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1 Preliminaries

Notation. U ⊆̊X will indicate that U is an open subset of X. pk denotes the
map z 7→ zk for k ∈ N. Γ will denote a lattice in C of the form Γ := Zw1+Zw2

with w1, w2 ∈ C linearly independent over R. All diagrams of maps are
commutative unless otherwise indicated. f : X, x → Y, y denotes a function
X → Y such that f(x) = y. I := [0, 1] ⊆ R is the unit interval.

Definitions 1.1. Let X be a (real) 2-dimensional manifold. A complex chart
on X is a homeomorphism φ : U → V with U ⊆̊X, V ⊆̊C. Complex charts
φj : Uj → Vj, j = 1, 2 are compatible if U ∩ V = ∅ or

φ2 ◦ φ−1
1 : φ1(U ∩ V )→ φ2(U ∩ V )

is holomorphic with holomorphic inverse, i.e. biholomorphic. A complex atlas
A on X is a collection of pairwise-compatible complex charts whose domains
cover X. Two complex atlasesA,A′ are analyticially equivalent if every chart
in A is compatible with every chart in A′. A complex structure Σ on X is
a choice of analytic equivalence class of complex atlases on X. A Riemann
surface is a 2-dimensional manifold X with a complex structure Σ = [A] on
X.

Examples 1.2. (i) C, or any U ⊆̊C is a Riemann surface with the identity
map as a global chart.
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(ii) P1 denotes the Riemann sphere, S2 identified with C ∪ {∞}, with two
charts given by stereographic projection from the North and South
poles, with coordinates z and w := 1/z respectively.

(iii) A torus C/Γ.

2 Maps of Riemann Surfaces

Definitions 2.1. Let X be a Riemann surface and U ⊆̊X: f : U → C is
holomorphic if for all charts φ1 : U1 → V1 on X, f ◦ φ−1

1 : φ1(U ∩ U1)→ C is
holomorphic. O(U) := {f : U → C | f holomorphic} forms a commutative
algebra over C. Let X, Y be Riemann surfaces: f : X → Y is holomorphic
if for all charts φ1 : U1 → V1 on X and φ2 : U2 → V2 on Y with f(U1) ⊆ U2,
φ2 ◦ f ◦ φ−1

1 : V1 → V2 is holomorphic.

U1
f //

φ1

��

U2

φ2

��
V1

φ2◦f◦φ−1
1

// V2

Proposition 2.2. A continuous map f : X → Y is holomorphic ⇐⇒ for
all V ⊆̊Y and φ ∈ O(V ), φ ◦ f ∈ O(f−1(V )).

Proposition 2.3. If φ : U → V is a chart on a Riemann surface X then φ
is holomorphic.

Definitions 2.4. Let X be a Riemann surface and U ⊆̊X: a meromorphic
function on U is a holomorphic function f : U ′ → C, where U ′ ⊆̊U , U\U ′ is
discrete, and for all p ∈ U\U ′, limz→p |f(z)| = ∞. U\U ′ is called the set of
poles of f . M(U) := {f : U → C | f meromorphic} forms a commutative
division algebra over C.

Proposition 2.5. Let f ∈M(X) with poles X\X ′. Define f̃ : X → P1 by

f̃(z) :=

{
f(z) z ∈ X ′,
∞ z ∈ X\X ′.

Then f̃ is a holomorphic map of Riemann surfaces.

Theorem 2.6 (The Identity Theorem for C). Let U ⊆̊C be connected, f, g ∈
O(U) and f |A = g|A for some A ⊆ U with a limit point. Then f = g on U .
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Theorem 2.7 (The Identity Theorem for Riemann surfaces). Let f, g : X →
Y be holomorphic maps of Riemann surfaces with f |A = g|A for some A ⊆ X
with a limit point. Then f = g on X.

Proposition 2.8. f : X → P1 holomorphic =⇒ f(z) ≡ ∞ or else f−1(∞)
is discrete and f ∈M(X).

Proposition 2.9 (Branching theorem). Let f : X → Y be a non-constant
holomorphic map of Riemann surfaces, a ∈ X, b := f(a) ∈ Y . Then there
exists a k ∈ N and charts φ1 : U1 → V1 and φ2 : U2 → V2 with a ∈ U1, b ∈ U2,
φ1(a) = φ2(b) = 0 such that φ2 ◦ f ◦ φ−1

1 : V1 → V2 is pk : z 7→ zk.

U1, a
f //

φ1

��

U2, b

φ2

��
V1, 0

pk=φ2◦f◦φ−1
1

// V2, 0

Definitions 2.10. If k > 1 above, we call a a branch point of f . If f has no
branch points we say that it is unbranched. If f : Y → X is locally given by
z 7→ zk at y ∈ Y , then we say that the multiplicity of f at y is ν(f, y) := k.

Corollary 2.11 (Open mapping theorem). For f : X → Y a non-constant
holomorphic map of Riemann surfaces, U ⊆̊X =⇒ f(U) ⊆̊Y .

Definition 2.12. A map of topological spaces f : X → Y is discrete if
f−1(p) ⊆ X is discrete for all p ∈ Y .

Corollary 2.13. A non-constant holomorphic map of connected Riemann
surfaces f : X → Y is both open and discrete.

Corollary 2.14. If f : X → Y injective and holomorphic, then f : X →
f(X) is biholomorphic.

Corollary 2.15 (Maximum principle). If f ∈ O(X) is non-constant, then
|f | : X → R does not attain a maximum.

Corollary 2.16. If X is a compact Riemann surface and f ∈ O(X), then f
is constant.

Theorem 2.17. If f : X → Y is a non-constant holomorphic map with X
compact and Y connected, then Y is compact and f is surjective.

Proposition 2.18. M(P1) is the space C(z) of rational functions in one
complex variable.
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Definition 2.19. Let Γ be a 2-dimensional lattice in C. f ∈M(C) is doubly
periodic if f(z + γ) = f(z) for all γ ∈ Γ.

Corollary 2.20. Let f : C → P1 be doubly periodic. Then f determines a
function F : C/Γ → P1 such that f = F ◦ π, where π : C → C/Γ is the
quotient map, and f is holomorphic / meromorphic if and only is F has the
same property. Moreover, f is either constant or surjective.

Definition 2.21. A map of topological spaces f : X → Y is a local home-
omorphism if every x ∈ X has a neighbourhood x ∈ U ⊆̊X with f |U a
homeomorphism.

Theorem 2.22. Let X be a Riemann surface, Y a Hausdorff topological
space and f : Y → X a local homeomorphism. Then there is a unique complex
structure on Y making f holomorphic.

3 Covering Maps and Spaces

Definitions 3.1. f : Y → X is a covering map if every x ∈ X has a neigh-
bourhood x ∈ U ⊆̊X such that f−1(U) =

⋃
j∈J Vj where the Vj are disjoint

open sets of Y with f |Vj
: Vj → U a homeomorphism for each j. Let X, Y, Z

be topological spaces and f : Z → X, g : Y → X continuous: a lifting of f
with respect to g is a continuous h : Z → Y such that f = g ◦ h, i.e.

Y

g

��
Z

f
//

h
>>~

~
~

~
X

Theorem 3.2. If p : Y → X is a covering map and γ : I → X is a curve,
then for all y0 ∈ Y with p(y0) = γ(0) there is a unique lifting γ̌ : I → Y with
γ̌(0) = y0.

Theorem 3.3. If p : Y → X is a covering map, γ1, γ2 : I → X curves
from a ∈ X to b ∈ X, with γ1 ' γ2 by a homotopy H : I × I → X, and
γ̌1, γ̌2 : I → Y liftings with γ̌1(0) = γ̌2(0) = y0 ∈ Y , then there is is lifting
Ȟ : I × I → Y of H such that Ȟ is a homotopy from γ̌1 to γ̌2. Conversely, if
Ȟ : I × I → Y is a homotopy from γ̌1 to γ̌2, then H = p ◦ Ȟ is a homotopy
from γ1 to γ2.
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Definitions 3.4. If p : Y → X is a covering map, a deck transformation of
Y over X is a homeomorphism f : Y → Y such that p ◦ f = p:

Y
f //

p
  A

AA
AA

AA
Y

p
~~~~

~~
~~

~~

X

The set of all deck transformations of Y over X is denoted Deck(Y/X). If
p : Y → X is a covering map with X path connected and Y connected and
simply connected, we call p : Y → X the universal covering space of X.

Theorem 3.5. If p : Y → X is a universal covering and q : Z → X a
connected covering, then for all y0 ∈ Y and z0 ∈ Z with p(y0) = q(z0) =:
x0 ∈ X, there exists a unique f : Y → Z such that q ◦ f = p and f(y0) = z0:

Y, y0

p
##G

GG
GG

GG
GG

f //_________ Z, z0

q
{{www

ww
ww

ww

X, x0

Theorem 3.6. If p : Y → X is a universal covering space, then Deck(Y/X)
∼= π1(X, x0) as groups for any x0 ∈ X.

Definitions 3.7. A topological space X is locally compact if every x ∈ X
has a neighbourhood x ∈ U ⊆̊X with U ⊆ K for some compact K ⊆ X.
A map of locally compact spaces f : Y → X is proper if K ⊆ X compact
=⇒ f−1(K) ⊆ Y compact.

Lemma 3.8. If f : Y → X is a discrete proper map of locally compact
spaces, then for all x ∈ X, f−1(x) is finite, and for all open neighbourhoods
f−1(x) ⊆ V ⊆̊Y there is a neighbourhood x ∈ U ⊆̊X with f−1(U) ⊆ V .

Theorem 3.9. If X, Y are locally compact Hausdorff spaces with f : Y → X
a discrete proper local homeomorphism, then f is a covering map.

Proposition 3.10. If f is an unbranched proper non-constant map of Rie-
mann surfaces then f is a local homeomorphism, and hence a covering map.

Theorem 3.11. If f : Y → X is a proper non-constant holomorphic map
of connected Riemann surfaces, then there exists an n ∈ N such that for all
x ∈ X,

∑
y∈f−1(x) ν(f, y) = n.

Definition 3.12. The above n is called the number of sheets of f , denoted
sh(f).
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Corollary 3.13. If X is a connected Riemann surface with f ∈ M(X)
then f has the same number of poles as it has zeroes (both counted with
multiplicity).

Corollary 3.14. A polynomial p ∈ C[z] has deg p roots counted with multi-
plicity.

Corollary 3.15. There is no f ∈M(C/Γ) with a single pole of multiplicity
1.

Theorem 3.16 (Uniformization theorem). If Y is a simply connected Rie-
mann surface, then Y is biholomorphic to either P1, C or the unit disc
D := {z ∈ C | |z| < 1}.

Theorem 3.17. If X is a Riemann surface and f : X → D∗ := D\{0} a
holomorphic covering map, then either

(i) sh(f) =∞ and there is a biholomorphic φ : X → H := {z ∈ C | Re z <
0} with exp ◦φ = f :

X

f !!B
BB

BB
BB

B
φ //_______ H

exp
}}||

||
||

||

D∗

or

(ii) sh(f) = k ∈ N and there is a biholomorphic φ : X → D∗ with pk◦φ = f :

X

f !!B
BB

BB
BB

B
φ //_______ D∗

pk}}zz
zz

zz
zz

D∗

Theorem 3.18. If X is a Riemann surface and f : X → D is a proper non-
constant biholomorphic map unbranched over D∗, then there is a k ∈ N and
a biholomorphic φ : X → D such that f = pk ◦ φ:

X

f   A
AA

AA
AA

φ //_______ D

pk~~~~
~~

~~
~~

D
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4 Analytic Continuation

Definitions 4.1. Let X be a topological space. A presheaf F of Abelian
groups1 is a collection of data:

(i) for each U ⊆̊X, an Abelian group F(U);

(ii) for each inclusion U ⊆ V , a restriction map ρUV : F(V ) → F(U), a
homomorphism of Abelian groups such that

(b) ρUU = id;

(b) U ⊆ V ⊆ W =⇒ ρUV ◦ ρVW = ρUW .

For s ∈ F(V ), write s|U := ρUV (s). A presheaf F is a sheaf if, for {Ui}i∈I a
collection of open subsets of X, with U :=

⋃
i∈I Ui,

(i) if s ∈ F(U) and s|Ui
= 0 for all i ∈ I then s = 0. (Hence F(∅) = 0.)

(ii) given si ∈ F(Ui) with si|Ui∩Uj
= sj|Ui∩Uj

for all i, j ∈ I, there is an
s ∈ F(U) with s|Ui

= si.

Let F be a sheaf on X and a ∈ X. A germ of F at a ∈ X is a pair (U, s),
where a ∈ U ⊆̊X and s ∈ F(U). Two germs (U, s) and (U ′, s′) are equivalent
if there is an open neighbourhood a ∈ V ⊆ U ∩U ′ with s|V = s′|V . The stalk
of F at a is

Fa :=
{germs (U, s) of F at a}

∼
.

Fa is an Abelian group via

(U, s) + (U ′, s′) := (U ∩ U ′, s|U∩U ′ + s′|U∩U ′) .

Define ρa : F(U) → Fa, where a ∈ U by ρa(s) := (U, s). The éspace étalé
of F is |F| :=

∐
a∈X Fa, with p : |F| → X, p(φ) := a ∈ X for φ ∈ Fa.

Define open sets in |F| by [U, s] := {ρa(s)|a ∈ U}, and [U, s] ⊆̊ |F| if U ⊆̊X,
s ∈ F(U).

Theorem 4.2. B :=
{

[U, f ]
∣∣U ⊆̊X, f ∈ F(U)

}
is a basis for a topology on

|F| with respect to which p : |F| → X is a local homeomorphism.

Corollary 4.3. Let X be a Riemann surface and O the sheaf of holomorphic
functions, with p : |O| → X. If |O| is Hausdorff and Y a connected compo-
nent of |O| then p : Y → X is a local homeomorphism and there is a unique
complex stucture on Y making p holomorphic.

1We can also have presheaves of sets, rings, fields, vector spaces, etc., with the appro-
priate morphisms.
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Definition 4.4. A presheaf F satisfies the identity theorem if whenever
U ⊆̊X is connected and f, g ∈ F(U) are such that ρa(f) = ρa(g) for some
a ∈ U , it follows that f = g.

Corollary 4.5. O satisfies the identity theorem for any Riemann surface X.

Theorem 4.6. If X is a locally connected Hausdorff space and F is a
presheaf on X satisfying the identity theorem, then |F| is Hausdorff.

Definition 4.7. Let X be a Riemann surface, γ : I → X a curve from a
to b: ψ ∈ Ob is an analytic continuation of φ ∈ Oa along γ if the following
holds: there exists a family φt ∈ Oγ(t), t ∈ I, with φ0 = φ, φ1 = ψ such that

for all τ ∈ I there is an open neighbourhood τ ∈ T ⊆̊ Iand a U ⊆̊X with
γ(T ) ⊆ U and f ∈ O(U) such that φt = ργ(t)(f) for all t ∈ T . Equivalently:

there exists a partition 0 = t0 < t1 < · · · < tr = 1 of I and Ui ⊆̊X with
γ([ti−1, ti]) ⊆ Ui and fi ∈ O(Ui) such that

(i) φ is a germ of f1 at a; ψ is a germ of fr at b;

(ii) fi|Vi
= fi+1|Vi

where Vi is the connected component of Ui ∩ Ui+1 con-
taining γ(ti).

Lemma 4.8. Let X be a Riemann surface, γ : I → X a curve from a to b.
Then ψ ∈ Ob is an analytic continuation of φ ∈ Oa if and only if there is a
lift γ̌ : I → |O| of γ such that γ̌(0) = φ, γ̌(1) = ψ.

Theorem 4.9 (Monodromy theorem). Let X be a Riemann surface, γ0, γ1 : I →
X two homotopic curves from a to b. Suppose that γs, 0 ≤ s ≤ 1, is a homo-
topy of γ0 into γ1, and suppose that φ ∈ Oa admits an analytic continuation
to ψs ∈ Ob for every s. Then ψs is independent of s.

Theorem 4.10. Let X, Y be Hausdorff topological spaces, p : Y → X a local
homeomorphism. Let a, b ∈ X, ǎ ∈ Y with p(ǎ) = a. Let γs : I → X be a
continuous family of curves connecting a to b. If each γs can be lifted to a
curve γ̌s with γ̌s(0) ≡ ǎ, then γ̌0(1) = γ̌1(1).

Corollary 4.11. If X is a simply connected Riemann surface, a ∈ X, and
φ ∈ Oa admits an analytic continuation along every curve in X starting at
a, then there is an f ∈ O(X) such that ρa(f) = φ.

Definitions 4.12. Let p : Y → X be an unbranched holomorphic map of
Riemann surfaces, a local homeomorphism, so locally biholomorphic. Define
the pull-back isomorphism of rings (stalks) p∗ : OX,p(y) → OY,y by

p∗(U, f) :=
(
p−1(U), f ◦ p

)
.

8



Define the inverse, the push-forward isomorphism, p∗ : OY,y → OX,p(y), by

choosing a neighbourhood y ∈ V ⊆̊Y such that p|V : V → p(V ) is biholo-
morphic and setting

p∗(U, g) :=
(
p(U ∩ V ), g ◦ p|−1

V

)
.

Let X be a Riemann surface, a ∈ X, φ ∈ Oa. (Y, p, f, b) is an analytic
continuation of φ if

(i) Y is a Riemann surface;

(ii) p : Y → X is an unbranched holomorphic map;

(iii) f : Y → C is holomorphic;

(iv) b ∈ Y satisifies p(b) = a and p∗(ρb(f)) = φ.

(Y, p, f, b) is maximal if it satisfies the following: if (Z, q, g, c) is any other
analytic continuation of φ then there is a unique holomorphic F : Z → Y
with F (c) = b, q = p ◦ F , and g = f ◦ F , i.e.

Z, c

q
""E

EE
EE

EE
E

F //________ Y, b

p
||yy

yy
yy

yy

X, a

Lemma 4.13. If X is a Riemann surface, a ∈ X, φ ∈ Oa, (Y, p, f, b) an
analytic continuation of φ and γ̌ : I → Y is a curve with γ̌(0) = b, γ̌(1) =
y ∈ Y , then ψ := p∗(ρy(f)) ∈ OX,p(y) is an analytic continuation of φ along
γ := p ◦ γ̌.

Theorem 4.14 (Existence of maximal analytic continuations). Let X be a
Riemann surface, a ∈ X, φ ∈ Oa. Then there exists a maximal analytic
continuation of φ.

Theorem 4.15. Let X be a Riemann surface, A ⊆ X discrete, X ′ := X\A,
Y ′ another Riemann surface, and π′ : Y ′ → X ′ a proper unbranched holo-
morphic map. Then π′ extends to a branched proper map, i.e. there is a
Riemann surface Y with π : Y → X proper, and φ biholomorphic:

Y \π−1(A)

π
%%JJJJJJJJJJ

φ //_______ Y ′

π′~~}}
}}

}}
}}

X ′
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Definition 4.16. We define the Riemann surface of
√
f(z), where f is a

polynomial with no multiple roots, deg f = 2g + 2, as follows:

(i) φ := a germ of some branch of
√
f(z) at some a ∈ X ′ := C\{z|f(z) =

0}.

(ii) (Y ′, p′, f, b) := a maximal analytic continuation of φ.

(iii) Extend p′ : Y ′ → X ′ to p : Y → X := P1 by adding one branch point
over each zero of f and two distinct points over ∞.

Y with p : Y → X is the Riemann surface of
√
f(z).

5 Integration of Differential 1-Forms

Definitions 5.1. Writing z = x + iy, a differential 1-form on V ⊆̊C is
an expression f1 dx + f2 dy for some differentiable f1, f2 : V → C. If p =
p1 + ip2 : U → V is holomorphic and ω := f1 dx+ f2 dy is a 1-form on V the
pull-back is

p∗ω :=

(
(f1 ◦ p)

∂p1

∂x
+ (f2 ◦ p)

∂p2

∂y

)
dx+

(
(f1 ◦ p)

∂p1

∂y
+ (f2 ◦ p)

∂p2

∂x

)
dy

If f : V → C is differentiable, define df := ∂f
∂x

dx + ∂f
∂y

dy, so that p∗ω =

(f1 ◦ p) dp1 + (f2 ◦ p) dp2. We define dz := dx+ i dy and dz̄ := dx− i dy.

Proposition 5.2. If f : V → C is holomorphic, then df = f ′(z) dz.

Definition 5.3. A differential 1-form on a Riemann surface X is a choice,
for each chart ψ : U → V ⊆̊C, of a 1-form ωψ on V such that if ψj : Uj → Vj,
j = 1, 2, are compatible charts with ψ2 ◦ ψ−1

1 : ψ1(U1 ∩ U2) → ψ2(U1 ∩ U2)
holomorphic, then

(ψ2 ◦ ψ−1
1 )∗

(
ωψ2|ψ2(U1∩U2)

)
= ωψ1|ψ1(U1∩U2)

A holomorphic 1-form on X is a 1-form locally of the form f(z) dz for some
holomorphic f ; a meromorphic 1-form on X is a 1-form locally of the form
f(z) dz for some mermorphic f . Denote by Ω1(X) the C-vector space of
holomorphic 1-forms on X.

Proposition 5.4. If X is a Riemann surface and F(U) := {differential 1-
forms on U} for U ⊆̊X, then F is a sheaf of vector spaces. Similarly for
holomorphic and meromorphic 1-forms.
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Proposition 5.5. If p : U → V and f(z) dz are holomorphic then so is
p∗(f(z) dz) = f(p(z)) dp.

Definition 5.6. If p : Y → X is holomorphic and ω is a 1-form on X then
define the pull-back p∗ω on Y by (p∗ω)ψ1 := (ψ1 ◦ f ◦ψ−1

2 )(ωψ2) for ψj : Uj →
Vj, j = 1, 2, charts on Y and X respectively.

Theorem 5.7 (Chain rule). If f : X → Y , g : Y → Z are maps of Riemann
surfaces and ω is a 1-form on Z then (g ◦ f)∗(ω) = f ∗(g∗(ω)).

Theorem 5.8. If X is a compact Riemann surface, then dimC Ω1(X) <∞;
in fact, dimC Ω1(X) = the genus of X.

Definition 5.9. Let ω be a 1-form on X, γ : I → X a piecewise differentiable
curve, i.e. take a partition 0 = t0 < t1 < · · · < tr = 1 of I and charts
zk = xk + iyk : Uk → Vk with γ([tk−1, tk]) ⊆ Uk and xk ◦γ|[tk−1,tk], yk ◦γ|[tk−1,tk]

of class C1. Write ω = fk dxk + gk dyk on Uk. The integral of ω over γ is∫
γ

ω :=
r∑

k=1

∫ tk

tk−1

fk(γ(t))
d(xk(γ(t)))

dt
+ gk(γ(t))

d(yk(γ(t)))

dt
dt

Theorem 5.10 (Fundamental theorem of calculus). Let X be a Riemann
surface, γ : I → X piecewise smooth, and F : X → C differentiable. Then∫
γ

dF = F (γ(1))− F (γ(0)).

Definition 5.11. ω = f1 dx + f2 dy is closed if ∂f1
∂y

= ∂f2
∂x

. Holomorphic
1-forms are always closed.

Proposition 5.12. If ω is a closed 1-form on X and p ∈ X then there is a
neighbourhood p ∈ U ⊆̊X such that ω|U = dF for some F : U → C.

Theorem 5.13. Let X be a Riemann surface and ω ∈ Ω1(X). Then there
is a covering map p : X̌ → X with X̌ connected and a function F : X̌ → C
such that p∗ω = dF .

Corollary 5.14. If X is simply connected and ω ∈ Ω1(X) then there is a
F : X → C such that ω = dF .

Corollary 5.15. We can assume that X̌ is the universal cover X̃ of X.

Theorem 5.16. If X is a Riemann surface, p : X̃ → X the universal cover,
ω ∈ Ω1(X), p∗ω = dF , γ : I → X a curve that lifts to γ̌ : I → X̃, then∫
γ
ω = F (γ̌(1))− F (γ̌(0)).
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Corollary 5.17. If X is a Riemann surface, ω ∈ Ω1(X), γ1, γ2 : I → X
homotopic curves from a to b, then

∫
γ1
ω =

∫
γ2
ω.

Definitions 5.18. Let X be a Riemann surface and ω ∈ Ω1(X). We have
the period homomorphism of ω, π1(X, x0) → C, defined by [γ] 7→

∫
γ
ω.
∫
γ
ω

is called the period integral of ω. The image of the period homomorphism is
the period lattice Γ ⊂ C.

Theorem 5.19. If X is a Riemann surface and ω ∈ Ω1(X), then ω = dF
for some F ∈ O(X) if and only if the period homomorphism of ω is the zero
homomorphism.

Corollary 5.20. If X is a compact Riemann surface and ω1, ω2 ∈ Ω1(X)
have the same period homomorphism, then ω1 = ω2.
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