} then for every rectangular path γ in $\mathcal{U}, \int_{\gamma} f=0$.

Proof.

$$
\int_{\gamma} f=\int_{\gamma_{1}} f+\int_{\gamma_{2}} f=0
$$

Theorem 2.8. (Cauchy's Theorem) If $f: \mathcal{U} \rightarrow \mathbb{C}$ is holomorphic on a simply connected domain \mathcal{U} then $\int_{\gamma} f=0$ for every closed curve γ in \mathcal{U}.

Proof. Let $\gamma:[a, b] \rightarrow \mathcal{U}$ be a closed curve. Cover $\gamma([a, b])$ with discs D_{i}; choose a finite subcover D_{0}, \ldots, D_{n} such that $\gamma\left(\left[t_{i}, t_{i+1}\right]\right) \subseteq D_{i}$, where

$$
a=t_{0}<t_{1}<\ldots<t_{n-1}<t_{n}=b .
$$

In D_{i}, let β_{i} be a step path such that $\beta_{i}\left(t_{i}\right)=\gamma\left(t_{i}\right), \beta_{i}\left(t_{i+1}\right)=\gamma\left(t_{i+1}\right)$. By Proposition 2.3, $\int_{\left.\gamma\right|_{[i, t i+1]}} f=\int_{\beta_{i}} f$. Let β be the path given by the β_{i} in order; $\beta=\beta_{0}+\ldots+\beta_{n}$. Then

$$
\int_{\beta} f=\sum_{i=0}^{n} \int_{\beta_{i}} f .
$$

We now show that β can be written as a sum of rectangular paths. To do this, extend all horizontal and vertical segments of β to lines, thus breaking the plane up into a finite number of rectangles R_{j}, some of which may be infinite. In the interior of each R_{j} choose a point z_{j} and let

$$
v_{j}=w\left(\beta, z_{j}\right)
$$

Collect all R_{j} with $v_{j} \neq 0$ and, after re-indexing, say these are R_{1}, \ldots, R_{k}. Let ∂R_{j} be the rectangular path in the boundary of R_{j} traversed in the anti-clockwise direction. Define the path $\widetilde{\beta}$ by

$$
\widetilde{\beta}=\sum_{j=1}^{k} v_{j} \partial R_{j}
$$

We claim that $\beta=\widetilde{\beta}$. Suppose not - then there is some line segment L in $\widetilde{\beta}$ and not in β. Suppose there are $\pm q$ copies of $L\left(L \subseteq \partial R_{j}\right.$, say $+q$ copies if L is traversed in the direction coinciding with the direction of $\partial R_{j},-q$ otherwise).

Now let $\alpha=\widetilde{\beta}-\beta-q \partial R_{j}$; the path α contains no copies of L. Hence,

$$
\begin{gathered}
w\left(\alpha, z_{j}\right)=w\left(\widetilde{\beta}, z_{j}\right)-w\left(\beta, z_{j}\right)-q=-q \\
w\left(\alpha, z_{j^{\prime}}\right)=w\left(\widetilde{\beta}, z_{j^{\prime}}\right)-w\left(\beta, z_{j^{\prime}}\right)=0 .
\end{gathered}
$$

Since α contains no copies of $L, w\left(\alpha, z_{j}\right)=w\left(\alpha, z_{j^{\prime}}\right)$, so $q=0$.
Now since \mathcal{U} is simply connected and $f: \mathcal{U} \rightarrow \mathbb{C}$ is holomorphic, $\int_{\partial R_{j}} f=0$ for all j, so $\int_{\gamma} f=0$.

Theorem 2.9. Let $f: \mathcal{D} \rightarrow \mathbb{C}$ be holomorphic and let γ be a closed curve in \mathcal{D} that does not wind around any points outside of \mathcal{D}. Then $\int_{\gamma} f=0$.

Remark. This is a strengthening of Cauchy's Theorem.
Proof. First replace γ with a step path β as in Proposition 1.5 so that $\int_{\beta} f=\int_{\gamma} f$. Second, break up the plane into rectangles R_{i} and take $z_{i} \in R_{i}$. Collect the R_{i} for which $v_{i}=w\left(\beta, z_{i}\right) \neq 0$ and re-index as R_{1}, \ldots, R_{k}. As before, $\beta=\sum_{i=1}^{k} v_{i} \partial R_{i} . R_{i} \subseteq \mathcal{D}$ by the assumption that γ (and hence β) does not wind around any points not in \mathcal{D}, so $\int_{\partial R_{i}} f=0$ by Corollary 2.7. Hence $\int_{\gamma} f=\int_{\beta} f=0$.

Corollary 2.10. If $f: \mathcal{U} \rightarrow \mathbb{C}$ is holomorphic and \mathcal{U} simply connected then f has an anti-derivative on \mathcal{U}.

Theorem 2.11. (Generalized Cauchy Theorem) Let $f: \mathcal{D} \rightarrow \mathbb{C}$ be holomorphic and let $\gamma=\gamma_{1}+\ldots+\gamma_{n}$ be a sum of closed contours in \mathcal{D} with

$$
w(\gamma, z)=w\left(\gamma_{1}, z\right)+\ldots+w\left(\gamma_{n}, z\right)=0
$$

for all $z \notin \mathcal{D}$. Then $\int_{\gamma} f=0$.

Proof. Construct a new closed curve δ in \mathcal{D} by adding segments $\pm \sigma_{i}, 1 \leq i \leq n$. Choose $w_{0} \in \mathcal{D}$ and let w_{i} be the starting / finishing point of γ_{i}. Let σ_{i} be a path in \mathcal{D} from w_{0} to w_{i}. Let $\delta=\left(\sigma_{1}+\gamma_{1}-\sigma_{1}\right)+\ldots+\left(\sigma_{n}+\gamma_{n}-\sigma_{n}\right)$, a closed curve.

For $z \notin \mathcal{D}$,

$$
\begin{aligned}
w(\delta, z) & =\sum_{i=1}^{n} w\left(\sigma_{i}+\gamma_{i}-\sigma_{i}, z\right) \\
& =\sum_{i=1}^{n} w\left(\gamma_{i}, z\right) \\
& =0
\end{aligned}
$$

By Cauchy's Theorem,

$$
0=\int_{\delta} f=\sum_{i=1}^{n} \int_{\sigma_{i}+\gamma_{i}-\sigma_{i}} f=\int_{\gamma} f .
$$

Theorem 2.12. (Cauchy's Integral Formula) Let $f: \mathcal{D} \rightarrow \mathbb{C}$ be holomorphic and $z_{0} \in D$.
 $w\left(\gamma, z_{0}\right)=1$. Then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z .
$$

Proof. $\frac{f(z)}{z-z_{0}}$ is holomorphic on $\mathcal{D} \backslash\left\{z_{0}\right\}$.

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi i} \int_{\partial B_{r}\left(z_{0}\right)} \frac{f(z)}{z-z_{0}} d z=f\left(z_{0}\right),
$$

by Theorem 2.11, where $0<r<R$.

Definition. A holomorphic function defined on all of \mathbb{C} is called entire.
Theorem 2.13. (Liouville's Theorem) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a bounded entire function. Then f is constant.

Proof. Suppose f is entire and bounded; let $M>0$ be such that $\forall z \in \mathbb{C},|f(z)| \leq M$. We show that $f(z) \equiv f(0)$ by Cauchy's Integral Formula:

$$
\begin{aligned}
& f(z)=\frac{1}{2 \pi i} \int_{\partial B_{R}(0)} \frac{f(w)}{w-z} d w \\
& f(0)=\frac{1}{2 \pi i} \int_{\partial B_{R}(0)} \frac{f(w)}{w} d w
\end{aligned}
$$

So,

$$
\begin{aligned}
& f(z)-f(0)= \frac{1}{2 \pi i} \int_{\partial B_{R}(0)} \frac{f(w)}{w-z}-\frac{f(w)}{w} d w \\
&= \frac{1}{2 \pi i} \int_{\left.\partial B_{R}(0)\right)^{\frac{z f(w)}{(w-z) w}} d w}^{|f(z)-f(0)|} \leq \frac{1}{2 \pi} \frac{|z| M}{R(R-z)} \ell\left(\partial B_{R}(0)\right) \\
&=\frac{M|z|}{R-|z|} \\
& \rightarrow 0 \\
& R \rightarrow \infty
\end{aligned}
$$

So $f(z) \equiv f(0)$.

Theorem 2.14. (The Fundamental Theorem of Algebra) Let $p: \mathbb{C} \rightarrow \mathbb{C}$ be a nonconstant polynomial with coefficients in \mathbb{C}. Then $\exists z_{0} \in \mathbb{C}$ such that $p\left(z_{0}\right)=0$.

Proof. Suppose $\forall z \in \mathbb{C}, p(z) \neq 0$. Then $\frac{1}{p(z)}$ is entire. $|p(z)| \underset{|z| \rightarrow \infty}{\rightarrow \infty}$, so $\exists K>0$ such that $|z|>K \Rightarrow\left|\frac{1}{p(z)}\right|<1$. Moreover, since $\frac{1}{p}$ is continuous on $\overline{B_{K}(0)}, \exists M>0$ such that $\left|\frac{1}{p(z)}\right| \leq M$ for $z \in \overline{B_{K}(0)}$. So $\frac{1}{p}$ is bounded on \mathbb{C}. Liouville's Theorem implies that $\frac{1}{p}$ is a constant, so p is a constant, a contradiction.

Theorem 2.15. (Gauss' Mean Value Theorem) Suppose $f: B_{R}\left(z_{0}\right) \rightarrow \mathbb{C}$ is holomorphic. Then for $0<r<R$,

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right) d t
$$

Proof. This follows from Cauchy's Integral Formula:

$$
\begin{aligned}
f\left(z_{0}\right) & =\frac{1}{2 \pi i} \int_{\partial B_{r}\left(z_{0}\right)} \frac{f(z)}{z-z_{0}} d z \\
& =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+r e^{i t}\right)}{r e^{i t}} i r e^{i t} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right) d t
\end{aligned}
$$

Theorem 2.16. (Maximum Modulus Principle) Let $f: \mathcal{D} \rightarrow \mathbb{C}$ be holomorphic and nonconstant on a connected domain \mathcal{D}. Then $|f|$ cannot attain a maximum in (the interior of) \mathcal{D}.

Proof. Suppose not $-\operatorname{suppose}|f|$ attains a maximum at $z_{0} \in \mathcal{D}$, i.e. $\left|f\left(z_{0}\right)\right| \geq|f(z)|$ for all
 $0<r<R$,

$$
\begin{array}{cc}
& f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right) d t \\
\Rightarrow & \left|f\left(z_{0}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+r e^{i t}\right)\right| d t \leq\left|f\left(z_{0}\right)\right| \\
\Rightarrow \quad & \left|f\left(z_{0}\right)\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+r e^{i t}\right)\right| d t
\end{array}
$$

It follows that $\forall t \in[0,2 \pi], r \in(0, R),\left|f\left(z_{0}\right)\right|=\mid f\left(z_{0}+r e^{i t}\right)$.
Hence, if $|f|$ is maximized at $z_{0} \exists B_{r}\left(z_{0}\right) \subseteq \mathcal{D}$ such that $|f|$ is maximized on $B_{r}\left(z_{0}\right)$. Hence $\mathcal{D}^{\prime}=\left\{z \in \mathcal{D}| | f(z)\left|=\left|f\left(z_{0}\right)\right|\right\}\right.$ is an open set, but since $|f|$ is continuous it is also closed. Hence, by connectedness, $\mathcal{D}^{\prime}=\mathcal{D}$.

Theorem 2.17. Let $f: B_{R}\left(z_{0}\right) \rightarrow \mathbb{C}$ be holomorphic. Then f has a power series expansion on $B_{R}\left(z_{0}\right)$:

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

for $z \in B_{R}\left(z_{0}\right)$, and furthermore

$$
a_{n}=\frac{1}{2 \pi i} \int_{\partial B_{r}\left(z_{0}\right)} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

where $0<r<R$.
Proof. (Sketch Proof.) We work from the formula $f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w$. Expand $\frac{1}{w-z}$ in a power series centred at z_{0} :

$$
\frac{1}{w-z}=\sum_{n=0}^{\infty}\left(\frac{1}{w-z_{0}}\right)^{n}\left(z-z_{0}\right)^{n}
$$

Substitute into the integrand. It then remains to show that we can integrate term-by-term.

With this theorem in hand we can describe the local behaviour of a holomorphic map. Consider $f(z)=z^{k}, k \geq 2$.

Consider $D=B_{R}(0) ; f$ maps D to $D^{\prime}=B_{R^{\prime}}(0)$. For any $w \in D^{\prime} \backslash\{0\}, f^{-1}(w)$ consists of k distinct points in D. Moreover, there is a neighbourhood U_{w} of w such that $f^{-1}\left(U_{w}\right)=\coprod_{i=1}^{k} U_{i}$, where the U_{i} are disjoint neighbourhoods of the k pre-images of w, and $\left.f\right|_{U_{i}}: U_{i} \rightarrow U_{w}$ is a homeomorphism. We say that $f(z)=z^{k}$ is a k-fold branched covering, branched over $0 \in D$.

In fact, any holomorphic map is a k-fold branched covering:

$$
f(z)-f\left(z_{0}\right)=\sum_{n=1}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

If f is non-constant $\exists n \in \mathbb{N}$ such that $a_{n} \neq 0$; let k be the smallest such n.

$$
\begin{aligned}
f(z)-f\left(z_{0}\right) & =a_{k}\left(z-z_{0}\right)^{k}+a_{k+1}\left(z-z_{0}\right)^{k+1}+\ldots \\
& =\left(z-z_{0}\right)^{k}\left(a_{k}+a_{k+1}\left(z-z_{0}\right)+\ldots\right) \\
& =\left(z-z_{0}\right)^{k} g(z)
\end{aligned}
$$

Since $g\left(z_{0}\right) \neq 0, \exists r>0$ such that $g(z) \neq 0$ for all $z \in B_{r}\left(z_{0}\right)$. Now by Question 12 on Question Sheet 1 there is a holomorphic $h: B_{r}\left(z_{0}\right) \rightarrow \mathbb{C}$ such that $h(z)^{k}=g(z)$, so

$$
f(z)-f\left(z_{0}\right)=(\underbrace{\left(z-z_{0}\right) h(z)}_{H(z)})^{k}
$$

Observe that $H^{\prime}\left(z_{0}\right)=h\left(z_{0}\right) \neq 0$.

By the Inverse Function Theorem, H is invertible, i.e. is a change of coordinates. So $f(z)-f\left(z_{0}\right)$ is a k-fold branched convering.

Theorem 2.18. (Open Mapping Theorem) If $f: \mathcal{D} \rightarrow \mathbb{C}$ is a non-constant holomorphic map then f is open, i.e. $\forall z_{0} \in \mathcal{D}$ there is an open neighbourhood U of $f\left(z_{0}\right)$ such that $U \subseteq f(\mathcal{D})$.

Proof. This follows from the above local model of holomorphic maps.

Theorem 2.19. The zeroes of a non-constant holomorphic function $f: \mathcal{D} \rightarrow \mathbb{C}$ are isolated, i.e. if $f\left(z_{0}\right)=0 \quad \exists B_{R}\left(z_{0}\right) \subseteq \mathcal{D}$ such that $f(z) \neq 0$ for $z \in B_{R}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$.

Proof. By the local behaviour of f we know that $\exists B_{R}\left(z_{0}\right) \subseteq \mathcal{D}$ such that

$$
\left.f\right|_{B_{R}\left(z_{0}\right)}: B_{R}\left(z_{0}\right) \rightarrow f\left(B_{R}\left(z_{0}\right)\right)
$$

is a k-fold branched covering branched over z_{0}, so z_{0} is the only zero of f in the disc.

Theorem 2.20. Let $f, g: \mathcal{D} \rightarrow \mathbb{C}$ be holomorphic. Suppose $f\left(z_{n}\right)=g\left(z_{n}\right)$ for a convergent sequence of distinct points in $\mathcal{D}, z_{n} \rightarrow \hat{z} \in \mathcal{D}$. Then $f=g$ on \mathcal{D}.

Proof. Let $h=f-g . h$ has a non-isolated zero at $\hat{z} \in \mathcal{D}$, and so $h=0$ on \mathcal{D}. Hence $f=g$ on \mathcal{D}

Example. $\sin ^{2} z+\cos ^{2} z=1$ for $z \in \mathbb{R}$, so $\sin ^{2} z+\cos ^{2} z=1$ for $z \in \mathbb{C}$.

3. Poles, Residues and Integrals

Definition. If $f: B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic then f is said to have an isolated singularity at z_{0}.

Examples.

$$
\begin{gathered}
f(z)=\frac{1}{z} \sin z \\
g(z)=\frac{1}{z} \\
h(z)=e^{-1 / z}
\end{gathered}
$$

Theorem 3.1. (Laurent's Theorem) Suppose f is holomorphic on the open annulus $A_{R_{1}, R_{2}}\left(z_{0}\right)=\left\{z \in \mathbb{C}\left|R_{1}<\left|z-z_{0}\right|<R_{2}\right\}\right.$, where $R_{2}>R_{1} \geq 0$. Then f has a Laurent series expansion on $\mathcal{A}=A_{R_{1}, R_{2}}\left(z_{0}\right)$:

$$
f(z)=\sum_{n \in \mathbb{Z}} a_{n}\left(z-z_{0}\right)^{n}
$$

with

$$
\begin{gathered}
a_{n}=\frac{1}{2 \pi i} \int_{\partial B_{r}\left(z_{0}\right)} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} d w, \\
R_{1}<r<R_{2} .
\end{gathered}
$$

Proof. (Sketch proof.) Use Cauchy's Integral Formula:

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial B_{\varepsilon}(z)} \frac{f(w)}{w-z} d w
$$

$$
\begin{aligned}
& C_{1}(t)=z_{0}+R_{1}^{\prime} e^{i t}, t \in[0,2 \pi] \\
& C_{2}(t)=z_{0}+R_{2}^{\prime} e^{i t}, t \in[0,2 \pi]
\end{aligned}
$$

Observe that $w\left(C_{2}-C_{1}-\partial B_{\varepsilon}(z), z^{\prime}\right)=0$ for all $z^{\prime} \notin \mathcal{A} \backslash\{z\}$. By the Generalized Cauchy Theorem,

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial B_{\varepsilon}(z)} \frac{f(w)}{w-z} d w=\frac{1}{2 \pi i}\left(\int_{C_{2}} \frac{f(w)}{w-z} d w-\int_{C_{1}} \frac{f(w)}{w-z} d w\right)
$$

For $\int_{C_{2}} \frac{f(w)}{w-z} d w$ expand $\frac{1}{w-z}$ as a power series centered about z_{0} :

$$
\frac{1}{w-z}=\sum_{n=0}^{\infty} \frac{1}{\left(w-z_{0}\right)^{n+1}}\left(z-z_{0}\right)^{n}
$$

since $\left|\frac{z-z_{0}}{w-z_{0}}\right|<1$. For $\int_{C_{1}} \frac{f(w)}{w-z} d w$ expand:

$$
\frac{1}{w-z}=\sum_{n=0}^{\infty}\left(w-z_{0}\right)^{n} \frac{1}{\left(z-z_{0}\right)^{n+1}}
$$

since $\left|\frac{z-z_{0}}{w-z_{0}}\right|>1$. Integrate term-by-term to obtain the claimed Laurent series expansion.

Examples. (1) $\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}$ for $|z|<1$. Hence,

$$
\frac{1 / z}{1 / z-1}=-\frac{1}{z} \frac{1}{1-1 / z}=-\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n} \text { for }|z|>1 .
$$

$$
\begin{align*}
\frac{\sin z}{z} & =\frac{1}{z}\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots\right) \tag{2}\\
& =1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\ldots
\end{align*}
$$

(3) $\frac{1}{z^{k}}$ is its own Laurent series for $k \geq 1$.
(4) For $|z|>0$,

$$
\begin{aligned}
e^{-1 / z} & =1+\left(-\frac{1}{z}\right)+\left(-\frac{1}{z}\right)^{2} / 2!+\left(-\frac{1}{z}\right)^{3} / 3!+\ldots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}\left(\frac{1}{z}\right)^{n}
\end{aligned}
$$

Definition. A holomorphic function $f: B_{R}\left(z_{0}\right) \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is said to have a removable singularity at z_{0} if f can be extended to a holomorphic function on $B_{R}\left(z_{0}\right)$.

Proposition 3.2. Let $f: B_{R}\left(z_{0}\right) \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be holomorphic. Then the singularity at z_{0} is removable if and only if f is bounded on $B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ for some $0<r \leq R$.

Proof. (\Rightarrow) Trivial.
(\Leftarrow) Assume $|f|$ is bounded by M on $B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$. We will show that in the Laurent expansion $f(z)=\sum_{n \in \mathbb{Z}} a_{n}\left(z-z_{0}\right)^{n}, a_{n}=0$ for $n<0$.

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi i} \int_{\partial B_{r}\left(z_{0}\right)} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \\
& =\frac{1}{2 \pi i} \int_{\partial B_{r}\left(z_{0}\right)} f(z)\left(z-z_{0}\right)^{-n-1} d z
\end{aligned}
$$

Hence, by the Estimation Lemma,

$$
\begin{aligned}
\left|a_{n}\right| & \leq \frac{1}{2 \pi} M r^{-n-1} 2 \pi r \\
& =M r^{-n}
\end{aligned}
$$

$M r^{-n} \underset{r \rightarrow 0}{\rightarrow} 0$ so $a_{n}=0$ for all negative n. So the Laurent series is, in fact, a power series,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

for $z \in B_{R}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$. By defining $f\left(z_{0}\right)=a_{0}$ we have a holomorphic extension of f to $B_{R}\left(z_{0}\right)$.

Proposition 3.3. Let $f: B_{R}\left(z_{0}\right) \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be holomorphic. Suppose $\lim _{z \rightarrow z_{0}} f(z)=\infty$. Then $\exists N \in \mathbb{N}$ such that $n>N \Rightarrow a_{-n}=0$.

We say that f has a pole of order N at z_{0}.
Proof. $g(z)=\frac{1}{f(z)}$ is holomorphic on $B_{R^{\prime}}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ for some $0<R^{\prime} \leq R$. Observe that $\lim _{z \rightarrow z_{0}} g(z)=0$, hence g is bounded on $B_{R^{\prime \prime}}\left(z_{0}\right) \backslash\left\{z_{0}\right\}, 0<R^{\prime \prime} \leq R^{\prime}$. So

$$
g(z)=\left(z-z_{0}\right)^{N}\left(b_{N}+b_{N+1}\left(z-z_{0}\right)+b_{N+2}\left(z-z_{0}\right)^{2}+\ldots\right), b_{N} \neq 0
$$

Take $h(z)=b_{N}+b_{N+1}\left(z-z_{0}\right)+b_{N+2}\left(z-z_{0}\right)^{2}+\ldots$, so

$$
g(z)=\left(z-z_{0}\right)^{N} h(z) .
$$

Moreover, $h(z) \neq 0$ for $z \in B_{R^{n}}\left(z_{0}\right)$, so

$$
\begin{aligned}
f(z) & =\frac{1}{\left(z-z_{0}\right)^{N}} \frac{1}{h(z)} \\
& =\frac{1}{\left(z-z_{0}\right)^{N}} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
\end{aligned}
$$

Note that $a_{0} \neq 0$.

Corollary 3.4. g has a pole of order N at z_{0} if and only if $\frac{1}{g}$ has a zero of order N at z_{0}.

Definition. If f has an isolated singularity at z_{0} that is neither removable nor a pole then f is said to have an essential singularity at z_{0}.

Corollary 3.5. f has an essential singularity at z_{0} if and only if in the Laurent expansion of f about z_{0} there are infinitely many $n \in \mathbb{N}$ such that $a_{-n} \neq 0$.

Proposition 3.6. Suppose $f: B_{R}\left(z_{0}\right) \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ has an essential singularity at z_{0}. Then in any neighbourhood of z_{0}, f takes values arbitrarily close to any $\alpha \in \mathbb{C}$.

Theorem 3.7. (Picard's Theorem) Let f have an essential singularity at $z_{0} \in \mathbb{C}$. Then on any small neighbourhood of z_{0}, f takes every value in \mathbb{C}, with possibly one exception.

Although essential singularities are wildly behaved, in some sense poles are no worse than zeroes.

Idea. A holomorphic function $f: B_{R}\left(z_{0}\right) \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ whose singularity at z_{0} is not essential can be extended to a holomorphic function $f: B_{R}\left(z_{0}\right) \rightarrow \mathbb{C} \cup\{\infty\}$.

We call $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ the Riemann sphere. Topologically, $\hat{\mathbb{C}}$ is the usual twodimensional sphere, the one-point compactification of \mathbb{R}^{2}. Complex analytically we can represent it as the unit sphere in $\mathbb{R}^{3}, S^{2}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid u^{2}+v^{2}+w^{2}=1\right\}$, whose points are identified with $\hat{\mathbb{C}}$ via stereographic projection $\pi: S^{2} \rightarrow \widehat{\mathbb{C}}$.

For $(u, v, w) \in S^{2} \backslash\{(0,0,1)\}, \pi(u, v, w)=$ the point of intersection of the line through $(0,0,1)$ and (u, v, w) with the (u, v)-plane. Define $\pi(0,0,1)=\infty$.

The line through $(0,0,1)$ and (u, v, w) is parameterized by $t(0,0,1)+(1-t)(u, v, w)$. The value of t corresponding to $\pi(u, v, w)$ is where $t+(1-t) w=0$, so $t=\frac{w}{w-1}$. Hence,

$$
\begin{aligned}
\pi(u, v, w) & =\frac{w}{w-1}(0,0,1)+\frac{1}{1-w}(u, v, w) \\
& =\left(\frac{u}{1-w}, \frac{v}{1-w}, 0\right) \\
& =\frac{u}{1-w}+i \frac{v}{1-w}
\end{aligned}
$$

Consider $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}, f(z)=\frac{1}{z}$. This can be considered as a map $\hat{f}: S^{2} \rightarrow S^{2}$, where $\hat{f}=\pi^{-1} \circ f \circ \pi . \quad z \quad$ is a coordinate on $S^{2} \backslash\{(0,0,1)\}$ and $\frac{1}{z}$ is a coordinate on $S^{2} \backslash\{(0,0,-1)\}$. Hence, S^{2} (or $\hat{\mathbb{C}}$) can be considered as two copies of \mathbb{C} with variables z and w respectively, under the identification $\frac{\mathbb{C L C}}{\sim}$, where $z \sim w \Leftrightarrow z, w \neq 0, z=\frac{1}{w}$.

Suppose f has a pole at z_{0} :

$$
\begin{gathered}
B_{R}\left(z_{0}\right) \xrightarrow{f} \hat{\mathbb{C}} \xrightarrow{z \mapsto \frac{1}{z}} \hat{\mathbb{C}} \\
z \mapsto \frac{1}{f(z)}, \text { holomorphic near } z_{0}
\end{gathered}
$$

We can consider the behaviour of a holomorphic function near ∞ :

$$
\begin{gathered}
f:\{z \in \mathbb{C}| | z \mid>R\} \rightarrow \mathbb{C} \\
g(w)=f\left(\frac{1}{w}\right) \text { on }\left\{w \in \mathbb{C}\left|0<|w|<\frac{1}{R}\right\}\right.
\end{gathered}
$$

We will say that f has a zero / removable singularity / pole / essential singularity at ∞ if g has a zero / removable singularity / pole / essential singularity at 0 .

Examples. (1) $f(z)=\frac{1}{1-z} ; g(w)=f\left(\frac{1}{w}\right)=\frac{1}{1-1 / w}=\frac{w}{w-1} . f$ has a zero of order 1 at ∞.
(2) $f(z)=z^{k}+1 ; g(w)=f\left(\frac{1}{w}\right)=\frac{1}{w^{k}}+1 ; k \in \mathbb{N}$. f has a pole of order k at ∞.
(3) $f(z)=e^{z} ; g(w)=e^{1 / w} . f$ has an essential singularity at ∞.

Definition. Let $\mathcal{D} \subseteq \widehat{\mathbb{C}}$ be a domain. A function $f: \mathcal{D} \rightarrow \hat{\mathbb{C}}$ that is holomorphic except at a finite number of poles is called meromorphic.

Theorem 3.8. A meromorphic function $f: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is a rational function, i.e. a quotient of two polynomials, $f(z)=\frac{p(z)}{q(z)}, p, q \in \mathbb{C}[z]$.

Proof. Let $\left\{z_{i}\right\}_{i=1}^{k}$ be the set of poles of f in \mathbb{C}; say the order of the pole at z_{i} in n_{i}.

$$
f(z) \prod_{i=1}^{k}\left(z-z_{i}\right)^{n_{i}}=g(z)
$$

g is entire; we require that g be a polynomial.
Now, at ∞, since f has at worst a pole at ∞, say of order m :

$$
f\left(\frac{1}{w}\right) \prod_{i=1}^{k}\left(\frac{1}{w}-z_{i}\right)^{n_{i}}=g\left(\frac{1}{w}\right) \text { near } w=0
$$

$g\left(\frac{1}{w}\right)$ has at worst a pole of order $n_{1}+\ldots+n_{k}+m$ at $w=0$.

$$
\begin{gathered}
g(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, z \in \mathbb{C} \\
g(w)=\sum_{n=0}^{\infty} a_{n}\left(\frac{1}{w}\right)^{n}
\end{gathered}
$$

$a_{n}=0$ for $n>n_{1}+\ldots+n_{k}+m$, so g is a polynomial.

$$
f(z)=\frac{g(z)}{\prod_{i=1}^{k}\left(z-z_{i}\right)^{r_{i}}}
$$

In the next section we consider functions $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ of the form

$$
f(z)=\frac{\alpha z+\beta}{\gamma z+\delta},
$$

the linear fractional transformations.

Definition. If $f: B_{R}\left(z_{0}\right) \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ has an isolated singularity at z_{0} we define the residue of f at z_{0} to be

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{1}{2 \pi i} \int_{\partial B_{r}\left(z_{o}\right)} f(z) d z=a_{-1}, 0<r<R
$$

Theorem 3.9. (Cauchy's Residue Theorem) Let $f: \mathcal{D} \rightarrow \mathbb{C}$ be holomorphic except possibly at isolated singularities. Let γ be a simple (i.e. non-self-intersecting) closed curve in \mathcal{D} such that all points inside γ are contained in \mathcal{D} and $w(\gamma, z)=1$ for all z inside γ. Then

$$
\int_{\gamma} f=2 \pi i \sum_{j=1}^{k} \operatorname{Res}\left(f, z_{j}\right),
$$

where z_{1}, \ldots, z_{k} are the singularities of f inside γ.

In order to make sense of the term "inside γ " we need the Jordan Curve Theorem, which we shall not prove:

Theorem 3.10. (Jordan Curve Theorem) If γ is a simple closed curve in \mathbb{C} then $\mathbb{C} \backslash \gamma$ consists of two disjoint domains: a bounded domain (the "inside of γ ") and an unbounded domain (the "outside of γ "), and the curve γ is the boundary of each of these two domains.

Proof of 3.9. Let Γ denote the inside of γ. Choose small circular paths $\gamma_{1}, \ldots, \gamma_{k}$ centred on z_{1}, \ldots, z_{k} respectively such that $\gamma_{i} \subseteq \Gamma$ and $w\left(\gamma_{i}, z_{j}\right)=\delta_{i j}$. We claim

$$
\int_{\gamma} f=\int_{\gamma_{1}} f+\ldots+\int_{\gamma_{k}} f .
$$

This follows from the Generalized Cauchy Theorem, which guarantees that

$$
\int_{\gamma} f+\int_{-\gamma_{1}} f+\ldots+\int_{-\gamma_{k}} f=0 .
$$

for if $\mathcal{D}^{\prime}=$ neighbourhood of $\gamma \cup$ neighbourhood of $\Gamma \backslash\left\{z_{1}, \ldots, z_{k}\right\}$ and $z \notin \mathcal{D}^{\prime}$,

$$
w\left(\gamma-\gamma_{1}-\ldots-\gamma_{k}, z\right)=w(\gamma, z)-\left(w\left(\gamma_{1}, z\right)+\ldots+w\left(\gamma_{k}, z\right)\right)=0 .
$$

Hence,

$$
\begin{aligned}
\int_{\gamma} f & =\sum_{j=1}^{k} \int_{\gamma_{j}} f \\
& =2 \pi i \sum_{j=1}^{k} \operatorname{Res}\left(f, z_{j}\right)
\end{aligned}
$$

Examples. Let $f: B_{R}\left(z_{0}\right) \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$.
(1) A simple pole (a pole of order 1):

$$
f(z)=\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots
$$

Write $f(z)=\frac{g(z)}{h(z)}$; at a singularity / pole, $g(z) \neq 0, h(z)=0$. Look at $h^{\prime}\left(z_{0}\right)$; if $h^{\prime}\left(z_{0}\right) \neq 0$ then f has a simple pole at z_{0}.

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=a_{-1}
$$

If $f=\frac{g}{h}$ then

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=\lim _{z \rightarrow z_{0}} \frac{\left(z-z_{0}\right) g(z)}{h(z)}=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
$$

by l'Hôpital's Rule.
(2) A pole of order k :

$$
f(z)=\frac{a_{-k}}{\left(z-z_{0}\right)^{k}}+\ldots+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots
$$

Multiply through by $\left(z-z_{0}\right)^{k}$:

$$
\left(z-z_{0}\right)^{k} f(z)=a_{-k}+a_{-(k-1)}\left(z-z_{0}\right)+\ldots+a_{-1}\left(z-z_{0}\right)^{k-1}+a_{0}\left(z-z_{0}\right)^{k}+\ldots
$$

Differentiate $k-1$ times (using Leibniz's Rule) and evaluate at $z=z_{0}$:

$$
\begin{array}{cc}
& \frac{d^{k-1}}{d z^{k-1}}\left(z-z_{0}\right)^{k} f(z)=(k-1)!a_{-1} \\
\Rightarrow \quad & a_{-1}=\left.\frac{1}{(k-1)!} \cdot \frac{d^{k-1}}{d z^{k-1}}\left(z-z_{0}\right)^{k} f(z)\right|_{z=z_{0}}
\end{array}
$$

So, for example,

$$
\begin{aligned}
\operatorname{Res}\left(\frac{(z+1)^{2}}{(z-1)^{2}}, 1\right) & =\left.\frac{d}{d z}(z+1)^{2}\right|_{z=1} \\
& =\left.2(z+1)\right|_{z=1} \\
& =4
\end{aligned}
$$

(3) If $f(z)=\sin \left(\frac{1}{z}\right)=\frac{1}{z}-\frac{1}{3!}\left(\frac{1}{z}\right)^{3}+\frac{1}{5!}\left(\frac{1}{z}\right)^{5}-\ldots$ then we see that $\operatorname{Res}\left(\sin \frac{1}{z}, 0\right)=1$.

We can evaluate real integrals by means of residues.
Examples. (1) $\int_{-\infty}^{+\infty} \frac{x^{2}}{1+x^{4}} d x=\frac{\pi}{\sqrt{2}}$.
Consider $f(z)=\frac{z^{2}}{1+z^{4}}$. Let γ_{R} be the straight path $[-R, R]$ and the upper half of $\partial B_{R}(0)$. By the Residue Theorem, if $p_{1}=e^{\pi / 4}, p_{2}=e^{3 \pi / 4}$

$$
\int_{\gamma_{R}} f(z) d z=2 \pi i\left(\operatorname{Res}\left(f, p_{1}\right)+\operatorname{Res}\left(f, p_{2}\right)\right)
$$

Write $f(z)=\frac{p(z)}{q(z)}: \operatorname{Res}\left(f, p_{j}\right)=\frac{p\left(p_{j}\right)}{q^{\prime}\left(p_{j}\right)}=\frac{p_{j}^{2}}{4 p_{j}^{3}}=\frac{1}{4 p_{j}}$. So

$$
\begin{aligned}
\int_{\gamma_{R}} f(z) d z & =\frac{2 \pi i}{4}\left(e^{-\pi i / 4}+e^{-3 \pi i / 4}\right) \\
& =\frac{\pi}{\sqrt{2}}
\end{aligned}
$$

We now wish to show that the integral over the semicircular portion C_{R} of the path goes to zero as $R \rightarrow \infty$:

$$
\begin{aligned}
\left|\int_{C_{R}} f\right| & =\left|\int_{0}^{\pi} f\left(R e^{i t}\right) i R e^{i t} d t\right| \\
& =\int_{0}^{\pi} \mid f\left(R e^{i t}\right) R d t
\end{aligned}
$$

Since $\left|\frac{z^{2}}{1+z^{4}}\right| \leq \frac{|z|^{2}}{|z|^{4}-1}=\frac{R^{2}}{R^{4}-1}$ on C_{R},

$$
\int_{0}^{\pi}\left|f\left(R e^{i t}\right)\right| R d t \leq \frac{R^{3}}{R^{4}-1} \pi \underset{R \rightarrow \infty}{\rightarrow} 0
$$

So

$$
\frac{\pi}{\sqrt{2}}=\lim _{R \rightarrow \infty} \int_{\gamma_{R}} f=\int_{-\infty}^{+\infty} \frac{x^{2}}{1+x^{4}} d x .
$$

(2) $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.

Consider the curve $\gamma_{\delta, R}$: the straight path $[-R,-\delta]$, the upper half of $\partial B_{\delta}(0)$, the straight path $[\delta, R]$, the upper half of $\partial B_{R}(0)$.

By Cauchy's Residue Theorem $\int_{\gamma_{\delta, R}} \frac{e^{i z}}{z} d z=0$. First,

$$
\begin{aligned}
\int_{-R}^{-\delta} \frac{e^{i^{x}}}{x} d x+\int_{\delta}^{R} \frac{e^{i x}}{x} d x & =\int_{R}^{\delta} \frac{e^{-u u}}{-u}(-d u)+\int_{\delta}^{R} \frac{e^{i x}}{x} d x \\
& =\int_{\delta}^{R} \frac{e^{\frac{i^{x}}{}-e^{-i x}}}{x} d x \\
& =2 i \int_{\delta}^{R} \frac{\sin x}{x} d x \\
& \xrightarrow[\substack{\delta \rightarrow 0 \\
R \rightarrow \infty}]{\rightarrow} \int_{0}^{\infty} \frac{\sin x}{x} d x
\end{aligned}
$$

Secondly, $\int_{C_{R}} \frac{e^{k}}{z} d z \underset{R \rightarrow \infty}{\rightarrow} 0$:

$$
\begin{aligned}
\left|\int_{C_{R}} \frac{e^{i z}}{z} d z\right| & \leq \int_{0}^{\pi}\left|\frac{e^{i R^{i t}}}{R e^{i t}} i R e^{i t}\right| d t \\
& =\int_{0}^{\pi}\left|i e^{i R e^{i t}}\right| d t \\
& =\int_{0}^{\pi}\left|e^{i R \cos t-R \sin t}\right| d t \\
& =\int_{0}^{\pi} e^{-R \sin t} d t \\
& =2 \int_{0}^{\pi / 2} e^{-R \sin t} d t
\end{aligned}
$$

Observe that $\sin t \geq \frac{2}{\pi} t$, so $-R \sin t \leq-R \frac{2}{\pi} t$:

$$
\begin{aligned}
\left|\int_{C_{R}} \frac{e^{z^{2}}}{z} d z\right| & \leq 2 \int_{0}^{\pi / 2} e^{-2 R t / \pi} d t \\
& =\left.2\left(-\frac{\pi}{2 R}\right) e^{-2 R t / \pi}\right|_{0} ^{\pi / 2} \\
& =\frac{\pi}{R}\left(1-e^{-R}\right) \\
& \xrightarrow[R \rightarrow \infty]{\rightarrow} 0
\end{aligned}
$$

Thirdly,

$$
\begin{aligned}
\int_{C_{\delta}} \frac{e^{i z}}{z} d z= & -\int_{0}^{\pi} \frac{e^{i \delta^{i t}}}{\delta e^{i t}} i \delta e^{i t} d t \\
= & -i \int_{0}^{\pi} e^{i \delta e^{i t}} d t \\
& \underset{\delta \rightarrow 0}{\rightarrow}-i \int_{0}^{\pi} 1 d t \\
= & -i \pi
\end{aligned}
$$

So

$$
0=\lim _{\substack{R \rightarrow \infty \\ \delta \rightarrow \infty}} \int_{\gamma_{\delta, R}} \frac{e^{z}}{z} d z=2 i \int_{0}^{\infty} \frac{\sin x}{x} d x-i \pi
$$

So $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$, as claimed.
(3) $\int_{0}^{2 \pi} \frac{1}{a+\cos \theta} d \theta$ for $a>1$.

If $z=e^{i \theta}, d z=i e^{i \theta} d \theta=i z d \theta$ and $\cos \theta=\frac{1}{2}\left(z+\frac{1}{z}\right)$.

$$
\int_{S^{1}} \frac{1}{a+\frac{1}{2}\left(z+z^{-1}\right)} \frac{1}{i z} d z=\frac{2}{i} \int_{S^{1}} \frac{1}{z^{2}+2 a z+1} d z
$$

The zeroes of $z^{2}+2 a z+1$ are $z=-a \pm \sqrt{a^{2}+1} . \alpha=-a+\sqrt{a^{2}+1}$ is inside S^{1} and $\beta=-a-\sqrt{a^{2}-1}$ is outside S^{1}.

$$
\begin{aligned}
\operatorname{Res}\left(\frac{1}{z^{2}+2 a z+1}, \alpha\right) & =\operatorname{Res}\left(\frac{1}{(z-\alpha)(z-\beta)}, \alpha\right) \\
& =\frac{1}{\alpha-\beta} \\
& =\frac{1}{2 \sqrt{a^{2}-1}}
\end{aligned}
$$

So $\int_{0}^{2 \pi} \frac{1}{a+\cos \theta} d \theta=\frac{2}{i} 2 \pi i \operatorname{Res}\left(\frac{1}{z^{2}+2 a z+1}, \alpha\right)=\frac{2 \pi}{\sqrt{a^{2}-1}}$.
(4) $\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x=0$.

Take a branch of \log such that the polar angle of z is in the interval $\theta \in\left(-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$. For $z=r e^{i \theta}$,

$$
\begin{gathered}
\mathrm{Re} \log z=\log r \\
\mathrm{Im} \log z=\theta
\end{gathered}
$$

This is possible for $z \in \mathbb{C} \backslash\{i y \mid y \leq 0\}$. Take $f(z)=\frac{\log z}{1+z^{2}}$ and consider $\int_{\gamma_{R, \delta}} f(z) d z$.

$$
\begin{aligned}
\int_{-R \rightarrow-\delta} f(z) d z & =\int_{-R}^{-\delta} \frac{\log \mid x+\pi i}{1+x^{2}} d x \\
\int_{\delta \rightarrow R} f(z) d z & =\int_{\delta}^{R} \frac{\log x}{1+x^{2}} d x
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\int_{\substack{-R \rightarrow-\delta \\
\delta \rightarrow R}} f(z) d z= & 2 \int_{\delta}^{R} \frac{\log x}{1+x^{2}} d x+\pi i \int_{\delta}^{R} \frac{1}{1+x^{2}} d x \\
& \underset{\substack{\delta \rightarrow 0 \\
R \rightarrow \infty}}{ } 2 \int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x+\pi i \int_{0}^{\infty} \frac{1}{1+x^{2}} d x \\
& =2 \int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x+\pi i\left(\frac{\pi}{2}\right)
\end{aligned}
$$

We can show that $\int_{C_{\delta}} f(z) d z \underset{\delta \rightarrow 0}{\rightarrow} 0$ and $\int_{C_{R}} f(z) d z \underset{R \rightarrow \infty}{\rightarrow} 0$. Therefore, by Cauchy's Residue Theorem,

$$
\begin{aligned}
\int_{\gamma_{\delta, R}} f(z) d z= & 2 \pi i \operatorname{Res}(f, i) \\
& =2 \pi i \lim _{z \rightarrow i} \frac{(z-i) \log z}{1+z^{2}} \\
= & \frac{\log i}{i+i} 2 \pi i \\
= & \frac{\pi^{2} i}{2} \\
& \rightarrow \substack{\delta \rightarrow 0 \\
R \rightarrow \infty}
\end{aligned} 2 \int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x+\frac{\pi^{2} i}{2} .
$$

So $\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x=0$, as required.
We can also use the Residue Theorem to find sums of series.
Example. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
Find a function with zeroes at integer points, e.g. $\sin \pi z ; \frac{1}{\sin \pi z}$ has a simple pole at each $n \in \mathbb{Z}$.

$$
\operatorname{Res}\left(\frac{1}{\sin \pi z}, n\right)=\lim _{z \rightarrow n} \frac{z-n}{\sin \pi z}=\frac{1}{\pi \cos \pi n}=\frac{(-1)^{n}}{\pi}
$$

Consider $\frac{\cos \pi z}{\sin \pi z}$; this has residue $\frac{1}{\pi}$ at $z=n$. Take a holomorphic function f.

$$
\begin{aligned}
& \operatorname{Res}\left(f(z) \frac{\cos \pi z}{\sin \pi}, n\right)=\frac{f(z)}{\pi} \\
& \left|\frac{\cos \pi}{\sin \pi}\right|=\left|\frac{\cos \pi(x+i)}{\sin \pi(x+i y)}\right| \\
& =\left\lvert\, \frac{e^{i x-x)}+e^{-i x+\pi} \mid}{e^{i x-x\rangle}-e^{-i(x+y)} \mid}\right. \\
& =\left|\frac{\cos \pi x\left(e^{\pi \pi}+e^{-\pi x}\right)-i \sin \pi x\left(e^{\pi \pi}-e^{-\pi}\right)}{-\cos \pi\left(e^{\pi}\right)}\right| \\
& =\sqrt{\frac{e^{2 \pi \pi}+e^{-2 \pi}+2 \cos 2 \pi x}{e^{2 \pi}+e^{-2 \pi}-2 \cos 2 \pi x}}
\end{aligned}
$$

On vertical sides $\left|\frac{\cos \pi}{\sin \pi}\right| \leq \sqrt{\frac{e^{2 \pi}+e^{-2 \pi}+2}{e^{2 \pi}+e^{-2 \pi}-2}} \leq M$ for $y \geq y_{0}>0$. If $|f(z)| \leq \frac{M^{\prime}}{|z|^{2}}$ for some M^{\prime} then

$$
\left|\int_{\gamma_{N, y_{0}}} f(z) \cot \pi z d z\right| \leq M \frac{M^{\prime}}{(N+1 / 2)^{2}+y_{0}^{2}} 2\left(2 N+1+y_{0}\right) \underset{N \rightarrow \infty}{\rightarrow} 0 \text { with } y_{0}=N+\frac{1}{2} .
$$

For $f(z)=z^{-2}$, since

$$
\operatorname{Res}\left(z^{-2} \cot \pi z, n\right)= \begin{cases}\frac{1}{m^{2}} & n \neq 0 \\ -\frac{\pi}{3} & n=0\end{cases}
$$

we have that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$, as claimed.

4. CONFORMAL MAPS

Recall. $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an isometry if $\forall x, y \in \mathbb{R}^{2},\|F(x)-F(y)\|=\|x-y\|$. The isometries of \mathbb{R}^{2} are the rigid motions: rotations about points, reflections about lines, translations along lines, and composites of these.

We can relax the isometry condition and require only that maps preserve angles - what does this mean?

Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be differentiable.

Let $\gamma_{1}, \gamma_{2}:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{2}$ be two small paths about $z_{0} \in \mathbb{R}^{2}$, so $\gamma_{1}(0)=\gamma_{2}(0)=z_{0}$. The directed angle θ between γ_{1} and γ_{2} is given by $\cos (\theta)=\gamma_{1}^{\prime}(0) \cdot \gamma_{2}^{\prime}(0)$. Similarly,

$$
\begin{aligned}
\cos (\phi) & =\left(F \circ \gamma_{1}\right)^{\prime}(0) \cdot\left(F \circ \gamma_{2}\right)^{\prime}(0) \\
& =\left(d F \circ \gamma_{1}^{\prime}\right)(0) \cdot\left(d F \circ \gamma_{2}^{\prime}\right)(0)
\end{aligned}
$$

F preserves angles at z_{0} if given paths γ_{1}, γ_{2} through z_{0} the angle from $F \circ \gamma_{1}$ to $F \circ \gamma_{2}$ equals the angle from γ_{1} to γ_{2}. In the diagrams above this corresponds to having $\theta=\phi$.

Definition. $F: \mathcal{U} \subseteq \mathbb{R}^{2} \rightarrow \mathcal{V} \subseteq \mathbb{R}^{2}$ is conformal if it preserves angles at all points of \mathcal{U}.
Obviously, any isometry of \mathbb{R}^{2} is also a conformal map (if one agrees to ignore the orientation-reversing properties of reflections).

Theorem 4.1. Let $F: \mathcal{U} \subseteq \mathbb{R}^{2} \rightarrow \mathcal{V} \subseteq \mathbb{R}^{2}, F=(u, v)$, be differentiable with continuous derivatives. Then F is conformal if and only if $f=u+i v$ is holomorphic with $f^{\prime}(z) \neq 0$ for all points $z \in \mathcal{U}$.

Proof. (\Leftarrow) Suppose f is holomorphic at $z_{0} \in \mathcal{U}$ and that $f^{\prime}\left(z_{0}\right) \neq 0$. If $\gamma:(-\varepsilon, \varepsilon) \rightarrow \mathcal{U}$ is a path through z_{0} the tangent vector to $f \circ \gamma$ at $t=0$ is

$$
\left.\frac{d}{d t} f(\gamma(t))\right|_{t=0}=f^{\prime}(\gamma(0)) \gamma^{\prime}(0)=f^{\prime}\left(z_{0}\right) \gamma^{\prime}(0)
$$

which is simply $\gamma^{\prime}(0)$ expanded by $\left|f^{\prime}\left(z_{0}\right)\right|$ and rotated by $\arg f^{\prime}\left(z_{0}\right)$.
(\Rightarrow) Suppose F is conformal;

$$
d F=\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)
$$

Consider

$$
\begin{aligned}
\mathbf{v}_{\theta} & =d F\binom{\cos \theta}{\sin \theta} \\
& =(\cos \theta)\binom{u_{x}}{v_{x}}+(\sin \theta)\binom{u_{y}}{v_{y}} \\
& =(\cos \theta) \mathbf{v}_{0}+(\sin \theta) \mathbf{v}_{\pi / 2}
\end{aligned}
$$

Since F is conformal, the angle from \mathbf{v}_{0} to \mathbf{v}_{θ} is θ.

$$
\begin{array}{ll}
\Rightarrow & \cos \theta=\frac{\mathbf{v}_{0} \cdot \mathbf{v}_{\theta}}{\left\|v_{0}\right\| v_{0} \|}=\frac{(\cos \theta)\left\|\mathbf{v}_{0}\right\|^{2}}{\left\|v_{0}\right\| v_{\theta} \|}=(\cos \theta) \frac{\left\|\mathbf{v}_{0}\right\|}{\left\|\mathbf{v}_{\theta}\right\|} \\
\Rightarrow & \left\|\mathbf{v}_{\theta}\right\|=\left\|\mathbf{v}_{0}\right\| \forall \theta \neq \frac{\pi}{2}, \frac{3 \pi}{2}
\end{array}
$$

Also, the angle from \mathbf{v}_{θ} to $\mathbf{v}_{\pi / 2}$ is $\frac{\pi}{2}-\theta$.

$$
\begin{array}{ll}
\Rightarrow & \sin \theta=\frac{\mathbf{v}_{\pi / 2} \cdot \mathbf{v}_{\theta}}{\left\|\mathbf{v}_{\pi / 2}\right\| v_{\theta} \|}=\frac{(\sin \theta)\left\|\mathbf{v}_{\pi / 2}\right\|^{2}}{\left\|v_{\pi / 2}\right\| v_{\theta} \|}=(\cos \theta) \frac{\left\|\mathbf{v}_{\pi / 2}\right\|}{\left\|\mathbf{v}_{\theta}\right\|} \\
\Rightarrow & \left\|\mathbf{v}_{\theta}\right\|=\left\|\mathbf{v}_{\pi / 2}\right\| \forall \theta \neq 0, \pi
\end{array}
$$

Hence $\left\|\mathbf{v}_{\theta}\right\|=\left\|\mathbf{v}_{0}\right\|$ for all θ.
The angle from $\binom{u_{x}}{v_{x}}$ to $\binom{u_{y}}{y_{y}}$ is $\frac{\pi}{2}$, and by the above the two vectors have the same length.

$$
u_{y}+i v_{y}=i\left(u_{x}+i v_{x}\right)=-v_{x}+i u_{x}
$$

By the Cauchy-Riemann Equations $u+i v$ is holomorphic and $\left|f^{\prime}\left(z_{0}\right)\right|^{2}=u_{x}^{2}+u_{y}^{2} \neq 0$.

Definition. A map $f: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is a linear fractional transformation if it is of the form

$$
f(z)=\frac{a z+\beta}{\gamma+\delta}, \alpha \delta-\beta \gamma \neq 0 .
$$

Since

$$
f^{\prime}(z)=\frac{\alpha(\gamma+\delta)-\gamma(\alpha z+\beta)}{(z z+\delta)^{2}}=\frac{\alpha \delta-\beta \gamma}{(z+\delta)^{2}} \neq 0,
$$

linear fractional transformations are conformal.
Examples. $f(z)=z+\beta ; g(z)=\alpha z ; h(z)=\frac{1}{z}$.
Proposition 4.2. The linear fractional transformations of $\hat{\mathbb{C}}$ form a group G under composition of maps.

Proof. Routine, with

$$
f(z)=\frac{\alpha z+\beta}{\gamma z+\delta} \Rightarrow f^{-1}(z)=\frac{\delta z-\beta}{-\gamma z+\alpha} .
$$

Proposition 4.3. The group G is triply transitive. I.e., if $\left(z_{1}, z_{2}, z_{3}\right)$ and $\left(w_{1}, w_{2}, w_{3}\right)$ are triples of distinct points in $\widehat{\mathbb{C}}$ then there is an $f \in G$ such that $f\left(z_{i}\right)=w_{i}$ for $i=1,2,3$.

Proof. We first show $\exists f \in G$ such that $\left(z_{1}, z_{2}, z_{3}\right) \mapsto(0,1, \infty)$:

$$
f(z)=\frac{z-z_{1}}{z-z_{3}} \frac{z_{2}-z_{3}}{z_{2}-z_{1}} .
$$

Then $g(z)=\frac{z-w_{1}}{z-w_{3}} \frac{w_{2}-w_{3}}{w_{2}-w_{1}}$ takes $\left(w_{1}, w_{2}, w_{3}\right)$ to $(0,1, \infty)$. Hence, $h=g^{-1} \circ f$ takes $\left(z_{1}, z_{2}, z_{3}\right)$ to $\left(w_{1}, w_{2}, w_{3}\right)$.

Proposition 4.4. A linear fractional transformation is determined by its values at three distinct points.

Proof. For $i=1,2,3$ let $z_{i} \in \hat{\mathbb{C}}, f\left(z_{i}\right)=w_{i}$. Let h be as in the proof of Proposition 4.3 above such that $h\left(z_{i}\right)=w_{i}$. Consider $\left(h^{-1} \circ f\right): z_{i} \mapsto z_{i}$. Let $k=h^{-1} \circ f, k(z)=\frac{a z+\beta}{\gamma z+\delta}$, which fixes three distinct points.
$\frac{a z+\beta}{\gamma z+\delta}=z$ is a quadratic equation in z, which cannot have three distinct roots unless $\gamma=\beta=0, \alpha=\delta$, in which case $k=\mathrm{id}_{\hat{\mathbb{C}}}$ and $h=f$.

Theorem 4.5. A linear fractional transformation maps circles / lines to circles / lines. (On the Riemann sphere $\hat{\mathbb{C}}$, lines and circles are the same.)

Proof. Let f be a linear fractional transformation and let C be a circle. We wish to show that $f(C)$ is also a circle. Note that a circle C is determined by any three points through which it passes. Choose $z_{1}, z_{2}, z_{3} \in C$ distinct. From the proof of Proposition 4.3 there is a unique linear fractional transformation g such that $g:\left(z_{1}, z_{2}, z_{3}\right) \mapsto(0,1, \infty)$. In fact, g takes C to \mathbb{R}.

Claim. If h is a linear fractional transformation then $h^{-1}(\mathbb{R})$ is a circle.

Proof. Write $h(z)=\frac{\alpha z+\beta}{\gamma z+\delta}$ and find a z such that $h(z) \in \mathbb{R}$. If $h(z) \in \mathbb{R}$ then $\frac{\alpha z+\beta}{\gamma+\delta}=\frac{\overline{\alpha z}+\bar{\beta}}{\bar{\gamma}+\bar{\delta}}$. Hence $(\alpha z+\beta)(\bar{\gamma}+\bar{\delta})=(\overline{\alpha z}+\bar{\beta})(\gamma z+\delta)$ and so

$$
(\alpha \bar{\gamma}-\bar{\alpha} \gamma)|z|^{2}+(\alpha \bar{\delta}-\bar{\beta} \gamma) z-(\bar{\alpha} \delta-\beta \bar{\gamma}) \bar{z}+\beta \bar{\delta}-\bar{\beta} \delta=0 .
$$

Case 1: if $\alpha \bar{\gamma}-\bar{\alpha} \gamma=0$ then we obtain a line since $\alpha \delta-\beta \gamma \neq 0$.

Case 2: if $\alpha \bar{\gamma}-\bar{\alpha} \gamma \neq 0$ then the equation becomes $A|z|^{2}+B z+\bar{B} \bar{z}+C=0, A=\alpha \bar{\gamma}-\bar{\alpha} \gamma$, $B=\alpha \bar{\delta}-\bar{\beta} \gamma, C=\beta \bar{\delta}-\bar{\beta} \delta$. Since $\alpha \delta-\beta \gamma \neq 0$, this is the equation of a circle, and the claim is proved.

By the claim, $g(C)=\mathbb{R}$. Hence $k=g^{-1} \circ f$ takes \mathbb{R} to $f(C)$, which is a circle by the claim.

Although the one-to-one conformal maps from $\widehat{\mathbb{C}}$ to itself are quite rigid (they are precisely the linear fractional transformations), on subdomains $\mathcal{D} \subset \mathbb{C}$ they are quite flexible. Ultimately we shall prove the Riemann Mapping Theorem:

Riemann Mapping Theorem. If $\mathcal{U} \subset \mathbb{C}$ is a simply connected domain there exists a one-to-one conformal map $f: \mathcal{U} \rightarrow D$ onto the open unit disc. Moreover, if we fix $z_{0} \in \mathcal{U}$ we can find such an $f: \mathcal{U} \rightarrow D$ such that $f\left(z_{0}\right)=0$ and $f^{\prime}\left(z_{0}\right)$ is real and strictly positive, and this uniquely determines f.

In most cases we cannot extend f to $\overline{\mathcal{U}}=\mathcal{U} \cup \partial \mathcal{U}$.

Example.

Definition. Two domains $\mathcal{D}, \mathcal{D}^{\prime} \subset \mathbb{C}$ are called conformally equivalent if there exists a conformal bijection $\mathcal{D} \rightarrow \mathcal{D}^{\prime}$.

So the Riemann Mapping Theorem tells us that any simply connected domain is conformally equivalent to the unit disc D.

Question. What are the conformal bijections $D \rightarrow D$?
Theorem 4.6. (Schwarz Lemma) Suppose $f: D \rightarrow D$ is holomorphic and that $f(0)=0$. Then

$$
\begin{array}{ll}
\text { and } & |f(z)| \leq|z| \\
& \left|f^{\prime}(0)\right| \leq 1
\end{array}
$$

If equality is achieved for some $z_{0} \in D$ then $f(z)=e^{i \theta_{0}} z$ for some fixed $\theta_{0} \in[0,2 \pi]$.
Proof. Consider the function $g: z \mapsto \frac{f(z)}{z}$. This has a removable singularity at $z=0$. We show that $|g(z)| \leq 1$.

Choose $z_{0} \in D$ and $\left|z_{0}\right|<r<1$. Now consider $\left|g\left(z_{0}\right)\right|$:

$$
\left|g\left(z_{0}\right)\right| \leq \max _{|z| \leq r}|g(z)|=\max _{z \in \delta B_{r}(0)}|g(z)|
$$

by the Maximum Modulus Principle. Since $|g(z)|=\left|\frac{f(z)}{z}\right|$ on $\partial B_{r}(0)$ we have $|g(z)|=\frac{|f(z)|}{r} \leq \frac{1}{r}$, which is true for all $\left|z_{0}\right|<r<1$; so $|g(z)| \leq 1=\lim _{r \rightarrow 1} \frac{1}{r}$. Hence $|f(z)| \leq|z|$ $\forall z \in D$.

Now since $\left|f^{\prime}(0)\right|=|g(0)| \leq 1$ we have $(* *)$.

If $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$ for some $z_{0} \in D$ then $\left|g\left(z_{0}\right)\right|=1$. Since by the Maximum Modulus Principle g cannot attain maximum modulus on D unless $|g|$ is constant, we have $\left|g\left(z_{0}\right)\right|=1 \Rightarrow g(z)=e^{i \theta_{0}}$ for some real θ_{0}.

Similarly, if $\left|f^{\prime}\left(z_{0}\right)\right|=1,|g(0)|=1$, so $g(z)=e^{i \theta_{0}}$, so $f(z)=e^{i \theta_{0}} z$.

Theorem 4.7. Let $f: D \rightarrow D$ be a conformal bijection. Then f is a linear fractional transformation of the form

$$
f(z)=e^{i \theta_{0} \frac{z-z_{0}}{1-\overline{z_{0}} z}}
$$

for some $z_{0} \in D, \theta_{0} \in[0,2 \pi]$.
Proof. First check that a linear fractional transformation of the form $f(z)=e^{i \theta_{0} \frac{z-z_{0}}{1-\overline{z_{0}} z}}$ sends D to itself.

Consider $g=f^{-1}: D \rightarrow D$, which is also one-to-one conformal; $(g \circ f)(z)=z$, so $g^{\prime}(f(z)) f^{\prime}(z)=1$. Let $z_{0} \in D$ be such that $f\left(z_{0}\right)=0$, so $g^{\prime}(0) f^{\prime}\left(z_{0}\right)=1$. Estimate $\left|g^{\prime}(0)\right|$: we know $g(0)=z_{0}$, so put

$$
\tilde{g}(z)=\frac{z-z_{0}}{1-\bar{z}_{0} z} .
$$

Then $\tilde{g} \circ g: D \rightarrow D$ is such that $(\tilde{g} \circ g)(0)=\tilde{g}\left(z_{0}\right)=0$. So $\left|\widetilde{g}^{\prime}\left(z_{0}\right) g^{\prime}\left(z_{0}\right)\right| \leq 1$.

$$
\begin{array}{ll}
& \tilde{g}^{\prime}(z)=\frac{1-\left|-z_{0}\right|^{2}}{\left(1-\bar{z}_{0}\right)^{2}} \\
\Rightarrow & \tilde{g}^{\prime}\left(z_{0}\right)=\frac{1}{1-\left|z_{0}\right|^{2}} \\
\Rightarrow & \left|g^{\prime}(0)\right| \leq 1-\left|z_{0}\right|^{2}
\end{array}
$$

Similarly, put \tilde{f} to be the inverse of $z \mapsto \frac{z-z_{0}}{1-\bar{z}_{0} z}$,

$$
\widetilde{f}(z)=\frac{z+z_{0}}{1+\bar{z}_{0} z} .
$$

So $(f \circ \tilde{f})(0)=0$. Again by Schwarz's Lemma, $\left|f^{\prime}\left(z_{0}\right) \tilde{f}^{\prime}(0)\right| \leq 1$. Since $\widetilde{f^{\prime}}(0)=1-\left|z_{0}\right|^{2}$, $\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{1}{1-\left|z_{0}\right|^{2}}$.

Since $f^{\prime}\left(z_{0}\right) g^{\prime}(0)=1,\left|g^{\prime}(0)\right|=\frac{1}{1-\left|z_{0}\right|^{2}}=\left|f^{\prime}\left(z_{0}\right)\right|$,

$$
\begin{array}{lc}
\Rightarrow & (f \circ \tilde{f})^{\prime}(0) \mid=1 \\
\Rightarrow & f \circ \tilde{f} \equiv e^{i \theta_{0}} \\
\Rightarrow & f(z)=e^{i \theta_{0} \frac{z-z_{0}}{1-\bar{z}_{0} z}}
\end{array}
$$

The uniqueness part of the Riemann Mapping Theorem follows easily from Theorem 4.7. In the proof it is stated that if $f: D \rightarrow D$ is a conformal bijection with $f\left(z_{0}\right)=0$ then $f(z)=e^{i \theta_{0} \frac{z-z_{0}}{1-\bar{z}_{0} z}}$ for some $\theta_{0} \in[0,2 \pi]$. If $g: \mathcal{U} \rightarrow D$ is another conformal bijection such that $g\left(z_{0}\right)=0$ and $g^{\prime}\left(z_{0}\right)>0$ then $g \circ f^{-1}: D \rightarrow D$ is a conformal bijection fixing 0 . So $\left(g \circ f^{-1}\right)(z)=e^{i \theta_{0}} z$ for some θ_{0}, so $g(z)=e^{i \theta_{0}} f(z)$. Furthermore, since $g^{\prime}\left(z_{0}\right)=e^{i \theta_{0}} f^{\prime}\left(z_{0}\right)$, $e^{i \theta_{0}}=1$, so $f=g$.

The existence part of the Riemann Mapping Theorem will be shown by considering the collection of functions

$$
\mathcal{F}=\left\{f: \mathcal{U} \rightarrow D \mid f \text { holomorphic, } 1-1, f\left(z_{0}\right)=0, f^{\prime}\left(z_{0}\right)>0\right\} .
$$

We need to show that $\exists f \in \mathcal{F}$ such that $f(\mathcal{U})=D$. To do this we need to study certain facts about spaces of continuous functions.

Let $C(\mathcal{D}, \mathbb{C})$ be the collection of all continuous functions from an open domain $\mathcal{D} \subseteq \mathbb{C}$ to \mathbb{C}. (We can replace \mathbb{C} by any complete metric space.) What does it mean for a sequence of functions f_{n} to converge to some other function f in $C(\mathcal{D}, \mathbb{C})$? What does it mean to say that $f, g \in C(\mathcal{D}, \mathbb{C})$ are close together?

We say that $f_{n} \rightarrow f$ pointwise as $n \rightarrow \infty$ if for each $z \in \mathcal{D}$,

$$
f_{n}(z) \underset{n \rightarrow \infty}{\rightarrow} f(z) .
$$

However, this is not good enough as continuity is not necessarily preserved by taking a pointwise limit.

We say that $f_{n} \rightarrow f$ uniformly on compact subsets as $n \rightarrow \infty$ if $\forall \varepsilon>0$ and compact $K \subseteq \mathcal{D} \quad \exists N \in \mathbb{N}$ such that $n>N, z \in K \Rightarrow\left|f_{n}(z)-f(z)\right|<\varepsilon$.

If $f_{n} \rightarrow f$ uniformly on compact subsets and the f_{n} are each continuous then f is continuous.

Two functions $f, g \in C(\mathcal{D}, \mathbb{C})$ are close if they differ by a small amount on each compact $K \subseteq \mathcal{D}$.

Definition. Given a compact $K \subseteq \mathcal{D}, \varepsilon>0, f \in C(\mathcal{D}, \mathbb{C})$ let

$$
B_{K}(f, \varepsilon)=\left\{g \in C(\mathcal{D}, \mathbb{C})\left|\sup _{z \in K}\right| f(z)-g(z) \mid<\varepsilon\right\} .
$$

The sets $B_{K}(f, \varepsilon)$ form a basis for a topology on $C(\mathcal{D}, \mathbb{C})$, called the topology of compact convergence, equivalent to the compact-open topology on $C(\mathcal{D}, \mathbb{C})$.

Proposition 4.8. $\left\{f_{n}\right\} \subseteq C(\mathcal{D}, \mathbb{C})$ converge to $f \in C(\mathcal{D}, \mathbb{C})$ in the topology of compact convergence if and only if $f_{n} \rightarrow f$ uniformly on compact subsets.

Theorem 4.9. Suppose $f_{n}: \mathcal{D} \rightarrow \mathbb{C}$ are holomorphic functions converging uniformly to some f on compact subsets. Then f is holomorphic. Moreover, $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on compact subsets.

Proof. We show that f is holomorphic by Morera's Theorem. Let $\overline{B_{R}\left(z_{0}\right)} \subseteq \mathcal{D}$ and let γ be a closed curve in $B_{R}\left(z_{0}\right)$. Since $\overline{B_{R}\left(z_{0}\right)}$ is compact and γ is compact, and $f_{n} \rightarrow f$ uniformly on compact subsets, $\int_{\gamma} f_{n} \rightarrow \int_{\gamma} f$. By Cauchy's Theorem, $\int_{\gamma} f_{n} \equiv 0$, so $\int_{\gamma} f=0$. By Morera's Theorem, f is holomorphic on $B_{R}\left(z_{0}\right)$, so f is holomorphic on D.

Choose $z_{0} \in \mathcal{D}$ and $R>0$ such that $\overline{B_{R}\left(z_{0}\right)} \subseteq \mathcal{D}$. Let $z \in B_{R}\left(z_{0}\right)$.

$$
\begin{aligned}
f_{n}^{\prime}(z) & =\frac{1}{2 \pi i} \int_{\partial B_{R}\left(z_{0}\right)} \frac{f_{n}(w)}{(w-z)^{2}} d w \\
& \rightarrow \frac{1}{2 \pi i} \int_{\partial B_{R}\left(z_{0}\right)} \frac{f(w)}{(w-z)^{2}} d w \\
& =f^{\prime}(z)
\end{aligned}
$$

This implies that $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on compact subsets.

Theorem 4.10. (Hurwitz's Theorem) Suppose $f_{n}: \mathcal{D} \rightarrow \mathbb{C}$ are holomorphic functions converging uniformly to some f on compact subsets. If each f_{n} has no zeroes in \mathcal{D} then either f has no zeroes in \mathcal{D} or f is identically zero on \mathcal{D}.

Proof. Suppose f is not identically zero. Suppose $\exists z_{0} \in \mathcal{D}$ such that $f\left(z_{0}\right)=0$. Since the zeroes of a holomorphic function are isolated we can choose $\overline{B_{R}\left(z_{0}\right)} \subseteq \mathcal{D}$ such that f has no other zeroes in $B_{R}\left(z_{0}\right)$. From Question Sheet 2 the number of zeroes of f in $B_{R}\left(z_{0}\right)$ (counted with multiplicity) is $\frac{1}{2 \pi} \int_{\partial B_{R}\left(z_{0}\right)} \frac{f^{\prime}}{f}$. Since $f_{n} \rightarrow f$ uniformly on compact subsets,

$$
\frac{1}{2 \pi i} \int_{\partial B_{R}\left(z_{0}\right)} \frac{f_{n}^{\prime}}{f_{n}} \rightarrow \frac{1}{2 \pi i} \int_{\partial B_{R}\left(z_{0}\right)} \frac{f^{\prime}}{f} .
$$

But $\frac{1}{2 \pi i} \int_{\partial B_{R}\left(z_{0}\right)} \frac{f_{n}^{\prime}}{f_{n}}=0$ for each $n \in \mathbb{N}$ since f_{n} has no zeroes anywhere in \mathcal{D}. So either f has no zeroes in \mathcal{D}, or it is everywhere zero.

Definition. A family $\mathcal{F} \subseteq C(\mathcal{D}, \mathbb{C})$ is said to be a normal family if every sequence $\left(f_{n}\right)$ in \mathcal{F} contains a subsequence $\left(f_{n_{k}}\right)$ that converges to some f uniformly on compact subsets. (It is not necessary that $f \in \mathcal{F}$.)

Remark. In fact, $C(\mathcal{D}, \mathbb{C})$ is a (complete) metric space. A normal family \mathcal{F} has a (sequentially) compact closure.

Definition. A family $\mathcal{F} \subseteq C(\mathcal{D}, \mathbb{C})$ is said to be equicontinuous on $E \subseteq \mathcal{D}$ if for all $\varepsilon>0$ there is a $\delta>0$ such that $|z-w|<\delta \Rightarrow|f(z)-f(w)|<\varepsilon$ for all $f \in \mathcal{F}$ and $z, w \in \mathcal{D}$.

Theorem 4.11. (Arzela-Ascoli) A family of functions $\mathcal{F} \subseteq C(\mathcal{D}, \mathbb{C})$ is normal if and only if both
(1) \mathcal{F} is equicontinuous on every compact subset $K \subseteq \mathcal{D}$; and
(2) for each $z \in \mathcal{D},\{f(z) \mid f \in \mathcal{F}\}$ is bounded in \mathbb{C}.

Proof. (\Rightarrow) Suppose \mathcal{F} is normal. We first show that $\{f(z) \mid f \in \mathcal{F}\}$ is bounded.
Suppose not. Then there is a sequence $\left(f_{n}\right)$ in \mathcal{F} such that $\left|f_{n}(z)\right|>n$. Since \mathcal{F} is normal there is a subsequence $\left(f_{n_{k}}\right)$ such that $f_{n_{k}} \rightarrow f$ uniformly on compact subsets. If so, $\left|f_{n_{k}}(z)-f(z)\right|<1$ for large k; then $\left|f_{n_{k}}(z)\right|<|f(z)|+1$ for large k, a contradiction, since a continuous function is bounded on a compact set.

We now show that if \mathcal{F} is normal then \mathcal{F} is equicontinuous on each compact $K \subseteq \mathcal{D}$.
Suppose not. Then there is a compact $K \subseteq \mathcal{D}$ such that $\exists \varepsilon_{0}>0$ such that $\forall n \in \mathbb{N}$ $\exists z_{n}, w_{n} \in K$ such that $\left|z_{n}-w_{n}\right|<\frac{1}{n}$ and $\left|f_{n}\left(z_{n}\right)-f_{n}\left(w_{n}\right)\right| \geq \varepsilon_{0}$ for $f_{n} \in \mathcal{F}$. Since \mathcal{F} is normal, there is a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ such that $f_{n_{k}} \rightarrow f$ uniformly on compact subsets. I.e., for any $\varepsilon>0$ and compact $E,\left|f_{n_{k}}(z)-f(z)\right|<\varepsilon$ for all $z \in E$ and sufficiently large k. For our compact set K there exists N such that $k>N \Rightarrow$ $\left|f_{n_{k}}(z)-f(z)\right|<\frac{\varepsilon_{0}}{3}$ for all $z \in K$. Since f is continuous on \mathcal{D} it is uniformly continuous on K. Hence, there is a $\delta>0$ such that $|z-w|<\delta \Rightarrow|f(z)-f(w)|<\frac{\varepsilon_{0}}{3}$ for all $z, w \in K$. Then

$$
\begin{aligned}
\left|f_{n_{k}}\left(z_{n_{k}}\right)-f_{n_{k}}\left(w_{n_{k}}\right)\right| & \leq\left|f_{n_{k}}\left(z_{n_{k}}\right)-f\left(z_{n_{k}}\right)+\left|f\left(z_{n_{k}}\right)-f\left(w_{n_{k}}\right)\right|+\left|f\left(w_{n_{k}}\right)-f_{n_{k}}\left(w_{n_{k}}\right)\right|\right. \\
& <\frac{\varepsilon_{0}}{3}+\frac{\varepsilon_{0}}{3}+\frac{\varepsilon_{0}}{3} \\
& =\varepsilon_{0}
\end{aligned}
$$

which contradicts $\mid f_{n}\left(z_{n}\right)-f_{n}\left(w_{n}\right) \geq \varepsilon_{0}$ above.
(\Leftarrow) Now suppose \mathcal{F} satisfies (1) and (2); let $\left(f_{n}\right)$ be a sequence in \mathcal{F}.
We show that $\left(f_{n}\right)$ has a subsequence that converges on a dense set of points $\left\{z_{m} \mid m \in \mathbb{N}\right\} \subseteq \mathcal{D}$. We can always find such a countable collection, e.g. an enumeration of $(\mathbb{Q}+i \mathbb{Q}) \cap \mathcal{D}$.

For $z=z_{1}$, by (2), $\left\{f_{n}\left(z_{1}\right) \mid n \in \mathbb{N}\right\}$ is bounded. So there is a subsequence $\left(f_{n_{l}}\right)$ such that $f_{n_{l l}}\left(z_{1}\right)$ converges as $l \rightarrow \infty$. Now take a subsequence $\left(f_{n_{21}}\right)$ of $\left(f_{n_{1 l}}\right)$, by (2), such that $f_{n_{2 l}}\left(z_{2}\right)$ converges as $l \rightarrow \infty$. Continue inductively, obtaining rows of subscripts

$$
\begin{gathered}
n_{11}<n_{12}<n_{13}<\ldots \\
n_{21}<n_{22}<n_{23}<\ldots \\
\vdots \\
n_{k 1}<n_{k 2}<n_{k 3}<\ldots \\
\quad \vdots
\end{gathered}
$$

such that each row is a subset of the one above it, and such that $f_{n_{k l}}\left(z_{m}\right)$ converges as $l \rightarrow \infty$ for $m=1, \ldots, k$. Take the diagonal sequence $f_{n_{l}}=f_{n_{l}}, l \in \mathbb{N}$. It is easy to see that for any $m, f_{n_{l}}\left(z_{m}\right)$ converges as $l \rightarrow \infty$.

We now show that for any compact $K \subseteq \mathcal{D} f_{n_{l}}$ is uniformly Cauchy on K, i.e. $\forall \varepsilon>0$, $\exists N \in \mathbb{N}$ such that $i, j>N, z \in K \Rightarrow\left|f_{n_{i}}(z)-f_{n_{j}}(z)\right|<\varepsilon$. (Exercise: Check that being uniformly Cauchy on compact subsets implies uniform convergence on compact subsets.) Let $\varepsilon>0$. Since \mathcal{F} is equicontinuous on $K, \exists \delta>0$ such that $\forall z, w \in K, f \in \mathcal{F}$, $|z-w|<\delta \Rightarrow|f(z)-f(w)|<\frac{\varepsilon}{3}$. Since K is compact we can cover K with a finite number of balls of radius $\leq \frac{\delta}{2}$. Since $\left\{z_{m} \mid m \in \mathbb{N}\right\}$ is dense, we can choose a z_{m} in each ball, say z_{1}, \ldots, z_{M}. Let N be such that $i, j>N \Rightarrow\left|f_{n_{i}}\left(z_{m}\right)-f_{n_{j}}\left(z_{m}\right)\right|<\varepsilon$ for $m=1, \ldots, M$. Then for $z \in K$,

$$
\begin{aligned}
\left|f_{n_{i}}(z)-f_{n_{j}}(z)\right| & \leq\left|f_{n_{i}}(z)-f_{n_{i}}\left(z_{m}\right)\right|+\left|f_{n_{i}}\left(z_{m}\right)-f_{n_{j}}\left(z_{m}\right)\right|+\left|f_{n_{j}}\left(z_{m}\right)-f_{n_{j}}(z)\right| \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3} \\
& =\varepsilon
\end{aligned}
$$

So, given (1) and (2), \mathcal{F} is normal.

Definition. $\mathcal{F} \subseteq C(\mathcal{D}, \mathbb{C})$ is locally uniformly bounded on \mathcal{D} if $\forall z_{o} \in \mathcal{D}, \exists B_{R}\left(z_{0}\right) \subseteq \mathcal{D}$ such that $\exists M>0$ such that $\forall z \in B_{R}\left(z_{0}\right), f \in \mathcal{F},|f(z)|<M$.

Theorem 4.12. (Montel's Theorem) If $\mathcal{F} \subseteq C(\mathcal{D}, \mathbb{C})$ is a locally uniformly bounded family of holomorphic functions then \mathcal{F} is a normal family.

Proof. By Arzela-Ascoli we need to check
(1) $\forall z \in \mathcal{D},\{f(z) \mid f \in \mathcal{F}\}$ is bounded;
(2) \forall compact $K \subseteq \mathcal{D}, \mathcal{F}$ is equicontinuous on K.
(1) is clear, since \mathcal{F} is locally uniformly bounded.
(2) We first show that given $z_{0} \in \mathcal{D} \quad \exists \overline{B_{R}\left(z_{0}\right)} \subseteq \mathcal{D}$ such that \mathcal{F} is equicontinuous on $\overline{B_{R}\left(z_{0}\right)}$. Since \mathcal{F} is locally uniformly bounded $\exists \overline{B_{r}\left(z_{0}\right)} \subseteq \mathcal{D}$ and $M>0$ such that $|f|<M$ for all $f \in \mathcal{F}$. Let $\varepsilon>0, w, z \in \overline{B_{r / 2}\left(z_{0}\right)}$ and $f \in \mathcal{F}$.

$$
\begin{aligned}
f(z)-f(w) & =\frac{1}{2 \pi i} \int_{\partial B_{r / 2}\left(z_{0}\right)} \frac{f(\xi)}{(\xi-z)} d \xi-\frac{1}{2 \pi i} \int_{\partial B_{r / 2}\left(z_{0}\right)} \frac{f(\xi)}{(\xi-w)} d \xi \\
& =\frac{1}{2 \pi i} \int_{\partial B_{r / 2}\left(z_{0}\right)} \frac{f(\xi)(z-w)}{(\xi-z)(\xi-w)} d \xi
\end{aligned}
$$

Use the Estimation Lemma with $|\xi-z|,|\xi-w| \geq \frac{r}{2}$:

$$
|f(z)-f(w)| \leq \frac{1}{2 \pi} M \frac{|z-w|}{(r / 2)^{2}} 2 \pi r=\frac{4 M}{r}|z-w|
$$

Let $\delta=\frac{r \varepsilon}{4 M}$. Then we have that \mathcal{F} is equicontinuous on $B_{r / 2}\left(z_{0}\right)$. Any compact $K \subseteq \mathcal{D}$ can be covered by such discs, and this cover has a finite subcover. So \mathcal{F} is equicontinuous on K.

Theorem 4.13. (Riemann Mapping Theorem) Given any simply connected domain $\mathcal{U} \subset \mathbb{C}$ and $z_{0} \in \mathcal{U}$ there is a unique conformal bijection $f: \mathcal{U} \rightarrow D$ such that $f\left(z_{0}\right)=0$ and $f^{\prime}\left(z_{0}\right)>0$.

Proof. Uniqueness has already been shown. Consider

$$
\mathcal{F}=\left\{f: \mathcal{U} \rightarrow D \mid f \text { holomorphic, } 1-1, f\left(z_{0}\right)=0, f^{\prime}\left(z_{0}\right)>0\right\}
$$

and proceed to show
(1) $\mathcal{F} \neq \varnothing$;
(2) $\exists f \in \mathcal{F}$ with maximal derivative at z_{0};
(3) the f in (2) maps onto D.

Step 1. Let $a \in \mathbb{C} \backslash \mathcal{U} . g(z)=z-a$ is never zero on $\mathcal{U} . g$ has a square root; we can find a branch of the multivalued function $\sqrt{z-a}$ that is holomorphic on \mathcal{U}. Set $h(z)=\sqrt{z-a} . h$ is one-to-one on \mathcal{U} : if $\sqrt{z_{1}-a}=\sqrt{z_{2}-a}$ then $z_{1}=z_{2}$.

If $h(z)=w$ for some $z \in \mathcal{U}$ then h never takes the value $-w$ in \mathcal{U}. Since $h: \mathcal{U} \rightarrow \mathbb{C}$ is holomorphic, it is open, by the Open Mapping Theorem. So there is a $B_{R}\left(h\left(z_{0}\right)\right) \subseteq h(\mathcal{U})$. By the above, $-B_{R}\left(h\left(z_{0}\right)\right)=B_{R}\left(-h\left(z_{0}\right)\right)$ is such that $-B_{R}\left(h\left(z_{0}\right)\right) \cap h(\mathcal{U})=\varnothing$. So $h(\mathcal{U})$ lies in the interior of $B_{R}\left(-h\left(z_{0}\right)\right)$.

We can construct a linear fractional transformation k that takes $\mathbb{C} \backslash B_{R}\left(-h\left(z_{0}\right)\right)$ onto \bar{D}. We can further compose with a linear fractional transformation of the form

$$
j(z)=e^{i \theta_{0}} \frac{z-(k o h)\left(z_{0}\right)}{1-(k \circ h)\left(z_{0}\right) z} .
$$

Then $(j \circ k \circ h)\left(z_{0}\right)=0$ and $(j \circ k \circ h)^{\prime}\left(z_{0}\right)>0$.
Step 2. Let $M=\sup _{f \in \mathcal{F}} f^{\prime}\left(z_{0}\right)$. Let $f_{n} \in \mathcal{F}$ be such that $f_{n}^{\prime}\left(z_{0}\right) \underset{n \rightarrow \infty}{\rightarrow} M$. Observe that since \mathcal{F} is (locally) uniformly bounded (D is bounded), $M<\infty$ by Cauchy's Integral Formula.

By Montel's Theorem, \mathcal{F} is a normal family. Hence, $\left(f_{n}\right)$ has a subsequence $\left(f_{n_{k}}\right)$ converging to some f uniformly on compact subsets $K \subseteq \mathcal{U} . f: \mathcal{U} \rightarrow \mathbb{C}$ is holomorphic, $f\left(z_{0}\right)=0$ and $f^{\prime}\left(z_{0}\right)=M$. Furthermore, since $\left|f_{n_{k}}\right|<1,|f|<1$, i.e. $f(\mathcal{U}) \subseteq D$.

We now show f is one-to-one. Choose $z_{1} \in \mathcal{U}$; show $f(z) \neq f\left(z_{1}\right)$ for $z \in \mathcal{U} \backslash\left\{z_{1}\right\}$. Put $g_{n_{k}}(z)=f_{n_{k}}(z)-f_{n_{k}}\left(z_{1}\right) \cdot g_{n_{k}}$ converges uniformly to $f(z)-f\left(z_{1}\right)$ on compact subsets of \mathcal{U}, and on every compact subset of $\mathcal{U} \backslash\left\{z_{1}\right\}$. Since $g_{n_{k}}$ is never zero on $\mathcal{U} \backslash\left\{z_{1}\right\}$, by Hurwitz's Theorem, either $f(z)-f\left(z_{1}\right)$ is never zero on $\mathcal{U} \backslash\left\{z_{1}\right\}$ or it is everywhere zero. But f is non-constant since $f^{\prime}\left(z_{0}\right)=M>0$.

Step 3. We proceed by contradiction: suppose $\exists w_{0} \in D \backslash f(\mathcal{U})$. Then the linear fractional transformation $z \mapsto \frac{f(z)-w_{0}}{1-\bar{w}_{0} f(z)}$ is $\phi \circ f$ where $\phi: D \rightarrow D: z \mapsto \frac{z-w_{0}}{1-\bar{w}_{0} z}$ and $\phi \circ f$ is never zero on \mathcal{U}. Therefore, there exists a branch of the square root

$$
F(z)=\sqrt{\frac{f(z)-w_{0}}{1-\bar{w}_{0} f(z)}} .
$$

Note that $F(\mathcal{U}) \subseteq D$ and F is one-to-one. Further compose F with the linear fractional transformation ψ,

$$
\left.\psi(z)=\frac{z-F\left(z_{0}\right)}{1-F\left(z_{0}\right) z}\right)^{\left.\frac{F^{\prime}}{}\left(z_{0}\right) \right\rvert\,} \frac{F^{\prime}\left(z_{0}\right)}{} .
$$

Again note that $\psi \circ F: \mathcal{U} \rightarrow D$ is one-to-one and $(\psi \circ F)\left(z_{0}\right)=0$,

$$
\left.\begin{array}{c}
(\psi \circ F)^{\prime}\left(z_{0}\right)=\frac{\left|F^{\prime}\left(z_{0}\right)\right|}{F^{\prime}\left(z_{0}\right)} \frac{1}{1+\left|F\left(z_{0}\right)\right|^{2}} F^{\prime}\left(z_{0}\right) \\
=\frac{\mid F^{\prime}\left(z_{0} \mid\right.}{1+\left|F\left(z_{0}\right)\right|^{2}} \\
\Rightarrow \quad F^{\prime}\left(z_{0}\right)=\frac{1-\left|w_{0}\right|^{2}}{2 \sqrt{\left|w_{0}\right|}} f^{\prime}\left(z_{0}\right) \\
\left|F^{\prime}\left(z_{0}\right)\right|=\frac{1-\left|w_{0}\right|^{2}}{2 \sqrt{\left|w_{0}\right|}} M
\end{array}\right] \begin{aligned}
1-\left|F\left(z_{0}\right)\right|^{2} & =1-\left|\sqrt{-w_{0}}\right|^{2}=1-\left|w_{0}\right| \\
\Rightarrow \quad(\psi \circ F)^{\prime}\left(z_{0}\right) & =\frac{1-\left|w_{0}\right|^{2}}{2 \sqrt{\left|w_{0}\right|} \mid} \frac{1}{1-\left|w_{0}\right|} M \\
& =\frac{1+\left|w_{0}\right|}{2 \sqrt{\left|w_{0}\right|} \mid} M \\
& >M
\end{aligned}
$$

So there is no such w_{0}, so $f(\mathcal{U})=D$.

5. HARMONIC MAPS

Let $\Omega \subseteq \mathbb{R}^{n}$ be some open set. A function $u: \Omega \rightarrow \mathbb{R}$ satisfies Laplace's equation if

$$
u_{x_{1} x_{1}}+\ldots+u_{x_{n} x_{n}}=0
$$

Such a function, where the first and second partial derivatives exist and are continuous, is called harmonic.

Dirichlet Problem. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and let $f: \partial \Omega \rightarrow \mathbb{R}$ be continuous. Find a solution to the boundary value problem

$$
\begin{gathered}
\Delta u=u_{x_{1} x_{1}}+\ldots+u_{x_{n} x_{n}}=0 \text { on } \Omega, \\
u=f \text { on } \partial \Omega .
\end{gathered}
$$

When $n=2$ we can use complex analysis to solve the Dirichlet Problem. Recall that if $f=u+i v: \mathcal{D} \rightarrow \mathbb{C}$ is holomorphic then u, v are harmonic on \mathcal{D}.

First note that if, for example, $u(x, y)=\log \left(x^{2}+y^{2}\right)^{1 / 2},(x, y) \neq 0$, is harmonic on $\mathbb{C} \backslash\{0\}$ there is no holomorphic $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ for which $u=\operatorname{Re} f$.

Theorem 5.1. Given a harmonic function $u: \mathcal{U} \rightarrow \mathbb{R}$ on a simply connected domain $\mathcal{U} \subseteq \mathbb{C}$ there is a holomorphic $f: \mathcal{U} \rightarrow \mathbb{C}$ such that $u=\operatorname{Re} f$.

Proof. If there were such an f we would have $f^{\prime}=u_{x}+i v_{x}$ and $f^{\prime}=u_{x}+i v_{y}$. Consider $g=u_{x}+i v_{y}$. We see that g is holomorphic since

$$
\begin{aligned}
& \left(u_{x}\right)_{x}=u_{x x}=-u_{y y}=-\left(u_{y}\right)_{y}, \\
& \left(u_{x}\right)_{y}=u_{x y}=u_{y x}=-\left(-u_{y}\right)_{x} .
\end{aligned}
$$

Then by Cauchy's Theorem, $\int_{\gamma} g=0$ for every closed curve γ in \mathcal{U}. By Theorem 2.1, g has an anti-derivative on \mathcal{U}. Let f be an anti-derivative of g on \mathcal{U}. $\operatorname{Re} f=u+c$ for some constant $c . f-c$ is a holomorphic function with $\operatorname{Re}(f-c)=u$.

Corollary 5.2. Let $\mathcal{U} \subseteq \mathbb{C}$ be a simply connected domain and $f: \mathcal{U} \rightarrow \mathbb{C}$ holomorphic. If $u: f(\mathcal{U}) \rightarrow \mathbb{R}$ is harmonic then $u \circ f$ is harmonic.

Proof. Let $g: f(\mathcal{U}) \rightarrow \mathbb{C}$ be holomorphic such that $u=\operatorname{Re} g$. Then $u \circ f=\operatorname{Re}(g \circ f)$ is harmonic.

Hence, if we can solve the Dirichlet Problem on D and can find a bijective conformal map $g: \mathcal{U} \rightarrow D$ such that $g: \bar{U} \rightarrow \bar{D}$ is continuous, we can solve the Dirichlet Problem on \mathcal{U}.

Theorem 5.3. Let $u: \mathcal{D} \rightarrow \mathbb{R}$ be harmonic. Then it satisfies the Mean Value Property that $\forall z_{0} \in \mathcal{D}$ and $\overline{B_{r}\left(z_{0}\right)} \subseteq \mathcal{D}$,

$$
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i t}\right) d t
$$

Proof. Let $f: \overline{B_{r}\left(z_{0}\right)} \rightarrow \mathbb{C}$ be holomorphic such that $u=\operatorname{Re} f$. By Gauss' Mean Value Theorem,

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right) d t
$$

Now take real parts.

Theorem 5.4. (Maximum Principle) Suppose $u: \mathcal{D} \rightarrow \mathbb{R}$ is harmonic and non-constant on a connected domain \mathcal{D}. The u cannot attain a maximum on (the interior of) \mathcal{D}.

Proof. This follows directly from the Mean Value Property: suppose there were a maximum at $z_{0} \in \mathcal{D}$. Since

$$
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i t}\right) d t \leq u\left(z_{0}\right)
$$

$u\left(z_{0}\right)=u\left(z_{0}+r e^{i t}\right)$ for all t, r such that $\overline{B_{r}\left(z_{0}\right)} \subseteq \mathcal{D}$. So u is constant, a contradiction.

We return to the Dirichlet Problem for the disc. Let $F: \partial D \rightarrow \mathbb{R}$ be continuous. Find the harmonic function $u: D \rightarrow \mathbb{R}$ such that u is continuous on D and $\lim _{z \rightarrow e^{i \theta}} u(z)=F\left(e^{i \theta}\right)$.

Boundary values determine the function on the interior for holomorphic functions by Cauchy's Integral Formula

$$
f(z)=\frac{1}{2 \pi} \int_{\partial B_{r}\left(z_{0}\right)} \frac{f(\xi)}{\xi-z} d \xi .
$$

Theorem 5.5. (Poisson's Integral Formula) Let u be harmonic on a domain containing $\overline{B_{R}(0)}$. Then for $z=r e^{i \theta} \in B_{R}(0)$,

$$
u\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\theta-t)+r^{2}} u\left(R e^{i t}\right) d t
$$

$P(t)=P(r, \theta, R, t)=\frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\theta-t)+r^{2}}$ is called the Poisson kernel.

Proof. Let $f: \overline{B_{R}(0)} \rightarrow \mathbb{C}$ be holomorphic with $u=\operatorname{Re} f$. Use a "reflection trick" to show

$$
f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P(t) f\left(R e^{i t}\right) d t
$$

This will immediately yield the desired result by taking real parts. We can assume $r e^{i \theta} \neq 0$ since the result is immediate from the Mean Value Theorem otherwise. Set $z^{*}=\frac{R^{2}}{z}=\frac{R^{2}}{r} e^{i \theta}$. Then

$$
\frac{1}{2 \pi i} \int_{\partial B_{R}(0)} \frac{f(\xi)}{\xi-z^{*}} d \xi=0
$$

by Cauchy's Theorem. So

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{\partial B_{R}(0)} \frac{f(\xi)}{\xi-z} d \xi-\frac{1}{2 \pi i} \int_{\partial B_{R}(0)} \frac{f(\xi)}{\xi-z^{*}} d \xi \\
& =\frac{1}{2 \pi} \int_{\partial B_{R}(0)}\left(\frac{1}{\xi-z}-\frac{1}{\xi-z^{*}}\right) f(\xi) d \xi \\
& =\frac{1}{2 \pi} \int_{\partial B_{R}(0)} \frac{R^{2}-r^{2}}{(\xi-z)\left(R^{2}-\xi \bar{z}\right)} f(\xi) d \xi
\end{aligned}
$$

Substitute in $\xi=R e^{i t}, z=r e^{i \theta}$:

$$
\begin{aligned}
\frac{d \xi}{(\xi-z)\left(R^{2}-\xi \bar{z}\right)} & =\frac{i R e^{i t} d t}{\left(R e^{i t}-r e^{i \theta}\right)\left(R^{2}-r R e^{i(t-\theta)}\right)} \\
& =\frac{i d t}{\left(R e^{i t}-r e^{i \theta}\right)\left(R e^{-i t}-r e^{-i \theta}\right)} \\
& =\frac{i d t}{R^{2}-2 r R \cos (\theta-t)+r^{2}}
\end{aligned}
$$

Hence,

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\theta-t)+r^{2}} f\left(R e^{i t}\right) d t
$$

Theorem 5.6. Let $u: B_{R}(0) \rightarrow \mathbb{R}$ be harmonic; suppose u is continuous on $\overline{B_{R}(0)}$. For $z=r e^{i \theta} \in B_{R}(0)$,

$$
u\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P(t) u\left(\operatorname{Re}^{i t}\right) d t
$$

Proof. Let $t_{n} \uparrow 1$ and set $u_{n}(z)=u\left(t_{n} z\right) . u_{n}$ is harmonic on $\overline{B_{R}(0)}$. By Theorem 5.5,

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} P(t) u_{n}\left(R e^{i t}\right) d t & =u_{n}\left(r e^{i \theta}\right) \\
& =u\left(t_{n} r e^{i \theta}\right) \\
& \rightarrow \underset{n \rightarrow \infty}{\rightarrow} u\left(r e^{i \theta}\right)
\end{aligned}
$$

We show

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} P(t) u_{n}\left(R e^{i t}\right) d t \underset{n \rightarrow \infty}{\rightarrow} \frac{1}{2 \pi} \int_{0}^{2 \pi} P(t) u\left(R e^{i t}\right) d t .
$$

Consider the quantity

$$
\left.I_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} P(t) \right\rvert\, u_{n}\left(R e^{i t}\right)-u\left(R e^{i t}\right) d t
$$

Given $\varepsilon>0,\left|u_{n}\left(R e^{i t}\right)-u\left(R e^{i t}\right)\right|<\varepsilon$ for sufficiently large n, since u is uniformly continuous on $\overline{B_{R}(0)}$. So

$$
I_{n}<\frac{1}{2 \pi} \varepsilon \int_{0}^{2 \pi} P(t) d t=\frac{\varepsilon}{2 \pi} \underset{n \rightarrow \infty}{\rightarrow} 0
$$

Theorem 5.7. Let $F: \partial B_{R}(0) \rightarrow \mathbb{R}$ be continuous. Define

$$
u\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\theta-t)=r^{2}} F\left(R e^{i t}\right) d t .
$$

Then (1) u is harmonic on $B_{R}(0)$; and
(2) $\lim _{r \rightarrow R} u\left(r e^{i \theta}\right)=F\left(R^{i \theta}\right)$.

Proof. (1) Key fact: if $\xi=\operatorname{Re} e^{i t}, z=r e^{i \theta}$, then $P(r, \theta, R, t)=\operatorname{Re}\left(\frac{\xi+z}{\xi-z}\right)$. Hence, if $u=\operatorname{Re} g$ for some holomorphic g,

$$
\begin{gathered}
u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re}\left(\frac{\xi+z}{\xi-z}\right) F\left(R e^{i t}\right) d t \\
\Rightarrow \quad g(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\xi+z}{\xi-z} F\left(R e^{i t}\right) d t
\end{gathered}
$$

g is holomorphic in z :

$$
\begin{aligned}
\frac{g(z+h)-g(z)}{h}= & \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{2 \xi}{(\xi-z)(\xi-(z+h))} F\left(R e^{i t}\right) d t \\
& \rightarrow \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{2 \xi}{(\xi-z)^{2}} F\left(R e^{i t}\right) d t
\end{aligned}
$$

Since $u=\operatorname{Re} g, u$ is harmonic.
(2) We show $\mid u\left(r e^{i \theta}\right)-F\left(R e^{i \theta}\right) \underset{r \nmid R}{\rightarrow} 0$. Trick: $\int_{0}^{2 \pi} P(r, \theta, R, t) d t=2 \pi$.

$$
u\left(r e^{i \theta}\right)-F\left(R e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P(r, \theta, R, t)\left(F\left(R e^{i t}\right)-F\left(R e^{i \theta}\right)\right) d t
$$

Note that if $t=\theta$ then $P(r, \theta, R, t)=\frac{R+r}{R-r}$. Choose $\varepsilon>0$. We can find $\delta>0$ such that $|t-\theta|<\delta \Rightarrow\left|F\left(R e^{i t}\right)-F\left(R e^{i \theta}\right)\right|<\varepsilon$. Then

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{\theta-\delta}^{\theta+\delta} P(t)\left|F\left(R e^{i t}\right)-F\left(R e^{i \theta}\right)\right| d t & <\varepsilon \frac{1}{2 \pi} \int_{\theta-\delta}^{\theta+\delta} P(t) d t \\
& <\varepsilon \frac{1}{2 \pi} \int_{0}^{2 \pi} P(t) d t \\
& =\varepsilon
\end{aligned}
$$

Consider $\left.\frac{1}{2 \pi} \int_{\theta-\delta}^{\theta+\delta} P(t) \right\rvert\, F\left(R e^{i t}\right)-F\left(R e^{i \theta}\right) d t$. When $t \in[0, \theta-\delta] \cup[\theta+\delta, 2 \pi]$,

$$
\begin{aligned}
P(t) & \leq \frac{R^{2}-r^{2}}{R^{2}-2 R r \cos \delta+r^{2}} \\
& \leq \frac{R^{2}-r^{2}}{R^{2}-2 R^{2} r^{2} \cos ^{2} \delta+(R \cos \delta)^{2}} \\
& \leq \frac{R^{2}-r^{2}}{R^{2} \sin ^{2} \delta} \\
& \leq \frac{(R+r)(R-r)}{R^{2} \sin ^{2} \delta} \\
& \leq \frac{2(R-r)}{R \sin ^{2} \delta}
\end{aligned}
$$

We can choose $\delta^{\prime}>0$ such that $|R-r|<\delta^{\prime} \Rightarrow|P(t)|<\varepsilon$. Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} P(t)\left|F\left(R e^{i t}\right)-F\left(R e^{i \theta}\right)\right| d t<\varepsilon M .
$$

Remark. We can modify the proof to show that $\lim _{z \rightarrow R e^{i \theta}} u(z)=F\left(R e^{i \theta}\right)$ and show that u is continuous on $\overline{B_{R}(0)}$.

Theorem 5.8. Suppose $u: \mathcal{D} \rightarrow \mathbb{R}$ is continuous and satisfies the Mean Value Property. Then u is harmonic.

Proof. Choose $\overline{B_{R}\left(z_{0}\right)} \subseteq \mathcal{D}$. By Theorem 5.7 there exists a harmonic function \tilde{u} on $\overline{B_{R}\left(z_{0}\right)}$ such that $\left.\tilde{u}\right|_{\partial B_{R}\left(z_{0}\right)}=\left.u\right|_{\partial B_{R}\left(z_{0}\right)}$. Then $\tilde{u}-u$ satisfies the Mean Value Property and $\tilde{u}-u=0$ on $\partial B_{R}\left(z_{0}\right)$. Hence $\tilde{u}=u$ on $\overline{B_{R}\left(z_{0}\right)}$.

