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1 Preliminaries

Notation. U C X will indicate that U is an open subset of X. pj denotes the
map z — 2¥ for k € N. T" will denote a lattice in C of the form I' := Zw, +Zw,
with wy,wy € C linearly independent over R. All diagrams of maps are
commutative unless otherwise indicated. f: X,z — Y,y denotes a function
X — Y such that f(z) =y. I :=[0,1] C R is the unit interval.

Definitions 1.1. Let X be a (real) 2-dimensional manifold. A complex chart
on X is a homeomorphism ¢: U — V with U C X, V CC. Complex charts
¢;: U; — V;, j = 1,2 are compatible it UNV = or

Grodr g1 (UNV) = do(UNV)

is holomorphic with holomorphic inverse, i.e. biholomorphic. A complex atlas
A on X is a collection of pairwise-compatible complex charts whose domains
cover X. Two complex atlases A, A’ are analyticially equivalent if every chart
in A is compatible with every chart in A". A complex structure ¥ on X is
a choice of analytic equivalence class of complex atlases on X. A Riemann
surface is a 2-dimensional manifold X with a complex structure ¥ = [A] on
X.

Examples 1.2. (i) C, or any U C C is a Riemann surface with the identity
map as a global chart.



(i) P! denotes the Riemann sphere, S? identified with C U {oo}, with two
charts given by stereographic projection from the North and South
poles, with coordinates z and w := 1/z respectively.

(iii) A torus C/T.

2 Maps of Riemann Surfaces

Definitions 2.1. Let X be a Riemann surface and U C X: f:U— Cis
holomorphic if for all charts ¢: Uy — V3 on X, fog;': ¢ (UNU,) — Cis
holomorphic. O(U) := {f: U — C | f holomorphic} forms a commutative
algebra over C. Let XY be Riemann surfaces: f: X — Y is holomorphic
if for all charts ¢1: Uy — Vi on X and ¢o: Uy — Vo on Y with f(U;) C Us,
¢0 f ot Vi — Vy is holomorphic.
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Prop?sition 2.2. A continuous map f: X — Y is holomorphic <= for
alVCY and ¢ € O(V), po f € O(f V).

Proposition 2.3. If p: U — V s a chart on a Riemann surface X then ¢
1s holomorphic.

Definitions 2.4. Let X be a Riemann surface and U C X: a meromorphic
function on U is a holomorphic function f: U’ — C, where U' CU, U\U' is
discrete, and for all p € U\U’, lim,_,,, | f(2)| = oco. U\U’ is called the set of
poles of f. M(U) :== {f: U — C | f meromorphic} forms a commutative
division algebra over C.

Proposition 2.5. Let f € M(X) with poles X\X'. Define f: X =Py

= fflz) ze X',
f(z)'_{oo ze X\ X'

Then f is a holomorphic map of Riemann surfaces.

Theorem 2.6 (The Identity Theorem for C). Let U C C be connected, f, g €
O(U) and f|s = g|a for some A C U with a limit point. Then f =g on U.



Theorem 2.7 (The Identity Theorem for Riemann surfaces). Let f,g: X —
Y be holomorphic maps of Riemann surfaces with f|s = g|a for some A C X
with a limit point. Then f =g on X.

Proposition 2.8. f: X — P! holomorphic = f(z) = oo or else f~(o0)
is discrete and f € M(X).

Proposition 2.9 (Branching theorem). Let f: X — Y be a non-constant
holomorphic map of Riemann surfaces, a € X, b:= f(a) € Y. Then there
exists a k € N and charts ¢1: Uy — Vi and ¢o: Uy — Vo with a € Uy, b € Us,
¢1(a) = ¢o(b) = 0 such that ¢y o fod;t: Vi — Vy is p: 2+ 2P,

Ulaa U2Jb
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Definitions 2.10. If £ > 1 above, we call a a branch point of f. If f has no
branch points we say that it is unbranched. If f: Y — X is locally given by
z— zF at y € Y, then we say that the multiplicity of f at y is v(f,y) := k.

Corollary 2.11 (Open mapping theorem). For f: X — Y a non-constant
holomorphic map of Riemann surfaces, UC X = f(U)CY.

Definition 2.12. A map of topological spaces f: X — Y is discrete if
f~Y(p) C X is discrete for all p € Y.

Corollary 2.13. A non-constant holomorphic map of connected Riemann
surfaces f: X — 'Y is both open and discrete.

Corollary 2.14. If f: X — Y injective and holomorphic, then f: X —
f(X) is biholomorphic.

Corollary 2.15 (Maximum principle). If f € O(X) is non-constant, then
|f]: X — R does not attain a mazimum.

Corollary 2.16. If X is a compact Riemann surface and f € O(X), then f
15 constant.

Theorem 2.17. If f: X — Y is a non-constant holomorphic map with X
compact and Y connected, then Y is compact and f is surjective.

Proposition 2.18. M(P') is the space C(z) of rational functions in one
complex variable.



Definition 2.19. Let I" be a 2-dimensional lattice in C. f € M(C) is doubly
periodic if f(z+y) = f(z) for all vy € T".

Corollary 2.20. Let f: C — P! be doubly periodic. Then f determines a
function F: C/T — P! such that f = F ox, where 7: C — C/T is the
quotient map, and f is holomorphic / meromorphic if and only is F has the
same property. Moreover, f is either constant or surjective.

Definition 2.21. A map of topological spaces f: X — Y is a local home-
omorphism if every x € X has a neighbourhood z € U C X with f|y a
homeomorphism.

Theorem 2.22. Let X be a Riemann surface, Y a Hausdorff topological
space and f:Y — X a local homeomorphism. Then there is a unique complex
structure on 'Y making f holomorphic.

3 Covering Maps and Spaces

Definitions 3.1. f: Y — X is a covering map if every x € X has a neigh-
bourhood z € U C X such that f~'(U) = U,cs Vi where the V; are disjoint
open sets of Y with f|y,: V; — U a homeomorphism for each j. Let X,Y,Z
be topological spaces and f: Z — X, g: Y — X continuous: a lifting of f
with respect to g is a continuous h: Z — Y such that f = goh, i.e.

ng)X

Theorem 3.2. If p: Y — X s a covering map and v: I — X is a curve,
then for all yo € Y with p(yo) = 7(0) there is a unique lifting ¥: I — Y with

’7(0) = Yo-

Theorem 3.3. If p: Y — X is a covering map, v1,7%: I — X curves
froma € X tob € X, with v1 =~ v by a homotopy H: [ x I — X, and
F1,92: I — Y liftings with 51(0) = 42(0) = yo € Y, then there is is lifting
H:IxI—Y of H such that H is a homotopy from 5, to 5. Conversely, if

H: I x1I—=Y s ahomotopy from ¥, to 2, then H = po H is a homotopy
from v, to vs.



Definitions 3.4. If p: Y — X is a covering map, a deck transformation of
Y over X is a homeomorphism f: Y — Y such that po f = p:

y — vy
N
X
The set of all deck transformations of Y over X is denoted Deck(Y/X). If

p: Y — X is a covering map with X path connected and Y connected and
simply connected, we call p: Y — X the universal covering space of X.

Theorem 3.5. If p: Y — X is a universal covering and q: Z — X a
connected covering, then for all yo € Y and zy € Z with p(yo) = q(zo)
xog € X, there exists a unique f:Y — Z such that go f =p and f(yo) =

Theorem 3.6. If p: Y — X is a universal covering space, then Deck(Y/X)
= (X, z0) as groups for any xo € X .

Definitions 3.7. A topological space X is locally compact if every x € X
has a neighbourhood x € UQX with U C K for some compact K C X.
A map of locally compact spaces f: Y — X is proper it K C X compact
= f~Y(K) CY compact.

Lemma 3.8. If f: Y — X is a discrete proper map of locally compact
spaces, then for all x € X, f~1(x) is finite, and for all open neighbourhoods
[~Yx) CV CY there is a neighbourhood x € U C X with f~1(U) C V.

Theorem 3.9. If XY are locally compact Hausdorff spaces with f: Y — X
a discrete proper local homeomorphism, then f is a covering map.

Proposition 3.10. If f is an unbranched proper non-constant map of Rie-
mann surfaces then f is a local homeomorphism, and hence a covering map.

Theorem 3.11. If f: Y — X is a proper non-constant holomorphic map
of connected Riemann surfaces, then there exists an n € N such that for all

xeX?Zyef (fy)—n

Definition 3.12. The above n is called the number of sheets of f, denoted
sh(f).



Corollary 3.13. If X is a connected Riemann surface with f € M(X)
then f has the same number of poles as it has zeroes (both counted with
multiplicity).

Corollary 3.14. A polynomial p € C[z] has degp roots counted with multi-
plicity.

Corollary 3.15. There is no f € M(C/T") with a single pole of multiplicity
1.

Theorem 3.16 (Uniformization theorem). If Y is a simply connected Rie-
mann surface, then Y is biholomorphic to either P, C or the unit disc
D:={zeC| |z <1}.

Theorem 3.17. If X is a Riemann surface and f: X — D* := D\{0} a
holomorphic covering map, then either

(1) sh(f) = oo and there is a biholomorphic p: X — H :={z € C|Rez <
0} with expog = f:

Xx---%-—»H
N
D*

or

X---2-—>pr
D*

Theorem 3.18. If X is a Riemann surface and f: X — D is a proper non-
constant biholomorphic map unbranched over D*, then there is a k € N and
a biholomorphic ¢: X — D such that f = py o ¢:

x---%--»p
N
D



4 Analytic Continuation

Definitions 4.1. Let X be a topological space. A presheaf F of Abelian
groups! is a collection of data:

(i) for each U C X, an Abelian group F(U);

(i) for each inclusion U C V, a restriction map pyyv: F(V) — F(U), a
homomorphism of Abelian groups such that

(b) puv =id;
(b) UCV CW = pyvopvw = puw-

For s € F(V), write s|y := pyv(s). A presheaf F is a sheaf if, for {U,}icr a
collection of open subsets of X, with U :=J,_; Uj,

(i) if s € F(U) and s|y, =0 for all ¢ € I then s = 0. (Hence F()) = 0.)

el

(i) given s; € F(U;) with s;
s € F(U) with s|y, = s;.

vinv; = Sjlunu, for all 4,5 € I, there is an

Let F be a sheaf on X and a € X. A germ of F at a € X is a pair (U, s),
where a € UC X and s € F(U). Two germs (U, s) and (U’ s') are equivalent
if there is an open neighbourhood a € V- C UNU’ with s|y = §'|y. The stalk

of F at a is
{germs (U, s) of F at a}

~Y

F, =

F. is an Abelian group via
(U7 8) + (U/7 SI) = (U N Ulu S‘UOU’ + SI‘UQU’> .

Define p,: F(U) — F,, where a € U by p,(s) := (U,s). The éspace étalé
of Fis |F| := [l,ex Fa, with p: |[F| — X, p(¢) = a € X for ¢ € F,.
Define open sets in |F| by [U,s] := {pa(s)|a € U}, and [U,s] C |F| if U C X,
se F(U).

Theorem 4.2. B := {[U, f] ‘UéX,f € ]-"(U)} is a basis for a topology on
| F| with respect to which p : |F| — X is a local homeomorphism.

Corollary 4.3. Let X be a Riemann surface and O the sheaf of holomorphic
functions, with p: |O| — X. If |O| is Hausdorff and Y a connected compo-
nent of |O] then p: Y — X is a local homeomorphism and there is a unique
complex stucture on Y making p holomorphic.

'We can also have presheaves of sets, rings, fields, vector spaces, etc., with the appro-
priate morphisms.



Definition 4.4. A presheaf F satisfies the identity theorem if whenever
U C X is connected and f,g € F(U) are such that p,(f) = pa(g) for some
a € U, it follows that f = g.

Corollary 4.5. O satisfies the identity theorem for any Riemann surface X .

Theorem 4.6. If X s a locally connected Hausdorff space and F is a
presheaf on X satisfying the identity theorem, then |F| is Hausdorff.

Definition 4.7. Let X be a Riemann surface, 7v: I — X a curve from a
to b: ¢ € Oy is an analytic continuation of ¢ € O, along ~ if the following
holds: there exists a family ¢, € O, t € I, with ¢g = ¢, ¢ = 1 such that
for all 7 € I there is an open neighbourhood 7 € Ti[and a UQX with
Y(T) CU and f € O(U) such that ¢, = pyy(f) for all t € T. Equivalently:
there exists a partition 0 = tg < t; < --- < t, = 1 of I and U; C X with
Y([ti—1,t:]) € U; and f; € O(U;) such that

(i) ¢ is a germ of f at a; ¥ is a germ of f, at b;

(i) filv; = fit1lv; where V; is the connected component of U; N U;4; con-
taining ~y(¢;).

Lemma 4.8. Let X be a Riemann surface, v: I — X a curve from a to b.
Then 1 € Oy is an analytic continuation of ¢ € O, if and only if there is a

lift 5: I — |O| of v such that 5(0) = ¢, F(1) = 1.

Theorem 4.9 (Monodromy theorem). Let X be a Riemann surface, vy, v1: I —
X two homotopic curves from a to b. Suppose that vs, 0 < s < 1, is a homo-
topy of vo into v1, and suppose that ¢ € O, admits an analytic continuation
to s € Oy for every s. Then v, is independent of s.

Theorem 4.10. Let X,Y be Hausdorff topological spaces, p: Y — X a local
homeomorphism. Let a,b € X, a € Y with p(a) = a. Let vs: I — X be a
continuous family of curves connecting a to b. If each ~s can be lifted to a
curve s with 55(0) = a, then Y(1) = 41(1).

Corollary 4.11. If X is a simply connected Riemann surface, a € X, and
¢ € O, admits an analytic continuation along every curve in X starting at

a, then there is an f € O(X) such that p.(f) = ¢.

Definitions 4.12. Let p: Y — X be an unbranched holomorphic map of
Riemann surfaces, a local homeomorphism, so locally biholomorphic. Define
the pull-back isomorphism of rings (stalks) p*: Ox ) — Oy, by

p (U, f) = "(U),fop).
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Define the inverse, the push-forward isomorphism, p.: Oy,y — Oxpy), by
choosing a neighbourhood y € V CY such that ply: V — p(V) is biholo-
morphic and setting

p(U,9) == (p(UNV),gopl,').

Let X be a Riemann surface, a € X, ¢ € O,. (Y,p, f,b) is an analytic
continuation of ¢ if

(i) Y is a Riemann surface;

(ii) p: Y — X is an unbranched holomorphic map;
(iii) f:Y — C is holomorphic;
(iv) b €Y satisifies p(b) = a and p.(pp([f)) = ¢.

(Y, p, f,b) is mazimal if it satisfies the following: if (Z,q, g, c) is any other
analytic continuation of ¢ then there is a unique holomorphic F': 7 — Y
with Fi(¢c) =b,g=poF,and g= foF, ie.

Lemma 4.13. If X is a Riemann surface, a € X, ¢ € O,, (Y,p, f,b) an
analytic continuation of ¢ and ¥: I — Y is a curve with ¥(0) = b, (1) =
y €Y, then v = p.(py(f)) € Oxp) is an analytic continuation of ¢ along
Yi=poy.

Theorem 4.14 (Existence of maximal analytic continuations). Let X be a
Riemann surface, a € X, ¢ € O,. Then there exists a mazximal analytic
continuation of ¢.

Theorem 4.15. Let X be a Riemann surface, A C X discrete, X' := X\ A,
Y’ another Riemann surface, and @':Y' — X' a proper unbranched holo-
morphic map. Then ' extends to a branched proper map, i.e. there is a
Riemann surface Y with w:' Y — X proper, and ¢ biholomorphic:



Definition 4.16. We define the Riemann surface of \/f(z), where f is a
polynomial with no multiple roots, deg f = 2¢g + 2, as follows:

(i) ¢ := a germ of some branch of \/f(z) at some a € X' := C\{z|f(2) =
0}.

(i) (Y',p, f,b) := a maximal analytic continuation of ¢.

(iii) Extend p’: Y — X’ to p: Y — X := P! by adding one branch point
over each zero of f and two distinct points over co.

Y with p: Y — X is the Riemann surface of \/ f(2).

5 Integration of Differential 1-Forms

Definitions 5.1. Writing z = = + iy, a differential 1-form on V CC is
an expression f;dx + fody for some differentiable fi, fo: V — C. If p =
p1 +ipo: U — V is holomorphic and w := f; dz + fody is a 1-form on V the
pull-back is

. 0 0 0 0
po= (Uron T+ (oS ) dot ((hon B+ (o 52 ) dy
If f: V — C is differentiable, define df := %dx + %dy, so that p*w =
(fiop)dps + (fa 0o p)dps. We define dz := dzx +idy and dz := dz — idy.

Proposition 5.2. If f: V — C is holomorphic, then df = f'(z)dz.

Definition 5.3. A differential 1-form on a Riemann surface X is a choice,
for each chart ¢: U — V C C, of a 1-form wy on V such that if ¢;: U; — V;,
j = 1,2, are compatible charts with vy o 17" : ¥ (U N Uy) — y(Uy N Uy)
holomorphic, then

(wQ © zbl_l)»< (w¢2|¢2(U10U2)) = Wy |¢1(U10U2)

A holomorphic 1-form on X is a 1-form locally of the form f(z)dz for some
holomorphic f; a meromorphic 1-form on X is a 1-form locally of the form
f(z)dz for some mermorphic f. Denote by Q!(X) the C-vector space of
holomorphic 1-forms on X.

Proposition 5.4. If X is a Riemann surface and F(U) := {differential 1-
forms on U} for UC X, then F is a sheaf of vector spaces. Similarly for
holomorphic and meromorphic 1-forms.
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Proposition 5.5. If p : U — V and f(z)dz are holomorphic then so is
p*(f(z)dz) = f(p(z)) dp.
Definition 5.6. If p: Y — X is holomorphic and w is a 1-form on X then

define the pull-back p*w on'Y by (p*w)y, 1= (Y10 foy ') (wy,) for v;: U; —
V;, 7 = 1,2, charts on Y and X respectively.

Theorem 5.7 (Chain rule). If f: X =Y, g: Y — Z are maps of Riemann
surfaces and w is a 1-form on Z then (go f)*(w) = f*(g*(w)).

Theorem 5.8. If X is a compact Riemann surface, then dime Q' (X) < oo;
in fact, dime QY(X) = the genus of X.

Definition 5.9. Let w be a 1-form on X, v: I — X a piecewise differentiable
curve, i.e. take a partition 0 = to < t; < --- < t, = 1 of I and charts
2 = T+ iyk: Uy — Vi with y([te—1,tk]) C Ur and o095, 005 Yo 0 Vit _1.00)
of class C*. Write w = fi, dxy, + gr dyx on Uy. The integral of w over v is

e S e e

Theorem 5.10 (Fundamental theorem of calculus). Let X be a Riemann
surface, v: I — X piecewise smooth, and F: X — C differentiable. Then

[, dF = F((1)) = F(+(0)).

Definition 5.11. w = fidx + fody is closed if %—’2 = %. Holomorphic
1-forms are always closed.

Proposition 5.12. If w is a closed 1-form on X and p € X then there is a
neighbourhood p € U C X such that w|y = dF for some F: U — C.

Theorem 5.13. Let X be a Riemann surface and w € Q'(X). Then there
1s a covering map p: X — X with X connected and a function F': X — C
such that p*w = dF.

Corollary 5.14. If X is simply connected and w € Q'(X) then there is a
F: X — C such that w = dF.

Corollary 5.15. We can assume that X is the uniersal cover X of X.

Theorem 5.16. If X is a Riemann surface, p: X — X the universal cover,
we QYX), pPw = dF, v: I — X a curve that lifts to ¥: [ — X, then

[,w=F((1) = F(5(0)).
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Corollary 5.17. If X is a Riemann surface, w € QYX), v,7: I — X

homotopic curves from a to b, then f,ﬂ w=J, w

Definitions 5.18. Let X be a Riemann surface and w € Q'(X). We have
the period homomorphism of w, m (X, z9) — C, defined by [y] — f,y w. fﬁ/w
is called the period integral of w. The image of the period homomorphism is
the period lattice I' C C.

Theorem 5.19. If X is a Riemann surface and w € Q'(X), then w = dF
for some F € O(X) if and only if the period homomorphism of w is the zero
homomorphism.

Corollary 5.20. If X is a compact Riemann surface and wy,wy € QY(X)
have the same period homomorphism, then wy = ws.
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