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1 Normed Spaces

1.1 Normed Spaces

Definitions 1.1.1. Let X be a vector space over a field F (= R or C). A map ‖ · ‖ : X →
[0,∞) is a norm on X if

(i) homogeneity: ‖λx‖ = |λ|‖x‖ for all λ ∈ F, x ∈ X;

(ii) triangle inequality: ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X;

(iii) definiteness: ‖x‖ = 0 ⇔ x = 0.

A map satisfying only (i) and (ii) is called a semi-norm. (X, ‖ · ‖) is called a (semi-)normed
space if X is a vector space and ‖ · ‖ is a (semi-)norm on X.

Definitions 1.1.2. Let (X, ‖ · ‖) be a (semi-)normed space and (xn) ⊆ X a sequence.

(i) xn converges to x ∈ X, written as xn → x or limn→∞ xn = x, if limn→∞ ‖xn − x‖ = 0;

(ii) (xn) is Cauchy if ∀ε > 0, ∃N ∈ N such that n,m ≥ N ⇒ ‖xn − xm‖ < ε.

Definitions 1.1.3. A (semi-)normed space (X, ‖ · ‖) is complete if every Cauchy sequence in
X converges to some point in X. A complete normed space is called a Banach space.

Proposition 1.1.4. Let ℓ∞(T ) denote the vector space of bounded F-valued functions on T ,
with ‖ · ‖∞ the supremum norm. Then (ℓ∞(T ), ‖ · ‖∞) is a Banach space.

Lemma 1.1.5. If X is a Banach space and U a closed subspace of X then U is complete.

Definition 1.1.6. C(T ) denotes the space of continuous function T → F.

Corollary 1.1.7. Cb(T ), the space of continuous bounded functions T → F, is a Banach
space with respect to ‖ · ‖∞.

Theorem 1.1.8. (Hölder inequality for sequences.) Let 1 ≤ p ≤ ∞ and q be such that
1/p+ 1/q = 1 (if p = 1, q = ∞ and vice versa). Let x ∈ ℓp, y ∈ ℓq. Then

‖xy‖1 ≤ ‖x‖p‖y‖q.

Corollary 1.1.9. (Minkowski inequality.) Let x, y ∈ ℓp, 1 ≤ p ≤ ∞. Then

‖x+ y‖p ≤ ‖x‖p + ‖y‖p,

Example 1.1.10. Lp spaces. Let (T,Σ, µ) be a measure space, 1 ≤ p <∞, and define

Lp(T, µ) := {f : T → F|f is Σ-measurable and ‖f‖Lp <∞}

where

‖f‖Lp :=

(∫

T

|f |p dµ

)1/p

.
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Lemma 1.1.11. Let (X, ‖ · ‖′) be a (semi-)normed space. Then

(i) N := {x ∈ X|‖x‖′ = 0} is a subspace of X;

(ii) ‖[x]‖ := ‖x‖′ defines a norm on X/N ;

(iii) if X is complete then (X/N, ‖ · ‖) is complete.

Theorem 1.1.12. Lp(T, µ) := Lp(T, µ)/N with the induced norm is a Banach space.

Remark 1.1.13. We treat elements of Lp as functions, not equivalence classes, and write
f ∈ Lp rather than [f ] ∈ Lp.

Theorem 1.1.14. (Hölder inequality for Lp.) Let 1 ≤ p ≤ ∞ and q be such that 1/p+1/q =
1. Let f ∈ Lp(T ), y ∈ Lq(T ). Then fg ∈ L1(T ) and

‖xy‖1 ≤ ‖x‖p‖y‖q.

Example 1.1.15. Spaces of measures. Let (T,Σ) be a measurable space. The space of
signed measures (F = R) or complex measures (F = C):

M(T,Σ) := {µ : Σ → F|µ is σ-additive}.

The variation norm is

‖µ‖ = |µ|(T ) := sup

{
n∑

j=1

|µ(Ej)|

∣∣∣∣∣T =
n⋃

j=1

Ej , n ∈ N

}
.

1.2 Basic Properties of Normed Spaces

Proposition 1.2.1. Let X be a normed space. Then

(i) xn → x and yn → y ⇒ xn + yn → x+ y;

(ii) λn → λ ∈ F, xn → x⇒ λnxn → λx;

(iii) xn → x⇒ ‖xn‖ → ‖x‖.

Corollary 1.2.2. If X is a normed space and U a subspace then Ū is also a subspace.

Definition 1.2.3. Two norms ‖ · ‖ and ‖ · ‖′ on X are equivalent if there are 0 ≤ m ≤ M
such that for all x ∈ X,

m‖x‖ ≤ ‖x‖′ ≤M‖x‖

Theorem 1.2.4. Let ‖ · ‖ and ‖ · ‖′ be two norms on X and (xn) a sequence in X. The
following are equivalent:

(i) ‖ · ‖ and ‖ · ‖′ are equivalent;

3



(ii) ‖xn − x‖ → 0 ⇔ ‖xn − x‖′ → 0;

(iii) ‖xn‖ → 0 ⇔ ‖xn‖
′ → 0.

Theorem 1.2.5. On a finite-dimensional vector space all norms are equivalent.

Theorem 1.2.6. For a normed space X, the following are equivalent:

(i) dimX <∞;

(ii) the closed unit ball {x ∈ X|‖x‖ ≤ 1} is compact;

(iii) every bounded sequence in X has a convergent subsequence.

1.3 Quotients and Sums of Normed Spaces

Definition 1.3.1. Let X be a normed space and A ⊆ X. The distance between x ∈ X and
A is d(x,A) := infy∈A ‖x− y‖.

Theorem 1.3.2. Let X be a normed space and U a subspace. For x ∈ X let [x] := x+ U ∈
X/U denote the equivalence class. Then

(i) ‖[x]‖ := d(x, U) defines a semi-norm on X/U with ‖[x]‖ ≤ ‖x‖;

(ii) if U is closed, then ‖ · ‖ is a norm on X/U ;

(iii) if X is complete and U is closed, then (X/U, ‖ · ‖) is a Banach space.

Lemma 1.3.3. In a semi-normed space X, the following are equivalent:

(i) X is complete;

(ii) if (xn) is a sequence in X with
∑∞

n=1 ‖xn‖ < ∞, then ∃x ∈ X such that ‖
∑N

n=1 xn −
x‖ → 0.

Theorem 1.3.4. Let X, Y be normed spaces.

(i) Let 1 ≤ p ≤ ∞. Then

‖(x, y)‖p :=

{
(‖x‖p + ‖y‖p)1/p p <∞
max{‖x‖, ‖y‖} p = ∞

defines a norm on X ⊕ Y ; let X ⊕p Y denote X ⊕ Y with this norm.

(ii) All these norms are equivalent and generate the product topoology on X × Y = X ⊕ Y .

(iii) If X, Y are Banach spaces then so is X ⊕p Y .
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1.4 Separability

Definition 1.4.1. A topological space is separable if it has a countable dense subset.

Lemma 1.4.2. A normed space X is separable if and only if there is a countable set A such
that X = spanA.

Examples 1.4.3. (i) If dimX <∞, X = span{e1, . . . , en}, then X is separable.

(ii) ℓp is separable for 1 ≤ p ≤ ∞.

Theorem 1.4.4. (Weierstrass.) The space of polynomials

P ([a, b]) := span{Xn : t 7→ tn|n ∈ N}

is dense in (C([a, b]), ‖ · ‖∞).

Corollary 1.4.5. (C([a, b]), ‖ · ‖∞) is separable.

Corollary 1.4.6. Lp([a, b]) is separable for 1 ≤ p ≤ ∞.

Corollary 1.4.7. Lp(R) is separable for 1 ≤ p ≤ ∞.

Definitions 1.4.8. Let A ⊆ C(T ).

(i) A is an algebra if it is a vector space over F such that f, g ∈ A ⇒ fg ∈ A.

(ii) A separates points if ∀s, t ∈ T with s 6= t, ∃f ∈ A such that f(s) 6= f(t).

(iii) If F = C, A is conjugate to itself if f ∈ A ⇒ f̄ ∈ A.

Theorem 1.4.9. (Stone-Weierstrass.) Let A ⊆ C(T ) be an algebra, where T is a compact
metric space. If A separates points, contains the constant functions, (and, in the case F = C,
is conjugate to itself), then A is dense in (C(T ), ‖ · ‖∞).

2 Functional Operators

2.1 Basic Properties of Linear Operators

Definitions 2.1.1. Let X, Y be normed spaces. A continuous linear map A : X → Y is
called an operator, or, in the case Y = F, a functional.

Theorem 2.1.2. Let X, Y be normed spaces and A : X → Y linear. Then the following are
equivalent:

(i) A is continuous;

(ii) A is continuous at 0 ∈ X;
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(iii) ∃M ≥ 0 such that ∀x ∈ X, ‖Ax‖Y ≤M‖x‖X ;

(iv) A is uniformly continuous.

Definitions 2.1.3. Let X, Y be normed spaces. Then

B(X, Y ) := {A : X → Y |A is linear and continuous}

denotes the vector space of bounded linear functions with operator norm

‖A‖B(X,Y ) := sup
‖x‖≤1

‖Ax‖

‖x‖
.

Theorem 2.1.4. (i) ‖ · ‖B(X,Y ) defines a norm on B(X, Y ).

(ii) If Y is complete then so is (B(X, Y ), ‖ · ‖B(X,Y )).

Theorem 2.1.5. Let D be a dense subspace of a normed space X, Y a Banach space, and
A ∈ B(D, Y ). Then A has a unique continuous continuation to X.

Lemma 2.1.6. Let X, Y , Z be normed spaces, B ∈ B(X, Y ), A ∈ B(Y, Z). Then AB ∈
B(X,Z) and ‖AB‖ ≤ ‖A‖‖B‖.

Examples 2.1.7.

Definitions 2.1.8. A bounded linear operator A : X → Y of normed spaces is an isomor-
phism if A is bijective and A−1 is continuous. If ‖Ax‖ = ‖x‖ for all x ∈ X, then A is
isometric. If two normed spaces X, Y allow for an (isometric) isomorphism A : X → Y ,
they are called (isometrically) isomorphic and we write X ∼= Y . I.e., isomorphisms are linear
surjections such that ∃m,M ≥ 0 such that ∀x ∈ X, m‖x‖ ≤ ‖Ax‖ ≤M‖x‖.

Definition 2.1.9. Let X, Y be normed spaces. A linear map A : X → Y is called a quotient
map if A maps the open unit ball in X onto the open unit ball in Y .

Proposition 2.1.10. If X, Y are normed spaces and A : X → Y is linear,

X
A //

π
!!B

BB
BB

BB
B Y

X
ker A

Ā

>>||||||||

Thus ‖Ā‖ = ‖A‖ and Ā is injective.

Theorem 2.1.11. If X, Y are normed spaces and A ∈ B(X, Y ),

X
A //

π
!!B

BB
BB

BB
B Y

X
ker A

Ā

>>||||||||

Ā is an isometric isomorphism if and only is A is an isometric isomorphism.
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Theorem 2.1.12. (Neumann series.) If X is a normed space, A ∈ B(X,X), and
∑∞

n=0A
n

coverges in B(X,X), then (id−A)−1 =
∑∞

n=0A
n ∈ B(X,X).

Remark 2.1.13. The assumptions of the above theorem are satisfied if X is complete and∑∞
n=0 ‖A

n‖ <∞, in particular if ‖A‖ ≤ 1.

2.2 Dual Spaces and the Representations

Definition 2.2.1. X∗ := B(X,F) is the dual space of the normed space X.

Remark 2.2.2. Since F = R or C is complete, X∗ is always a Banach space with norm
‖x′‖ := sup‖x‖≤1 |x

′(x)| for x′ ∈ X∗.

Theorem 2.2.3. (Duals of sequence spaces.) Let 1 ≤ p < ∞ and 1/p + 1/q = 1. Then the
map A : ℓq → (ℓp)∗ given by (Ax)(y) :=

∑∞
n=1 sntn where x = (sn) ∈ ℓq and y = (tn) ∈ ℓp is

an isometic isomorphism.

Remark 2.2.4. (ℓ∞)∗ is not isomorphic to ℓ1.

Theorem 2.2.5. (Duals of Lp spaces.) Let 1 ≤ p < ∞, 1/p + 1/q = 1 and (T,Σ, µ) a
σ-finite measure space. Then A : Lq(T ) → (Lp(T ))∗ given by (Ag)(f) :=

∫
T
fg dµ defines an

isometric isomorphism.

3 The Hahn-Banach Theorem

3.1 Continuation of Linear Functionals

Definition 3.1.1. p : X → R is sublinear if

(i) p(λx) = λp(x) for all λ ≥ 0, x ∈ X;

(ii) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

Examples 3.1.2. (i) Semi-norms are sublinear.

(ii) Linear maps are sublinear.

(iii) In ℓ∞, the map (tn) 7→ Re(lim supn tn) is sublinear.

Theorem 3.1.3. (Hahn-Banach Theorem, real linear algebra.) Let X be a real vector space
and U a subspace. Let p : X → R be sublinear and ℓ : U → R linear with ℓ(x) ≤ p(x) for all
x ∈ U . Then there is a linear continuation L : X → R of ℓ, i.e. L|U = ℓ with L(x) ≤ p(x)
for all x ∈ X.

Axiom 3.1.4. Zorn’s Lemma. Let (S,≤) be a partially ordered set. if every chain in S has
an upper bound, then S has at least one maximal element.
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Remark 3.1.5. Zorn’s Lemma is equivalent to the non-constructive Axiom of Choice.

Lemma 3.1.6. Let X be a complex vector space.

(i) If ℓ : X → R is a R-linear functional then ℓ̃(x) := ℓ(x) − iℓ(x) is a C-linear functional
and ℓ = Re ℓ̃.

(ii) If h : X → C is C-linear and ℓ = Reh, and ℓ̃ is as in (i), then ℓ is R-linear and h = ℓ̃.

(iii) If p : X → R is a semi-norm and ℓ : X → C is C-linear, then |ℓ(x)| ≤ p(x) for all
x ∈ X if and only if |Re ℓ(x)| ≤ p(x) for all x ∈ X.

(iv) If X is a normed space and ℓ : X → C is C-linear and continuous then ‖ℓ‖ = ‖Re ℓ‖.

Theorem 3.1.7. (Hahn-Banach Theorem, complex linear algebra.) Let X be a complex
vector space and U a subspace. Let p : X → R be sublinear and ℓ : U → R linear with
Re ℓ(x) ≤ p(x) for all x ∈ U . Then there is a C-linear continuation L : X → C of ℓ, i.e.
L|U = ℓ with ReL(x) ≤ p(x) for all x ∈ X.

Theorem 3.1.8. (Hahn-Banach Theorem, normed spaces.) Let X be a normed space and
U a subspace. For every u′ ∈ U∗, ∃x′ ∈ X∗ with x′|U = u′ and ‖x′‖ = ‖u′‖.

Corollary 3.1.9. If X is a normed space and 0 6= x ∈ X, then ∃x′ ∈ X∗ such that ‖x′‖ = 1
and x′(x) = ‖x‖.

Corollary 3.1.10. If X is a normed space and x ∈ X, then

‖x‖ = sup
‖x′‖≤1

|x′(x)|.

Remark 3.1.11. Note the symmetry between this result and

‖x′‖ := sup
‖x′‖≤1

|x′(x)|

for x′ ∈ X∗.

Corollary 3.1.12. Let X be a normed space an U a closed proper subspace. Then, given
x ∈ X \ U , ∃x′ ∈ X∗ such that x′|U = 0 and x′(x) 6= 0.

Corollary 3.1.13. Let X be a normed space and U a subspace. Then U is dense in X if
and only if x′ ∈ X∗ and x′|U = 0 ⇒ x′ = 0.

Theorem 3.1.14. Let X be a normed space. Then X∗ separable ⇒ X separable.

Remark 3.1.15. The converse is not true: (ℓ∞)∗ 6∼= ℓ1 because ℓ1 is separable but ℓ∞ is not.

Theorem 3.1.16. (Runge’s Approximation Theorem.) Let K ⊂ C be compact and let f be
analytic (holomorphic) on a neighbourhood Ω of K. Let P ⊂ C̄\K contain at least one point
from each connected component of C̄ \K. Then, given ε > 0, there is a rational function R
with poles in the set P such that maxz∈K |f(z) − R(z)| < ε.

Remark 3.1.17. C̄ \ K has at most countably many components, i.e. P can be chosen as
P =

⋃
j∈N

{αj}. The point α∞ in the unbounded neighbourhood of C̄ \K can be chosen as
α∞ = ∞.
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3.2 Reflexivity

Definitions 3.2.1. X∗∗ := (X∗)∗ is called the bidual / second dual / double dual of the
normed space X. Given x ∈ X, define i(x) : X∗ → F by i(x)(x′) := x′(x). This is a bounded
linear functional on X∗:

|i(x)(x′)| = |x′(x)| ≤ ‖x′‖‖x‖,

so ‖i(x)‖X∗∗ ≤ ‖x‖ <∞, so i(x) ∈ X∗∗.

Theorem 3.2.2. This map i : X → X∗∗ is a linear isometry, but is not generally surjective.

Corollary 3.2.3. Every normed space X is isometrically isomorphic to a dense subspace of
a Banach space.

Examples 3.2.4. This gives an elegant way of completing a normed space X.

(i) X := C(T ), X∗ = ℓ1, X∗∗ = ℓ∞.

(ii) X := ℓp, X∗ = ℓq, X∗∗ = ℓp for 1 < p <∞, 1/p+ 1/q = 1.

(iii) X := Lp, X∗ = Lq, X∗∗ = Lp for 1 < p <∞, 1/p+ 1/q = 1.

Definition 3.2.5. A Banach space X is called reflexive if X∗∗ ∼= X, i.e. i is surjective.

Remarks 3.2.6. A non-complete normed space cannot be reflexive. ℓp and Lp are reflexive
for 1 < p <∞. C(T ) is not reflexive.

Theorem 3.2.7. (i) Let U be a closed subspace of X. Then X reflexive ⇒ U reflexive.

(ii) Let X be a Banach space. Then X is reflexive ⇔ X∗ is reflexive.

(iii) Let X be reflexive. Then X is separable ⇔ X∗ is separable.

Remarks 3.2.8. (i) C(T ) is not reflexive, so C(T )∗ = ℓ1 is not reflexive, so (ℓ∞)∗ ⊇ ℓ1.

(ii) L1 is separable, but L∞ = (L1)∗ is not separable, so neither L1 nor L∞ is reflexive. In
particular, (L∞)∗ ⊇ L1.

3.3 Weak and Weak∗ Convergence

Definitions 3.3.1. Let X be a normed space.

(i) A sequence (xn) ⊆ X converges weakly to x ∈ X if x′(xn) → x′(x) for all x′ ∈ X∗.
Write this as xn ⇀ x, xn

σ
→ x, or xn

w
→ x.

(ii) A sequence (x′n) ⊆ X converges weakly∗ to x′ ∈ X∗ if x′n(x) → x′(x) for all x ∈ X (i.e.

pointwise convergence). Write this as xn
∗
⇀ x, or xn

σ∗

→ x. Since X∗ separates points
in X, weak limits are unique.
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Remarks 3.3.2. (i) xn → x⇒ xn ⇀ x; x′n → x′ ⇒ x′n
∗
⇀ x.

(ii) The converse implications are generally false.

(iii) We will see later that weak and weak∗ convergent sequences are bounded.

Theorem 3.3.3. (Arzela-Ascoli.) Let T be a separable metric space and (xn) ⊆ C(T ). If

(i) (xn) is bounded pointwisem i.e. ∀t ∈ T , ∃M(t) > 0 such that |xn(t)| ≤ M(t) for all
n ∈ N; and

(ii) (xn) is equicontinuous, i.e. ∀ε > 0, ∃δ > 0 such that ∀n ∈ N, d(s, t) < δ ⇒ |xn(s) −
xn(t)| < ε

then there is an x ∈ C(T ) and a subsequence (xnj
) such that xnj

→ x locally uniformly, i.e.
uniformly on compact subsets of T .

Corollary 3.3.4. (Banach-Alaoglu.) Let X be a separable normed space. Then every
bounded sequence in X∗ has a weakly∗ convergent subsequence.

Corollary 3.3.5. In a reflexive space, every bounded sequence has a weakly convergent sub-
sequence.

3.4 Adjoint Operators

Definition 3.4.1. Let X, Y be normed spaces and A ∈ B(X, Y ). The adjoint operator
A∗ : Y ∗ → X∗ is defined by (A∗y′)x = y′(Ax) for all x ∈ X, y′ ∈ Y ∗.

Theorem 3.4.2. A∗ ∈ B(Y ∗, X∗) and ‖A∗‖ = ‖A‖.

Lemma 3.4.3. Let A ∈ B(X, Y ) and B ∈ B(Y, Z). Then (BA)∗ = A∗B∗.

Lemma 3.4.4. The following diagram is commutative:

X
A //

iX
��

Y

iY
��

X∗∗
A∗∗

// Y ∗∗

and A∗∗ is a continuation of A in B(X∗∗, Y ∗∗).

Definitions 3.4.5. Let U ⊆ X and V ⊆ X∗ then the closed subspaces

U⊥ := {x′ ∈ X∗|x′(x) = 0 for all x ∈ U}

V⊥ := {x ∈ X|x′(x) = 0 for all x′ ∈ V }

are called the annihilators of U in X∗ and V in X.

10



Theorem 3.4.6. If A ∈ B(X, Y ) then imA = (kerA∗)⊥.

Corollary 3.4.7. Let A ∈ B(X, Y ) with imA closed. Then given y ∈ Y , the equation Ax = y
has a solution x ∈ X if and only if A∗y′ = 0 ⇒ y′(y) = 0. Thus, it is soluble for all y ∈ Y if
kerA∗ = 0.

Remarks 3.4.8. (i) The Hahn-Banach Theorem tells us that X∗ is rich enough to encode
many properties of X.

(ii) ‖x‖ = sup‖x′‖<1 |x
′(x)|.

(iii) X∗ separable ⇒ X separable.

(iv) X∗ reflexive ⇒ X reflexive.

(v) Weak limits are unique ⇒ weak convergence is useful.

(vi) ‖A‖ = ‖A∗‖ is useful.

4 Baire’s Theorem and Consequences

4.1 Baire’s Category Theorem

Definitions 4.1.1. Let X be a topological space and M ⊆ X.

(i) M is nowhere dense if M̄ has no interior points, i.e. X \ M̄ is dense in X.

(ii) M is meagre (or of the first category) if it is a countable union of nowhere dense sets.

(iii) M is fat (or of the second category) if it is not meagre.

Remark 4.1.2. Meagre sets are the topological equivalent of null sets in measure theory.
Countable unions of meagre sets are meagre.

Example 4.1.3. Let X be a normed space and U a closed proper subspace. Then U is
meagre.

Theorem 4.1.4. (Baire’s Category Theorem.) Let X be a complete metric space.

(i) M ⊆ X is meagre ⇒ X \M is dense in X.

(ii) X is of the second category.

Theorem 4.1.5. (Equivalent to Baire’s Theorem.) Let X be a complete metric space and
(Un) a sequence of open dense subsets. Then

⋃
n∈N

Un is dense in X.

Theorem 4.1.6. The set of nowhere differentiable continuous functions on [0, 1] is dense in
(C([0, 1],R), ‖ · ‖∞).
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4.2 The Principle of Uniform Boundedness

Theorem 4.2.1. (The Banach-Steinhaus Theorem.) Let X be a Banach space and Y a
normed space, I a dense set and Ai ∈ B(X, Y ) for i ∈ I. If supi∈I ‖Aix‖Y < ∞ for all
x ∈ X, then supi∈I ‖Ai‖B(X,Y ) <∞.

Corollary 4.2.2. For a subset M of a normed space X, M is bounded if and only if x′(M) ⊆
F is bounded for all x′ ∈ X∗.

Corollary 4.2.3. Weakly convergent sequences are bounded.

Corollary 4.2.4. Let X be a normed space and M ⊆ X∗, then M is bounded if and only if
the set {x′(x)|x′ ∈M} ⊆ F is bounded for all x ∈ X.

Corollary 4.2.5. Let X be a Banach space, Y a normed space, and (An) ⊆ B(X, Y ). If
Ax := limn→∞Anx exists for all x ∈ X then A ∈ B(X, Y ).

4.3 The Open Mapping Theorem

Definition 4.3.1. A map between topological spaces is open if it maps open sets to open
sets.

Lemma 4.3.2. For a linear map A : X → Y of normed spaces, the following are equivalent:

(i) A is open;

(ii) A maps open balls around 0 onto open neighbourhoods of 0: if Ur = {x ∈ X|‖x‖ < r},
Vε = {y ∈ Y |‖y‖ < ε} it holds that ∀r > 0, ∃ε > 0 such that Vε ⊆ A(Ur);

(iii) ∃ε > 0 such that Vε ⊆ A(U1).

Theorem 4.3.3. (Open Mapping Theorem.) Let X, Y be Banach spaces and let A ∈
B(X, Y ) be surjective. Then A is open.

Corollary 4.3.4. Let X, Y be Banach spaces and A ∈ B(X, Y ) bijective. Then A−1 is
continuous.

Corollary 4.3.5. Let ‖ · ‖ and ‖ · ‖′ be norms on X such that both (X, ‖ · ‖) and (X, ‖ · ‖′)
are Banach spaces. If ∃M < ∞ such that ‖x‖ ≤ M‖x‖′ for all x ∈ X, then ‖ · ‖ and ‖ · ‖′

are equivalent.

4.4 The Closed Graph Theorem

Definitions 4.4.1. Let X, Y be normed spaces, D ⊆ X a subspace, and A : D → Y linear.
Then A is closed if, for (xn) ⊆ D,

xn → x ∈ X
Axn → y ∈ Y

}
⇒

{
x ∈ D
Ax = y

For linear operators A defines on some domain D ⊆ X, we write dom(A) = D or A : X ⊇
dom(A) → Y .
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Remark 4.4.2. Note how closedness and continuity are different in the case D = X:

(i) xn → x;

(ii) Axn → y;

(iii) Ax = y;

A is continuous if (i) ⇒ (ii) and (iii). A is closed if (i) and (ii) ⇒ (iii).

Definition 4.4.3. For a linear map A : X ⊇ D → Y , D a subspace, the graph of A is
gr(A) := {(x,Ax) ∈ X × Y |x ∈ D}.

Lemma 4.4.4. Let X, Y , D be as before. Then A is closed if and only if gr(A) is closed in
X ⊆ Y .

Lemma 4.4.5. Let X, Y be Banach spaces, A : X ⊇ D → Y closed. Then

(i) D equipped with the graph norm |||x||| := ‖x‖X + ‖Ax‖Y is a Banach space;

(ii) A : (D, ||| · |||) → Y is continuous.

Theorem 4.4.6. Let X, Y be Banach spaces, A : X ⊇ D → Y closed and surjective. Then
A is open. If A is also injective, then A−1 is continuous.

Theorem 4.4.7. (Closed Graph Theorem.) Let X, Y be Banach spaces and A : X → Y
linear and closed. Then A is continuous.

Corollary 4.4.8. (Hellinger-Töplitz Theorem.) Let A : H → H be linear and everywhere
defined on a Hilbert space H with 〈x,Ay〉 = 〈Ax, y〉 for all x, y ∈ H. Then A is continuous.

5 Fréchet Spaces

5.1 Fréchet Spaces

Definitions 5.1.1. A family of semi-norms (‖ · ‖α)α∈A on a vector space X separates points
if ‖x‖α = 0 ∀α ∈ A⇒ x = 0. A vector space X with a family of norms that separates points
is called a locally convex space.

Example 5.1.2. C∞(R) with ‖x‖j := ‖x(j)‖∞.

Remarks 5.1.3. The natural topology on a locally convex space is the weakest topology in
which all the semi-norms ‖ · ‖α are continuous. The topology is metrizable if and only if A
is countable.
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Proposition 5.1.4. Let X be a vector space and (‖ · ‖j)j∈N0
a family of semi-norms that

separate points. Then

d(x, y) :=
∞∑

j=0

2−j ‖x− y‖j

1 + ‖x− y‖j

defines a metric on X.

Definition 5.1.5. A complete metric space X with the metric given by a countable family
(‖ · ‖j)j∈N0

of semi-norms that separate points is called a Fréchet space.

Since Fréchet spaces are complete, Baire’s Theorem applies, and so one can prove results
analagous to those of Section 4, such as Banach-Steinhaus and

Theorem 5.1.6. IfX, Y are Fréchet spaces and A : X → Y is a continuous linear surjection,
then A is open.

5.2 Schwartz Functions and Tempered Distributions

Definition 5.2.1. Given a multi-index α ∈ Nd
0, define |α| := α1 + · · · + αd and the mixed

partial derivative

∂α
t x :=

∂|α|x

∂α1t1 . . . ∂αdtd
.

Definition 5.2.2. The set functions of rapid decrease or Schwartz functions, S(Rd), is the
collection of φ ∈ C∞(Rd) for which

‖φ‖α,β := sup
x∈Rd

∣∣xα∂β
xφ(x)

∣∣ <∞

for all α, β ∈ N
d
0.

Theorem 5.2.3. S(Rd) with the countable family of semi-norms ‖ · ‖α,β is a Fréchet space.

Definitions 5.2.4. The topological dual space of S(Rd), i.e. the space of continuous lin-
ear maps S(Rd) → C, is denoted by S ′(Rd) and called the space of tempered distribu-
tions. Given φ ∈ S(Rd) define the associated tempered distribution Tφ ∈ S ′(Rd) by Tφψ :=∫

Rd φ(x)ψ(x) dx.

Lemma 5.2.5. Let T ∈ S(Rd)∗ be a linear functional. If there is one semi-norm ‖ · ‖α,β and
a constant C ≥ 0 such that |T (φ)| ≤ C‖φ‖α,β for all φ ∈ S(Rd), then T ∈ S ′(Rd).

Example 5.2.6. The δ-distribution. There is no function δb such that

∫

Rd

δb(x)φ(x) dx = φ(b).

However, δb is a tempered distribution.
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Remark 5.2.7. We can add distributions, multiply by scalars, and act on them with linear
operators. We cannot in general multiply two distributions, or take square roots.

Definition 5.2.8. For T ∈ S ′(Rd) define the distributional derivative ∂α
xT ∈ S ′(Rd) by

(∂α
xT )(φ) = T

(
(−1)|α|∂α

xφ
)

for all φ ∈ S(Rd).

Remarks 5.2.9. (i) ∂α
x : S ′ → S ′ is continuous since it is the adjoint of the continuous

map (−1)|α|∂α
x : S → S.

(ii) ∂α
x : S ′ → S ′ is an extension of the usual derivative ∂α

x : S → S in the sense that for
φ ∈ S, ∂α

xTφ = T∂α
x φ.

Examples 5.2.10. (i) The derivative of of a δ-distribution:

(∂α
x δb)(φ) = δb

(
(−1)|α|∂α

xφ
)

= (−1)|α|∂|α|x φ(b).

(ii) Let θ(x) := 0 for x ≤ 0, 1 for x > 0. Then ∂1
xTθ = d

dx
Tθ = δ0.

5.3 The Fourier Transform

Example 5.3.1. The free Schrödinger equation:

i∂tψ(t, x) = −
1

2
∆xψ(t, x)

with initial conditions ψ(0, ·) ∈ L2(Rd). This equation describes the free dynamics of a
quantim particle in Rd. The probability of finding the particle in a region Ω ⊆ Rd at time
t ∈ R is Pt(X ∈ Ω) :=

∫
Ω
|ψ(t, x)|2 dx.

Definitions 5.3.2. Let ψ ∈ L1(Rd), then

ψ̂(k) = (Fψ)(k) :=
1

(2π)d/2

∫

Rd

e−ik·xψ(x) dx

is the Fourier transform of ψ, and

ψ̌(k) = (F−1ψ)(k) :=
1

(2π)d/2

∫

Rd

eik·xψ(x) dx

is the inverse Fourier transform of ψ.

Theorem 5.3.3. (i) F and F−1 are continuous linear mappings S → S.
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(ii) For all multi-indices α, β ∈ Nd
0 we have

(
(ik)α∂β

kFψ
)

(k) =
(
F∂α

x (−ix)βψ
)
(k)

and, in particular,
x̂ψ(k) = i∇kψ̂(k),

∇̂xψ(k) = ikψ̂(k).

(iii) F−1F = FF−1 = idS .

(iv) For φ, ψ ∈ S(Rd),
∫

Rd ψ̂(x)φ(x) dx =
∫

Rd ψ(k)φ̂(k) dk.

(v) For φ ∈ S(Rd),
∫

Rd |φ(x)|2 dx =
∫

Rd |φ̂(k)|2 dk, i.e. ‖φ‖L2 = ‖φ̂‖L2.

Corollary 5.3.4. F : S → S and F−1 : S → S can be extended uniquely to continuous
linear operators F : L2 → L2 and F−1 : L2 → L2 satisfying F−1F = FF−1 = idL2.

Corollary 5.3.5. For T ∈ S ′ define T̂ (φ) = (FT )(φ) := T (φ̂) for φ ∈ S, i.e. FS′ = F ′
S .

Then F : S ′ → S ′ is a continuous linear map that extends F : S → S in the sense that for
φ ∈ S, T̂φ = Tφ̂.

Definition 5.3.6. Let g : R
d → C be a function for which the map Mg : S → S : φ 7→ gφ

is continuous. Then the pseudo-differential operator g(−i∇x) is defined by g(−i∇x)T :=
F−1g(k)FT , T ∈ S ′. This extends the usual derivative, since for g(k) = kα, f(−i∇x) = ∂α

x .

Example 5.3.7. Solution for free Schrödinger equation:

ψ(t, x) = e
i
2
∆xtψ(0, x).
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