MA475 Riemann Surfaces Condensed Notes

Lectured by Prof. Mark Gross Typed by Tim Sullivan University of Warwick

> Term 2, 2003–2004 Printed May 5, 2004 Revised December 2008

1 Preliminaries

Notation. $U \subseteq X$ will indicate that U is an open subset of X. p_k denotes the map $z \mapsto z^k$ for $k \in \mathbb{N}$. Γ will denote a lattice in C of the form $\Gamma := \mathbb{Z}w_1 + \mathbb{Z}w_2$ with $w_1, w_2 \in \mathbb{C}$ linearly independent over \mathbb{R} . All diagrams of maps are commutative unless otherwise indicated. $f: X, x \to Y, y$ denotes a function $X \to Y$ such that f(x) = y. $I := [0, 1] \subseteq \mathbb{R}$ is the unit interval.

Definitions 1.1. Let X be a (real) 2-dimensional manifold. A complex chart on X is a homeomorphism $\phi: U \to V$ with $U \subseteq X, V \subseteq \mathbb{C}$. Complex charts $\phi_j: U_j \to V_j, j = 1, 2$ are compatible if $U \cap V = \emptyset$ or

$$\phi_2 \circ \phi_1^{-1} \colon \phi_1(U \cap V) \to \phi_2(U \cap V)$$

is holomorphic with holomorphic inverse, i.e. biholomorphic. A complex atlas \mathcal{A} on X is a collection of pairwise-compatible complex charts whose domains cover X. Two complex atlases $\mathcal{A}, \mathcal{A}'$ are analyticially equivalent if every chart in \mathcal{A} is compatible with every chart in \mathcal{A}' . A complex structure Σ on X is a choice of analytic equivalence class of complex atlases on X. A Riemann surface is a 2-dimensional manifold X with a complex structure $\Sigma = [\mathcal{A}]$ on X.

Examples 1.2. (i) \mathbb{C} , or any $U \stackrel{\circ}{\subseteq} \mathbb{C}$ is a Riemann surface with the identity map as a global chart.

(ii) \mathbb{P}^1 denotes the *Riemann sphere*, S^2 identified with $\mathbb{C} \cup \{\infty\}$, with two charts given by stereographic projection from the North and South poles, with coordinates z and w := 1/z respectively.

(iii) A torus \mathbb{C}/Γ .

2 Maps of Riemann Surfaces

Definitions 2.1. Let X be a Riemann surface and $U \subseteq X$: $f: U \to \mathbb{C}$ is holomorphic if for all charts $\phi_1: U_1 \to V_1$ on X, $f \circ \phi_1^{-1}: \phi_1(U \cap U_1) \to \mathbb{C}$ is holomorphic. $\mathcal{O}(U) := \{f: U \to \mathbb{C} \mid f \text{ holomorphic}\}$ forms a commutative algebra over \mathbb{C} . Let X, Y be Riemann surfaces: $f: X \to Y$ is holomorphic if for all charts $\phi_1: U_1 \to V_1$ on X and $\phi_2: U_2 \to V_2$ on Y with $f(U_1) \subseteq U_2$, $\phi_2 \circ f \circ \phi_1^{-1}: V_1 \to V_2$ is holomorphic.

Proposition 2.2. A continuous map $f: X \to Y$ is holomorphic \iff for all $V \subseteq Y$ and $\phi \in \mathcal{O}(V)$, $\phi \circ f \in \mathcal{O}(f^{-1}(V))$.

Proposition 2.3. If $\phi: U \to V$ is a chart on a Riemann surface X then ϕ is holomorphic.

Definitions 2.4. Let X be a Riemann surface and $U \subseteq X$: a meromorphic function on U is a holomorphic function $f: U' \to \mathbb{C}$, where $U' \subseteq U, U \setminus U'$ is discrete, and for all $p \in U \setminus U'$, $\lim_{z \to p} |f(z)| = \infty$. $U \setminus U'$ is called the set of poles of f. $\mathcal{M}(U) := \{f: U \to \mathbb{C} \mid f \text{ meromorphic}\}$ forms a commutative division algebra over \mathbb{C} .

Proposition 2.5. Let $f \in \mathcal{M}(X)$ with poles $X \setminus X'$. Define $\tilde{f} \colon X \to \mathbb{P}^1$ by

$$\tilde{f}(z) := \begin{cases} f(z) & z \in X', \\ \infty & z \in X \setminus X'. \end{cases}$$

Then \tilde{f} is a holomorphic map of Riemann surfaces.

Theorem 2.6 (The Identity Theorem for \mathbb{C}). Let $U \subseteq \mathbb{C}$ be connected, $f, g \in \mathcal{O}(U)$ and $f|_A = g|_A$ for some $A \subseteq U$ with a limit point. Then f = g on U.

Theorem 2.7 (The Identity Theorem for Riemann surfaces). Let $f, g: X \to Y$ be holomorphic maps of Riemann surfaces with $f|_A = g|_A$ for some $A \subseteq X$ with a limit point. Then f = g on X.

Proposition 2.8. $f: X \to \mathbb{P}^1$ holomorphic $\implies f(z) \equiv \infty$ or else $f^{-1}(\infty)$ is discrete and $f \in \mathcal{M}(X)$.

Proposition 2.9 (Branching theorem). Let $f: X \to Y$ be a non-constant holomorphic map of Riemann surfaces, $a \in X$, $b := f(a) \in Y$. Then there exists $a \ k \in \mathbb{N}$ and charts $\phi_1: U_1 \to V_1$ and $\phi_2: U_2 \to V_2$ with $a \in U_1$, $b \in U_2$, $\phi_1(a) = \phi_2(b) = 0$ such that $\phi_2 \circ f \circ \phi_1^{-1}: V_1 \to V_2$ is $p_k: z \mapsto z^k$.

Definitions 2.10. If k > 1 above, we call a a branch point of f. If f has no branch points we say that it is unbranched. If $f: Y \to X$ is locally given by $z \mapsto z^k$ at $y \in Y$, then we say that the multiplicity of f at y is $\nu(f, y) := k$.

Corollary 2.11 (Open mapping theorem). For $f: X \to Y$ a non-constant holomorphic map of Riemann surfaces, $U \subseteq X \implies f(U) \subseteq Y$.

Definition 2.12. A map of topological spaces $f: X \to Y$ is *discrete* if $f^{-1}(p) \subseteq X$ is discrete for all $p \in Y$.

Corollary 2.13. A non-constant holomorphic map of connected Riemann surfaces $f: X \to Y$ is both open and discrete.

Corollary 2.14. If $f: X \to Y$ injective and holomorphic, then $f: X \to f(X)$ is biholomorphic.

Corollary 2.15 (Maximum principle). If $f \in \mathcal{O}(X)$ is non-constant, then $|f|: X \to \mathbb{R}$ does not attain a maximum.

Corollary 2.16. If X is a compact Riemann surface and $f \in \mathcal{O}(X)$, then f is constant.

Theorem 2.17. If $f: X \to Y$ is a non-constant holomorphic map with X compact and Y connected, then Y is compact and f is surjective.

Proposition 2.18. $\mathcal{M}(\mathbb{P}^1)$ is the space $\mathbb{C}(z)$ of rational functions in one complex variable.

Definition 2.19. Let Γ be a 2-dimensional lattice in \mathbb{C} . $f \in \mathcal{M}(\mathbb{C})$ is doubly periodic if $f(z + \gamma) = f(z)$ for all $\gamma \in \Gamma$.

Corollary 2.20. Let $f: \mathbb{C} \to \mathbb{P}^1$ be doubly periodic. Then f determines a function $F: \mathbb{C}/\Gamma \to \mathbb{P}^1$ such that $f = F \circ \pi$, where $\pi: \mathbb{C} \to \mathbb{C}/\Gamma$ is the quotient map, and f is holomorphic / meromorphic if and only is F has the same property. Moreover, f is either constant or surjective.

Definition 2.21. A map of topological spaces $f: X \to Y$ is a *local homeomorphism* if every $x \in X$ has a neighbourhood $x \in U \subseteq X$ with $f|_U$ a homeomorphism.

Theorem 2.22. Let X be a Riemann surface, Y a Hausdorff topological space and $f: Y \to X$ a local homeomorphism. Then there is a unique complex structure on Y making f holomorphic.

3 Covering Maps and Spaces

Definitions 3.1. $f: Y \to X$ is a covering map if every $x \in X$ has a neighbourhood $x \in U \subseteq X$ such that $f^{-1}(U) = \bigcup_{j \in J} V_j$ where the V_j are disjoint open sets of Y with $f|_{V_j}: V_j \to U$ a homeomorphism for each j. Let X, Y, Z be topological spaces and $f: Z \to X, g: Y \to X$ continuous: a lifting of f with respect to g is a continuous $h: Z \to Y$ such that $f = g \circ h$, i.e.

Theorem 3.2. If $p: Y \to X$ is a covering map and $\gamma: I \to X$ is a curve, then for all $y_0 \in Y$ with $p(y_0) = \gamma(0)$ there is a unique lifting $\check{\gamma}: I \to Y$ with $\check{\gamma}(0) = y_0$.

Theorem 3.3. If $p: Y \to X$ is a covering map, $\gamma_1, \gamma_2: I \to X$ curves from $a \in X$ to $b \in X$, with $\gamma_1 \simeq \gamma_2$ by a homotopy $H: I \times I \to X$, and $\check{\gamma}_1, \check{\gamma}_2: I \to Y$ liftings with $\check{\gamma}_1(0) = \check{\gamma}_2(0) = y_0 \in Y$, then there is is lifting $\check{H}: I \times I \to Y$ of H such that \check{H} is a homotopy from $\check{\gamma}_1$ to $\check{\gamma}_2$. Conversely, if $\check{H}: I \times I \to Y$ is a homotopy from $\check{\gamma}_1$ to $\check{\gamma}_2$, then $H = p \circ \check{H}$ is a homotopy from γ_1 to γ_2 . **Definitions 3.4.** If $p: Y \to X$ is a covering map, a *deck transformation* of Y over X is a homeomorphism $f: Y \to Y$ such that $p \circ f = p$:

The set of all deck transformations of Y over X is denoted Deck(Y|X). If $p: Y \to X$ is a covering map with X path connected and Y connected and simply connected, we call $p: Y \to X$ the universal covering space of X.

Theorem 3.5. If $p: Y \to X$ is a universal covering and $q: Z \to X$ a connected covering, then for all $y_0 \in Y$ and $z_0 \in Z$ with $p(y_0) = q(z_0) =: x_0 \in X$, there exists a unique $f: Y \to Z$ such that $q \circ f = p$ and $f(y_0) = z_0$:

Theorem 3.6. If $p: Y \to X$ is a universal covering space, then $\text{Deck}(Y/X) \cong \pi_1(X, x_0)$ as groups for any $x_0 \in X$.

Definitions 3.7. A topological space X is *locally compact* if every $x \in X$ has a neighbourhood $x \in U \subseteq X$ with $U \subseteq K$ for some compact $K \subseteq X$. A map of locally compact spaces $f: Y \to X$ is *proper* if $K \subseteq X$ compact $\implies f^{-1}(K) \subseteq Y$ compact.

Lemma 3.8. If $f: Y \to X$ is a discrete proper map of locally compact spaces, then for all $x \in X$, $f^{-1}(x)$ is finite, and for all open neighbourhoods $f^{-1}(x) \subseteq V \subseteq Y$ there is a neighbourhood $x \in U \subseteq X$ with $f^{-1}(U) \subseteq V$.

Theorem 3.9. If X, Y are locally compact Hausdorff spaces with $f: Y \to X$ a discrete proper local homeomorphism, then f is a covering map.

Proposition 3.10. If f is an unbranched proper non-constant map of Riemann surfaces then f is a local homeomorphism, and hence a covering map.

Theorem 3.11. If $f: Y \to X$ is a proper non-constant holomorphic map of connected Riemann surfaces, then there exists an $n \in \mathbb{N}$ such that for all $x \in X$, $\sum_{y \in f^{-1}(x)} \nu(f, y) = n$.

Definition 3.12. The above n is called the number of *sheets* of f, denoted sh(f).

Corollary 3.13. If X is a connected Riemann surface with $f \in \mathcal{M}(X)$ then f has the same number of poles as it has zeroes (both counted with multiplicity).

Corollary 3.14. A polynomial $p \in \mathbb{C}[z]$ has deg p roots counted with multiplicity.

Corollary 3.15. There is no $f \in \mathcal{M}(\mathbb{C}/\Gamma)$ with a single pole of multiplicity 1.

Theorem 3.16 (Uniformization theorem). If Y is a simply connected Riemann surface, then Y is biholomorphic to either \mathbb{P}^1 , \mathbb{C} or the unit disc $D := \{z \in \mathbb{C} \mid |z| < 1\}.$

Theorem 3.17. If X is a Riemann surface and $f: X \to D^* := D \setminus \{0\}$ a holomorphic covering map, then either

(i) $\operatorname{sh}(f) = \infty$ and there is a biholomorphic $\phi \colon X \to H := \{z \in \mathbb{C} \mid \operatorname{Re} z < 0\}$ with $\exp \circ \phi = f$:

or

(ii) $\operatorname{sh}(f) = k \in \mathbb{N}$ and there is a biholomorphic $\phi \colon X \to D^*$ with $p_k \circ \phi = f$:

Theorem 3.18. If X is a Riemann surface and $f: X \to D$ is a proper nonconstant biholomorphic map unbranched over D^* , then there is a $k \in \mathbb{N}$ and a biholomorphic $\phi: X \to D$ such that $f = p_k \circ \phi$:

4 Analytic Continuation

Definitions 4.1. Let X be a topological space. A *presheaf* \mathcal{F} of Abelian groups¹ is a collection of data:

- (i) for each $U \stackrel{\circ}{\subseteq} X$, an Abelian group $\mathcal{F}(U)$;
- (ii) for each inclusion $U \subseteq V$, a restriction map $\rho_{UV} \colon \mathcal{F}(V) \to \mathcal{F}(U)$, a homomorphism of Abelian groups such that
 - (b) $\rho_{UU} = \mathrm{id};$
 - (b) $U \subseteq V \subseteq W \implies \rho_{UV} \circ \rho_{VW} = \rho_{UW}.$

For $s \in \mathcal{F}(V)$, write $s|_U := \rho_{UV}(s)$. A presheaf \mathcal{F} is a *sheaf* if, for $\{U_i\}_{i \in I}$ a collection of open subsets of X, with $U := \bigcup_{i \in I} U_i$,

- (i) if $s \in \mathcal{F}(U)$ and $s|_{U_i} = 0$ for all $i \in I$ then s = 0. (Hence $\mathcal{F}(\emptyset) = 0$.)
- (ii) given $s_i \in \mathcal{F}(U_i)$ with $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ for all $i, j \in I$, there is an $s \in \mathcal{F}(U)$ with $s|_{U_i} = s_i$.

Let \mathcal{F} be a sheaf on X and $a \in X$. A germ of \mathcal{F} at $a \in X$ is a pair (U, s), where $a \in U \subseteq X$ and $s \in \mathcal{F}(U)$. Two germs (U, s) and (U', s') are equivalent if there is an open neighbourhood $a \in V \subseteq U \cap U'$ with $s|_V = s'|_V$. The stalk of \mathcal{F} at a is

$$\mathcal{F}_a := \frac{\{\text{germs } (U, s) \text{ of } \mathcal{F} \text{ at } a\}}{\sim}.$$

 \mathcal{F}_a is an Abelian group via

$$(U,s) + (U',s') := (U \cap U', s|_{U \cap U'} + s'|_{U \cap U'}).$$

Define $\rho_a: \mathcal{F}(U) \to \mathcal{F}_a$, where $a \in U$ by $\rho_a(s) := (U, s)$. The éspace étalé of \mathcal{F} is $|\mathcal{F}| := \coprod_{a \in X} \mathcal{F}_a$, with $p: |\mathcal{F}| \to X$, $p(\phi) := a \in X$ for $\phi \in \mathcal{F}_a$. Define open sets in $|\mathcal{F}|$ by $[U, s] := \{\rho_a(s) | a \in U\}$, and $[U, s] \stackrel{\circ}{\subseteq} |\mathcal{F}|$ if $U \stackrel{\circ}{\subseteq} X$, $s \in \mathcal{F}(U)$.

Theorem 4.2. $\mathcal{B} := \{ [U, f] | U \subseteq X, f \in \mathcal{F}(U) \}$ is a basis for a topology on $|\mathcal{F}|$ with respect to which $p : |\mathcal{F}| \to X$ is a local homeomorphism.

Corollary 4.3. Let X be a Riemann surface and \mathcal{O} the sheaf of holomorphic functions, with $p: |\mathcal{O}| \to X$. If $|\mathcal{O}|$ is Hausdorff and Y a connected component of $|\mathcal{O}|$ then $p: Y \to X$ is a local homeomorphism and there is a unique complex structure on Y making p holomorphic.

¹We can also have presheaves of sets, rings, fields, vector spaces, etc., with the appropriate morphisms.

Definition 4.4. A presheaf \mathcal{F} satisfies the identity theorem if whenever $U \subseteq X$ is connected and $f, g \in \mathcal{F}(U)$ are such that $\rho_a(f) = \rho_a(g)$ for some $a \in U$, it follows that f = g.

Corollary 4.5. \mathcal{O} satisfies the identity theorem for any Riemann surface X.

Theorem 4.6. If X is a locally connected Hausdorff space and \mathcal{F} is a presheaf on X satisfying the identity theorem, then $|\mathcal{F}|$ is Hausdorff.

Definition 4.7. Let X be a Riemann surface, $\gamma: I \to X$ a curve from a to b: $\psi \in \mathcal{O}_b$ is an analytic continuation of $\phi \in \mathcal{O}_a$ along γ if the following holds: there exists a family $\phi_t \in \mathcal{O}_{\gamma(t)}, t \in I$, with $\phi_0 = \phi, \phi_1 = \psi$ such that for all $\tau \in I$ there is an open neighbourhood $\tau \in T \subseteq I$ and a $U \subseteq X$ with $\gamma(T) \subseteq U$ and $f \in \mathcal{O}(U)$ such that $\phi_t = \rho_{\gamma(t)}(f)$ for all $t \in T$. Equivalently: there exists a partition $0 = t_0 < t_1 < \cdots < t_r = 1$ of I and $U_i \subseteq X$ with $\gamma([t_{i-1}, t_i]) \subseteq U_i$ and $f_i \in \mathcal{O}(U_i)$ such that

- (i) ϕ is a germ of f_1 at a; ψ is a germ of f_r at b;
- (ii) $f_i|_{V_i} = f_{i+1}|_{V_i}$ where V_i is the connected component of $U_i \cap U_{i+1}$ containing $\gamma(t_i)$.

Lemma 4.8. Let X be a Riemann surface, $\gamma: I \to X$ a curve from a to b. Then $\psi \in \mathcal{O}_b$ is an analytic continuation of $\phi \in \mathcal{O}_a$ if and only if there is a lift $\check{\gamma}: I \to |\mathcal{O}|$ of γ such that $\check{\gamma}(0) = \phi$, $\check{\gamma}(1) = \psi$.

Theorem 4.9 (Monodromy theorem). Let X be a Riemann surface, $\gamma_0, \gamma_1 \colon I \to X$ two homotopic curves from a to b. Suppose that $\gamma_s, 0 \leq s \leq 1$, is a homotopy of γ_0 into γ_1 , and suppose that $\phi \in \mathcal{O}_a$ admits an analytic continuation to $\psi_s \in \mathcal{O}_b$ for every s. Then ψ_s is independent of s.

Theorem 4.10. Let X, Y be Hausdorff topological spaces, $p: Y \to X$ a local homeomorphism. Let $a, b \in X$, $\check{a} \in Y$ with $p(\check{a}) = a$. Let $\gamma_s: I \to X$ be a continuous family of curves connecting a to b. If each γ_s can be lifted to a curve $\check{\gamma}_s$ with $\check{\gamma}_s(0) \equiv \check{a}$, then $\check{\gamma}_0(1) = \check{\gamma}_1(1)$.

Corollary 4.11. If X is a simply connected Riemann surface, $a \in X$, and $\phi \in \mathcal{O}_a$ admits an analytic continuation along every curve in X starting at a, then there is an $f \in \mathcal{O}(X)$ such that $\rho_a(f) = \phi$.

Definitions 4.12. Let $p: Y \to X$ be an unbranched holomorphic map of Riemann surfaces, a local homeomorphism, so locally biholomorphic. Define the *pull-back isomorphism* of rings (stalks) $p^*: \mathcal{O}_{X,p(y)} \to \mathcal{O}_{Y,y}$ by

$$p^*(U, f) := (p^{-1}(U), f \circ p).$$

Define the inverse, the push-forward isomorphism, $p_*: \mathcal{O}_{Y,y} \to \mathcal{O}_{X,p(y)}$, by choosing a neighbourhood $y \in V \subseteq Y$ such that $p|_V: V \to p(V)$ is biholomorphic and setting

$$p_*(U,g) := \left(p(U \cap V), g \circ p|_V^{-1} \right).$$

Let X be a Riemann surface, $a \in X$, $\phi \in \mathcal{O}_a$. (Y, p, f, b) is an *analytic* continuation of ϕ if

- (i) Y is a Riemann surface;
- (ii) $p: Y \to X$ is an unbranched holomorphic map;
- (iii) $f: Y \to \mathbb{C}$ is holomorphic;
- (iv) $b \in Y$ satisifies p(b) = a and $p_*(\rho_b(f)) = \phi$.

(Y, p, f, b) is maximal if it satisfies the following: if (Z, q, g, c) is any other analytic continuation of ϕ then there is a unique holomorphic $F: Z \to Y$ with $F(c) = b, q = p \circ F$, and $g = f \circ F$, i.e.

Lemma 4.13. If X is a Riemann surface, $a \in X$, $\phi \in \mathcal{O}_a$, (Y, p, f, b) an analytic continuation of ϕ and $\check{\gamma} \colon I \to Y$ is a curve with $\check{\gamma}(0) = b$, $\check{\gamma}(1) = y \in Y$, then $\psi := p_*(\rho_y(f)) \in \mathcal{O}_{X,p(y)}$ is an analytic continuation of ϕ along $\gamma := p \circ \check{\gamma}$.

Theorem 4.14 (Existence of maximal analytic continuations). Let X be a Riemann surface, $a \in X$, $\phi \in \mathcal{O}_a$. Then there exists a maximal analytic continuation of ϕ .

Theorem 4.15. Let X be a Riemann surface, $A \subseteq X$ discrete, $X' := X \setminus A$, Y' another Riemann surface, and $\pi' \colon Y' \to X'$ a proper unbranched holomorphic map. Then π' extends to a branched proper map, i.e. there is a Riemann surface Y with $\pi \colon Y \to X$ proper, and ϕ biholomorphic:

Definition 4.16. We define the *Riemann surface of* $\sqrt{f(z)}$, where f is a polynomial with no multiple roots, deg f = 2g + 2, as follows:

- (i) $\phi :=$ a germ of some branch of $\sqrt{f(z)}$ at some $a \in X' := \mathbb{C} \setminus \{z | f(z) = 0\}$.
- (ii) (Y', p', f, b) := a maximal analytic continuation of ϕ .
- (iii) Extend $p': Y' \to X'$ to $p: Y \to X := \mathbb{P}^1$ by adding one branch point over each zero of f and two distinct points over ∞ .

Y with $p: Y \to X$ is the Riemann surface of $\sqrt{f(z)}$.

5 Integration of Differential 1-Forms

Definitions 5.1. Writing z = x + iy, a differential 1-form on $V \subseteq \mathbb{C}$ is an expression $f_1 dx + f_2 dy$ for some differentiable $f_1, f_2 \colon V \to \mathbb{C}$. If $p = p_1 + ip_2 \colon U \to V$ is holomorphic and $\omega := f_1 dx + f_2 dy$ is a 1-form on V the pull-back is

$$p^*\omega := \left((f_1 \circ p) \frac{\partial p_1}{\partial x} + (f_2 \circ p) \frac{\partial p_2}{\partial y} \right) \, \mathrm{d}x + \left((f_1 \circ p) \frac{\partial p_1}{\partial y} + (f_2 \circ p) \frac{\partial p_2}{\partial x} \right) \, \mathrm{d}y$$

If $f: V \to \mathbb{C}$ is differentiable, define $df := \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$, so that $p^* \omega = (f_1 \circ p) dp_1 + (f_2 \circ p) dp_2$. We define dz := dx + i dy and $d\bar{z} := dx - i dy$.

Proposition 5.2. If $f: V \to \mathbb{C}$ is holomorphic, then df = f'(z) dz.

Definition 5.3. A differential 1-form on a Riemann surface X is a choice, for each chart $\psi: U \to V \subseteq \mathbb{C}$, of a 1-form ω_{ψ} on V such that if $\psi_j: U_j \to V_j$, j = 1, 2, are compatible charts with $\psi_2 \circ \psi_1^{-1}: \psi_1(U_1 \cap U_2) \to \psi_2(U_1 \cap U_2)$ holomorphic, then

$$(\psi_2 \circ \psi_1^{-1})^* \left(\omega_{\psi_2} |_{\psi_2(U_1 \cap U_2)} \right) = \omega_{\psi_1} |_{\psi_1(U_1 \cap U_2)}$$

A holomorphic 1-form on X is a 1-form locally of the form f(z) dz for some holomorphic f; a meromorphic 1-form on X is a 1-form locally of the form f(z) dz for some mermorphic f. Denote by $\Omega^1(X)$ the \mathbb{C} -vector space of holomorphic 1-forms on X.

Proposition 5.4. If X is a Riemann surface and $\mathcal{F}(U) := \{ \text{differential 1-forms on } U \}$ for $U \subseteq X$, then \mathcal{F} is a sheaf of vector spaces. Similarly for holomorphic and meromorphic 1-forms.

Proposition 5.5. If $p : U \to V$ and f(z) dz are holomorphic then so is $p^*(f(z) dz) = f(p(z)) dp$.

Definition 5.6. If $p: Y \to X$ is holomorphic and ω is a 1-form on X then define the *pull-back* $p^*\omega$ on Y by $(p^*\omega)_{\psi_1} := (\psi_1 \circ f \circ \psi_2^{-1})(\omega_{\psi_2})$ for $\psi_j: U_j \to V_j, j = 1, 2$, charts on Y and X respectively.

Theorem 5.7 (Chain rule). If $f: X \to Y$, $g: Y \to Z$ are maps of Riemann surfaces and ω is a 1-form on Z then $(g \circ f)^*(\omega) = f^*(g^*(\omega))$.

Theorem 5.8. If X is a compact Riemann surface, then $\dim_{\mathbb{C}} \Omega^1(X) < \infty$; in fact, $\dim_{\mathbb{C}} \Omega^1(X) =$ the genus of X.

Definition 5.9. Let ω be a 1-form on $X, \gamma: I \to X$ a piecewise differentiable curve, i.e. take a partition $0 = t_0 < t_1 < \cdots < t_r = 1$ of I and charts $z_k = x_k + iy_k: U_k \to V_k$ with $\gamma([t_{k-1}, t_k]) \subseteq U_k$ and $x_k \circ \gamma|_{[t_{k-1}, t_k]}, y_k \circ \gamma|_{[t_{k-1}, t_k]}$ of class C^1 . Write $\omega = f_k \, dx_k + g_k \, dy_k$ on U_k . The integral of ω over γ is

$$\int_{\gamma} \omega := \sum_{k=1}^{r} \int_{t_{k-1}}^{t_k} f_k(\gamma(t)) \frac{\mathrm{d}(x_k(\gamma(t)))}{\mathrm{d}t} + g_k(\gamma(t)) \frac{\mathrm{d}(y_k(\gamma(t)))}{\mathrm{d}t} \,\mathrm{d}t$$

Theorem 5.10 (Fundamental theorem of calculus). Let X be a Riemann surface, $\gamma: I \to X$ piecewise smooth, and $F: X \to \mathbb{C}$ differentiable. Then $\int_{\gamma} dF = F(\gamma(1)) - F(\gamma(0)).$

Definition 5.11. $\omega = f_1 dx + f_2 dy$ is *closed* if $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}$. Holomorphic 1-forms are always closed.

Proposition 5.12. If ω is a closed 1-form on X and $p \in X$ then there is a neighbourhood $p \in U \subseteq X$ such that $\omega|_U = dF$ for some $F: U \to \mathbb{C}$.

Theorem 5.13. Let X be a Riemann surface and $\omega \in \Omega^1(X)$. Then there is a covering map $p: \check{X} \to X$ with \check{X} connected and a function $F: \check{X} \to \mathbb{C}$ such that $p^*\omega = dF$.

Corollary 5.14. If X is simply connected and $\omega \in \Omega^1(X)$ then there is a $F: X \to \mathbb{C}$ such that $\omega = dF$.

Corollary 5.15. We can assume that \check{X} is the universal cover \tilde{X} of X.

Theorem 5.16. If X is a Riemann surface, $p: \tilde{X} \to X$ the universal cover, $\omega \in \Omega^1(X), p^*\omega = dF, \gamma: I \to X$ a curve that lifts to $\check{\gamma}: I \to \tilde{X}$, then $\int_{\gamma} \omega = F(\check{\gamma}(1)) - F(\check{\gamma}(0)).$ **Corollary 5.17.** If X is a Riemann surface, $\omega \in \Omega^1(X)$, $\gamma_1, \gamma_2 \colon I \to X$ homotopic curves from a to b, then $\int_{\gamma_1} \omega = \int_{\gamma_2} \omega$.

Definitions 5.18. Let X be a Riemann surface and $\omega \in \Omega^1(X)$. We have the *period homomorphism* of ω , $\pi_1(X, x_0) \to \mathbb{C}$, defined by $[\gamma] \mapsto \int_{\gamma} \omega$. $\int_{\gamma} \omega$ is called the *period integral* of ω . The image of the period homomorphism is the *period lattice* $\Gamma \subset \mathbb{C}$.

Theorem 5.19. If X is a Riemann surface and $\omega \in \Omega^1(X)$, then $\omega = dF$ for some $F \in \mathcal{O}(X)$ if and only if the period homomorphism of ω is the zero homomorphism.

Corollary 5.20. If X is a compact Riemann surface and $\omega_1, \omega_2 \in \Omega^1(X)$ have the same period homomorphism, then $\omega_1 = \omega_2$.