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Introduction

Stochastic analysis can be viewed as a combination of infinite-dimensional analysis, measure theory and linear
analysis. We consider spaces such as the infinite-dimensional space of paths in a given state space.

• Around 1900, Norbert Wiener (1894–1964) introduced the notion of Wiener measure. This leads to ideas of
“homogeneous chaos” and analysis of brain waves.

• Richard Feynman (1918–1988) worked on quantum mechanics and quantum physics, using ideas like
∫
paths in R3

and
∫
maps Rp→Rq .

• Stephen Hawking (1942–) took this idea further:
∫
universes

.

• Edward Witten (1951–) applied these methods to topology, topological invariants and knot theory.

• This area’s connections with probability theory lend it the label “stochastic”. Areas of interest include
Brownian motion and other stochastic dynamical systems. A large area of application is mathematical finance.

This course is not on stochastic dynamical systems.
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1 Re-Cap of Measure Theory

Definitions 1.1. A measurable space is pair {Ω,F} where Ω is a set and F is a σ-algebra on Ω, so ∅ ∈ F ,
A ∈ F =⇒ Ω \A ∈ F and A1, A2, · · · ∈ F =⇒ ⋃∞

i=1 Ai ∈ F .

Example 1.2. Given a topological space X, the Borel σ-algebra B(X) is defined to be the smallest σ-algebra
containing all open sets in X. We will always use this unless otherwise stated.

Definitions 1.3. If {X, A } and {Y, B} are measurable spaces, f : X → Y is measurable if B ∈ B =⇒ f−1(B) ∈
A . In general, σ(f) := {f−1(B)|B ∈ B} is a σ-algebra on X, the σ-algebra generated by f . It is the smallest
σ-algebra on X such that f is measurable into {Y, B}.

If X, Y are topological spaces then f : X → Y continuous implies that f is measurable — this is not quite
trivial.

Definitions 1.4. A measure space is a triple {Ω,F , µ} with {Ω,F} a measure space and µ a measure on it, i.e. a
µ : F → R≥0 ∪ {∞} such that µ(∅) = 0 and A1, A2, · · · ∈ F disjoint =⇒ µ(

⋃∞
i=1 Ai) =

∑∞
i=1 µ(Ai) ≤ ∞. The

space has finite measure (or µ is a finite measure) if µ(Ω) < ∞. {Ω, F , µ} is a probability space (or µ is a probability
measure) if µ(Ω) = 1.

Definition 1.5. Given a measure space {Ω,F , µ}, a measurable space {X, A } and f : Ω → X measurable, define
the push-forward measure f∗µ on {X, A } by (f∗µ)(A) := µ(f−1(A)). As an exercise, check that this is indeed a
measure on {X, A }.
Exercises 1.6. (i) Check that f∗µ is indeed a measure on {X, A }.

(ii) Show that if f, g : Ω → X are measurable and f = g µ-almost everywhere, then f∗µ = g∗µ.

Examples 1.7. (i) Lebesgue measure λn on Rn: Borel measure such that λn(rectangle) = product of side
lengths, e.g. λ1([a, b]) = b− a. This determines λn uniquely — see MA359 Measure Theory.

Take v ∈ Rn. Define Tv : Rn → Rn by Tv(x) := x+v. Then (Tv)∗(λn) = λn since translations send rectangles
to congruent rectangles and λn is unique. Thus λn is translation-invariant.

(ii) Counting measure c on any {X, A }: c(A) := #A. Counting measure on Rn is also translation-invariant.

(iii) Dirac measure on any {X, A }: given x ∈ X, define

δx(A) :=
{

1 x ∈ A,
0 x 6∈ A.

Dirac measure δx on Rn is not translation-invariant.

Definitions 1.8. Let X be a topological space (with its usual σ-algebra B(X)). A measure µ on X is locally finite
if for all x ∈ X, there exists an open U ⊆ X with x ∈ U and µ(U) < ∞. µ on X is called strictly positive if for all
non-empty open U ⊆ X, µ(U) > 0.

Examples 1.9. (i) λn is locally finite and strictly positive.

(ii) c is not locally finite in general, but is strictly positive on any X.

(iii) δx is finite, and so locally finite, but is not strictly positive in general.

Proposition 1.10. Suppose that H is a (separable) Hilbert space with dim H = ∞. Then there is no locally
finite translation invariant measure on H except µ ≡ 0. (Therefore, there is no “Lebesgue measure” for infinite-
dimensional Hilbert spaces.)

Recall that

• a topological space X is separable if it has a countable dense subset, i.e. ∃x1, x2, · · · ∈ X such that X =
{x1, x2, . . . };

• if a metric space X is separable then for any open cover {Uα}α∈A of X there exists a countable subcover;
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• non-separable spaces include L(E;F ) := {continuous linear maps E → F} when E, F are infinite-dimensional
Banach spaces, and the space of Hölder-continuous functions C0+α([0, 1];R).

Proof. Suppose that µ is locally finite and translation invariant. Local finiteness implies that there is an open
non-empty U such that µ(U) < ∞. Since U is open, there exist x ∈ U and r0 > 0 such that Br0(x) ⊆ U .
Then µ(Br0(x)) < ∞ as well. By translation, µ(Br(y)) < ∞ for all y ∈ H and r ≤ r0. Fix an r ∈ (0, r0);
then H =

⋃
y∈H Br(y), an open cover. By separability, there exist y1, y2, · · · ∈ H such that H =

⋃∞
j=1 Br(yj), so

µ(Br(yj)) > 0 for some j, and so µ(Br(y)) > 0 for all y ∈ H and r > 0. Set c := µ(Br0/30(y)) for any (i.e., all)
y ∈ H. Observe that if e1, e2, . . . is an orthonormal basis for H then Br0/30(ej/2) ⊆ Br0(0) for all j. By Pythagoras,
these balls are disjoint. µ(Br0(0)) ≥ ∑∞

j=1 c = ∞ unless µ ≡ 0. But µ 6≡ 0 =⇒ µ(Br0(0)) < ∞ by local finiteness,
a contradiction.

Definition 1.11. Two measures µ1, µ2 on {Ω, F} are equivalent if µ1(A) = 0 ⇐⇒ µ2(A) = 0. If so, write
µ1 ≈ µ2.

Example 1.12. Standard Gaussian measure γn on Rn:

γn(A) := (2π)−n/2

∫

A

e−‖x‖
2/2 dx

for A ∈ B(Rn). Here dx = dλn(x) and ‖x‖2 = x2
1 + · · · + x2

n for x = (x1, . . . , xn). λn ≈ γn since e−‖x‖
2/2 > 0 for

all x ∈ Rn

Definition 1.13. Given a measure space {Ω, F , µ}, let f : Ω → Ω be measurable. Then µ is quasi-invariant under
f if f∗µ ≈ µ, i.e. µ(f−1(A)) = 0 ⇐⇒ µ(A) = 0 for all A ∈ F .

Example 1.14. γn is quasi-invariant under all translations of Rn.

Theorem 1.15. If E is a separable Banach space and µ is a locally finite Borel measure on E that is quasi-invariant
under all translations then either dim E < ∞ or µ ≡ 0.

The proof of this result is beyond the scope of this course, although it raises the question: are there any
“interesting” and “useful” measures on infinte-dimensional spaces?
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2 Fourier Transforms of Measures

Definition 2.1. Let µ be a probability measure on a separable Banach space E. Let E∗ := L(E;R) be the dual
space. The Fourier transform µ̂ : E∗ → C is given by

µ̂(`) :=
∫

E

ei`(x) dµ(x)

for ` ∈ E∗, where i =
√−1 ∈ C. It exists since

∫
E
|ei`(x)|dµ(x) =

∫
E

dµ(x) = µ(E) = 1 < ∞. In fact, for all ` ∈ E∗,
|µ̂(`)| ≤ 1 and µ̂(0) = µ(E) = 1.

For E a Hilbert space H with inner product 〈·, ·〉, the Riesz Representation Theorem gives an isomorphism
H∗ → H : ` 7→ `], where `] ∈ H has 〈`], x〉 = `(x) for all x ∈ H. Therefore, we can consider µ̂] : H → C given by

µ̂](h) :=
∫

H

ei〈h,x〉 dµ(x).

So µ̂](`]) = µ̂(`). Without confusion we write µ̂ for µ̂], and so use µ̂ : H → C or µ̂ : H∗ → C as convenient.

Example 2.2. For Rn, if µ = f∗λn, f : Rn → R≥0, so µ(A) =
∫

A
f(x) dx, f ∈ L1,

∫
Rn f(x) dx = 1, so µ(Rn) = 1.

Then
µ̂(h) =

∫

Rn

ei〈h,x〉Rn dµ(x) =
∫

Rn

ei〈h,x〉Rn f(x) dx,

the Fourier transform of f up to signs and constants.

Example 2.3. For a general separable Banach space E, µ = δx0 for some x0 ∈ E, µ̂ : E∗ → C is µ̂(`) =∫
E

ei`(x) dδx0(x) = ei`(x0). In Hilbert space notation, if E = H, we get µ̂(h) = ei〈h,x0〉H .

Proposition 2.4. (Transformation of Integrals.) Given {X, A , µ}, {Y, B} and θ : X → Y measurable, giving θ∗µ
on Y , let f : Y → R be measurable. Then

∫
X

f ◦ θ dµ =
∫

Y
f d(θ∗µ), in the sense that if one exists then so does the

other and there is equality.

X
θ //

f◦θ ÃÃ@
@@

@@
@@

@ Y

f

²²
R

Proof. By the definition of θ∗µ this is true for characteristic functions f = χB , B ∈ B.
∫

X

χB ◦ θ dµ =
∫

X

χ{x|θ(x)∈B} dµ

= µ(θ−1(B))
= θ∗µ(B)

=
∫

Y

χB d(θ∗µ)

Therefore the claim holds for simple f , and so for measurable f by the approximation definition of the integral.

Remark 2.5. Back to µ̂: for a probability measure on a separable Banach space E and ` ∈ E∗ we have a measure
µ` := `∗µ on R, and x 7→ ei`(x) factorizes as

E
` //

ei`(·) ÂÂ@
@@

@@
@@

R

t7→eit

²²
C

µ̂(`) :=
∫

E

ei`(x) dµ(x)

=
∫

R
eit dµ`(t)

= µ̂`(1)

since 〈s, t〉R = st, 〈1, t〉R = t in the integrand above. Thus µ̂ is determined by {µ`|` ∈ E∗} by the formula
µ̂(`) = µ̂`(1).

6



Remark 2.6. Let T ∈ L(E;F ), E, F separable Banach spaces, µ a probability measure on E, then if ` ∈ F ∗,

T̂∗µ(`) :=
∫

F

ei`(y) d(T∗µ)(y)

=
∫

E

ei(`◦T )(x) dµ(x)

= µ̂(T ∗(`)),

where T ∗ ∈ L(F ∗; E∗) is the adjoint of T given by T ∗ : ` 7→ ` ◦ T .

We ask:

• Can any function f : E → C be µ̂ for some µ on E?

• If µ̂ = ν̂ does µ = ν?

Definition 2.7. Let V be a real vector space. A function f : V → C is of positive type if

(i) for all n ∈ N, if λ1, . . . , λn ∈ V then (f(λi − λj))n
i,j=1 is a positive semi-definite complex n× n matrix;

(ii) f is continuous on all finite-dimensional subspaces of V .

Definition 2.8. A matrix A is positive semi-definite if Aᵀ = Ā and 〈Aξ, ξ〉Cn ≥ 0.

Proposition 2.9. For µ a probability measure on a separable Banach space E, µ̂ : E∗ → C is of positive type with
µ̂(0) = 1 and is continuous on E∗.

Proof. First observe that µ̂(0) =
∫

E
1 dµ = µ(E) = 1. If λ1, . . . , λn ∈ E∗ and ξ1, . . . , ξn ∈ C then

n∑

k,j=1

µ̂(λk − λj)ξkξj =
∫

E

∣∣∣∣∣∣

n∑

j=1

eiλj(t)ξj

∣∣∣∣∣∣

2

dµ(t) ≥ 0

and is clearly Hermitian since

µ̂(λj − λk) =
∫

E

ei(λj(x)−λk(x)) dµ(x)

=
∫

E

e−i(λk(x)−λj(x)) dµ(x)

= µ̂(λk − λj).

As for continuity, prove this as an exercise using the Dominated Convergence Theorem.

Theorem 2.10. (Bochner’s Theorem. [RS]) For a finite-dimensional vector space V (with the usual topology),
the set of Fourier transforms of probability measures on V is precisely the set of k : F ∗ → C of positive type
with k(0) = 1. Moreover, each such k determines a unique probability measure µ, so µ̂ = ν̂ ⇐⇒ µ = ν on
finite-dimensional spaces.
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3 Gaussian Measures on Finite-Dimensional Spaces

3.1 Gaussian Measures

Recall that we have standard Gaussian measure γn on Rn:

γn(A) := (2π)−n/2

∫

A

e−‖x‖
2/2 dx.

This is a probability measure, since
∫

Rn

e−‖x‖
2/2 dx =

∫ ∞

−∞
. . .

∫ ∞

−∞
e−(x2

1+···+x2
n)/2 dx1 . . . dxn

=
n∏

j=1

∫ ∞

−∞
e−x2

j/2 dxj

Also
(∫ ∞

−∞
e−x2/2 dx

)2

=
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2 dxdy

=
∫ 2π

0

∫ ∞

0

e−r2
r drdθ

= 2π[−e−r2/2]2π
0

= 2π

Lemma 3.1. For C a positive definite matrix and A a symmetric n× n matrix,

(i)
∫
Rn e−

1
2 〈Cx,x〉 dx = (2π)n/2(det C)−1/2;

(ii) tr(AC−1) =
√

det C
(2π)n/2

∫
Rn〈Ax, x〉e− 1

2 〈Cx,x〉 dx;

(iii) (C−1)ij =
√

det C
(2π)n/2

∫
Rn xixje

− 1
2 〈Cx,x〉 dx.

Note. C positive definite =⇒ 〈Cx, x〉 ≥ λ‖x‖2 for all x, where λ is the smallest eigenvalue of C. So
e−

1
2 〈Cx,x〉 ≤ e−

1
2 λ‖x‖2 dx, and so all the above integrals exist.

Proof. (i) Diagonalize C as C = U−1ΛU with U orthogonal (U∗ = U−1) and Λ = diag(λ1, . . . , λn), λj > 0.
∫

Rn

e−
1
2 〈Cx,x〉 dx =

∫

Rn

e−
1
2 〈ΛUx,Ux〉 dx

=
∫

Rn

e−
1
2 〈Λy,y〉 dy with y := Ux,U∗λn = λn

=
∫ ∞

−∞
. . .

∫ ∞

−∞
e−

1
2 (λ1x2

1+···+λnx2
n) dx1 . . . dxn

=
n∏

j=1

∫ ∞

−∞
e−

1
2 λjx2

j dxj

=
n∏

j=1

∫ ∞

−∞
e−

1
2 y2

j
dyj

λ
1/2
j

= (2π)n/2(detC)−1/2

(ii) Take h > 0 so small that C + hA is positive definite. By (i),

(2π)−n/2

∫

Rn

e−
1
2 〈(C+hA)x,x〉 dx = (det(C + hA))−1/2.
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Now take d
dh

∣∣
h=0

:

(2π)−n/2

∫

Rn

−1
2
〈Ax, x〉e− 1

2 〈Cx,x〉 dx =
d
dh

∣∣∣∣
h=0

(det(I + hAC−1) det C)−1/2

= −1
2
(det C)−1/2 tr(AC−1)

since d
dh

∣∣
h=0

det(I + hK) = tr K for any matrix K.
(iii) Apply (ii) with Apq = 0 unless (p, q) = (i, j) or (j, i), otherwise Aij = Aji = 1, so tr AB = Bji + Bij , for

B = C−1, and 〈Ax, x〉 = xixj + xjxi.

Remark 3.2. If {V, 〈·, ·〉∼} is an n-dimensional inner product space then 〈·, ·〉∼ determines a “Lebesgue measure”
λ〈·,·〉

∼
on V . For this take an isometry u : Rn → V with 〈u(x), u(y)〉∼ = 〈x, y〉, so u(x) = x1e1 + · · · + xnen

for some orthonormal basis e1, . . . , en of V . Set λ〈·,·〉
∼

:= u∗λn. (So the “unit cube” spanned by e1, . . . , en has
λ〈·,·〉

∼
-measure 1.) As an exercise, check that this does not depend on the choice of u.

Example 3.3. V = Rn with 〈x, y〉∼ = 〈Cx, y〉 for some positive definite C. Write C = U−1ΛU with U orthogonal,
Λ = diag(λ1, . . . , λn). Then

√
C = U−1Λ1/2U , where Λ1/2 := diag(λ1/2

1 , . . . , λ
1/2
n ) (the unique positive definite

matrix K such that KK = C). (
√

C)∗ =
√

C and
√

C
√

C = C. Define u : Rn → V by u(x) := (
√

C)−1x, so
〈u(x), u(y)〉∼ = 〈x, y〉. By definition, λ〈·,·〉

∼
:= u∗λn.

∫

V

f dλ〈·,·〉
∼

=
∫

Rn

f(u(x)) dλn(x)

=
∫

Rn

f
(√

C
−1

x
)

dλn(x)

= det
√

C

∫

Rn

f(y) dy.

So λ〈C·,·〉 = det
√

Cλn = (detC)1/2λn.

Definition 3.4. Let {V, 〈·, ·〉∼} be a finite-dimensional inner product space. The standard Gaussian measure γ〈·,·〉
∼

on V is
γ〈·,·〉

∼
(A) := (2π)−n/2

∫

A

e−〈x,x〉∼/2 dλ〈·,·〉
∼
(x)

for A ∈ B(V ).

Remarks 3.5. (i) If dim V = n and u : Rn → V is an isometry, then γ〈·,·〉
∼

= u∗(γn), so γ〈·,·〉
∼

is a probability
measure.

(ii) If V = Rn with 〈x, y〉∼ := 〈Cx, y〉, C as before, then

γ〈·,·〉
∼
(A) = (2π)−n/2(det C)1/2

∫

A

e−
1
2 〈Cx,x〉 dx.

Definitions 3.6. For V a finite-dimensional real vector space a (centred) Gaussian measure on V is one of the
form µ = T∗γn for some T ∈ L(Rn;V ). It is non-degenerate if T is surjective.

Remark 3.7. In general, Gaussian measures may not be “centred”. They include µ = A∗γn for A affine.

Remark 3.8. A Gaussian measure µ is non-degenerate iff it is strictly positive (i) and iff it is γ〈·,·〉
∼

for some
〈·, ·〉∼ on V (ii). If H, 〈·, ·〉H is a Hilbert space and T : H → V is linear and surjective, we get 〈·, ·〉T on V by
〈u, v〉T := 〈T̃−1(u), T̃−1(v)〉H , where T̃ := T |(ker T )⊥ : (kerT )⊥ → V is bijective. This way we get a “quotient inner
product”. For (ii), take 〈·, ·〉∼ = 〈·, ·〉T . For (i) note that T∗γn(A) = 0 if A ∩ T (Rn) = ∅. If T is not surjective,
T (Rn) is a subspace not equal to V , so there exists open balls that do not intersect T (Rn), which contradicts strict
positivity.
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3.2 Fourier Transforms of Gaussian Measures

Lemma 3.9. For α ∈ C, y ∈ Rn, and C positive-definite,

(2π)−n/2(det C)1/2

∫

Rn

e−
1
2 〈Cx,x〉eα〈x,y〉 dx = e

1
2 α2〈C−1y,y〉.

Proof. First consider α ∈ R:

LHS = (2π)−n/2(det C)1/2

∫

Rn

e−
1
2 〈C(x−αC−1y),x−αC−1y〉e

1
2 α〈y,C−1y〉 dx

= (2π)−n/2(det C)1/2e
1
2 α2〈y,C−1y〉

∫

Rn

e−
1
2 〈Cx′,x′〉 dx′

= e
1
2 α2〈y,C−1y〉 by Lemma 3.1.

For α ∈ C, note that the LHS and RHS are holomorphic in α on the whole of C and agree on R, so they agree on
C.

Corollary 3.10. The Fourier transform of the standard Gaussian measure on Rn satisfies

γ̂n(`) = exp
(
−1

2
‖`]‖2Rn

)
= exp

(
−1

2
‖`‖2(Rn)∗

)
.

Recall that if {V, 〈·, ·〉V } is a real Hilbert space with dim V ≤ ∞, then V ∗ has a natural inner product making it
a Hilbert space, with Riesz isometric isomorphism V ∗ → V : ` 7→ `] so that `(x) = 〈`], x〉V for all x ∈ V . If {ej}∞j=1

is an orthonormal basis, then 〈`1, `2〉V ∗ =
∑∞

j=1 `1(ej)`2(ej), since V ∗∗ ∼= V canonically, so an inner product on V ∗

gives one on V .

Lemma 3.11. If E, F are Banach spaces with T ∈ L(E;F ) surjective then T ∗ ∈ L(F ∗; E∗) is injective.

Proof. If T ∗(`) = 0, then T ∗(`)(x) = `(T (x)) = 0 for all x ∈ E, so ` = 0 since T is surjective.

Proposition 3.12. A probability measure µ on a finite-dimensional vector space V is non-degenerate Gaussian if,
and only if, µ̂(`) = e−

1
2 (‖`‖′)2 for all ` ∈ V ∗ for some inner product 〈·, ·〉′ on V ∗.

Proof. ( =⇒ ) If µ = T∗γn for some surjective T : Rn → V , then, for ` ∈ V ∗,

µ̂(`) = T̂∗γn(`) = γ̂n(T ∗(`)),

by Remark 2.6. Moreover,
γ̂n(T ∗(`)) = e−

1
2‖T∗(`)‖2(Rn)∗ = e−

1
2 (‖`‖′)2 ,

where 〈`1, `2〉′ := 〈T ∗(`1), T ∗(`2)〉(Rn)∗ , an inner product by Lemma 3.11.
(⇐) If µ̂(`) = e−

1
2 (‖`‖′)2 for some 〈·, ·〉′ on V ∗, take T : Rm → {V, 〈·, ·〉∼} an isometry, where m = dim V and

〈·, ·〉∼ is the inner product on V corresponding to 〈·, ·〉′ on V ∗. Then, for all ` ∈ V ∗,

T̂∗γm(`) = γ̂m(T ∗(`)) = e−
1
2‖T∗(`)‖2(Rn)∗ = µ̂(`).

Bochner’s Theorem then implies that µ = T∗γm.

Theorem 3.13. A strictly positive measure µ on a finite-dimensional vector space V is Gaussian if and only if
`∗µ is a non-degenerate Gaussian measure on R for all ` ∈ V ∗ \ {0}. If so, ` ∈ L2(V, µ;R) for all ` ∈ V ∗ and
µ̂(`) = e−

1
2‖`‖2L2 .

Proof. (i) µ is non-degenerate Gaussian =⇒ µ = T∗γn for some surjective T ∈ L(Rn; V ) =⇒ `∗µ = `∗T∗γn =
(` ◦ T )∗γn is non-degenerate Gaussian on R, since ` ◦ T is onto if ` 6= 0.

(ii) Suppose that ` ∈ V ∗ is non-zero, so `∗µ is non-degenerate Gaussian on R. Then `∗µ = γ〈·,·〉` for some 〈·, ·〉`
on R. Therefore, ∃c(`) > 0 such that

`∗µ(A) =
∫

A

1√
2π

e−c(`)t2/2c(`)1/2 dt

10



i.e., 〈s, t〉` = c(`)st. Therefore, µ̂(`) = ̂̀∗µ(1) = e−1/(2c(`)) since ̂̀∗µ(s) = e−s2/(2c(`)) by Corollary 3.10. Now

‖`‖2L2 =
∫

V

|`(x)|2 dµ(x)

=
∫

R
t2 d(`∗µ)(t)

= c(`)1/2

∫

R
t2(2π)−1/2e−c(`)t2/2 dt

= c(`)−1 by Lemma 3.1 (iii)
< ∞

Therefore, µ̂(`) = e−
1
2‖`‖2L2 as required. Next note that the quotient map V ∗ → L2(V, µ;R) : ` 7→ [`] is injective

since ` ∈ V ∗ and

` = 0 in L2 =⇒ `(x) = 0 almost everywhere in V

=⇒ ker ` has full measure
=⇒ µ not strictly positive unless ` ≡ 0

So now define 〈·, ·〉′ on V ∗ by 〈`1, `2〉′ := 〈[`1], [`2]〉L2 and apply Proposition 3.12.

11



4 Gaussian Measures on Banach Spaces

Definitions 4.1. Let E be a separable Banach space. A Borel probability measure µ on E is said to be Gaussian
if `∗µ is Gaussian on R for all ` ∈ E∗. Such a µ is non-degenerate if it is strictly positive.

Remark 4.2. By Theorem 3.13, this agrees with the finite-dimensional definition in the non-degenerate case; a
slight modification of the proof of Theorem 3.13 handles the general case.

Lemma 4.3. If µ on E is strictly positive and ` ∈ E∗ \ {0} then `∗µ on R is strictly positive.

Proof. Take U ⊆ R non-empty and open. Then `∗µ(U) = µ(`−1(U)) > 0 since `−1(U) is open and non-empty in
E, since ` is continuous and onto.

Theorem 4.4. If γ is Gaussian and non-degenerate on E then for all ` ∈ E∗, ` ∈ L2(E, γ;R) and γ̂(`) = e−
1
2‖`‖2L2 .

The proof of this mimics that of Theorem 3.13 and is omitted. However, we have not yet established whether
or not there are any non-degenerate Gaussian measures on infinite-dimensional spaces!
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5 Cylinder Set Measures

Definition 5.1. Let E be a separable Banch space and let

A (E) := {T ∈ L(E;F )| dim F < ∞, T onto}.
We will write FT for F if T ∈ A (E), T ∈ L(E; F ). A cylinder set measure (or csm) on E is a family {µT }T∈A (E)

of probability measures µT on FT , T ∈ A (E), such that if we have

E
T //

S ÃÃA
AA

AA
AA

A FT

πST

²²
FS

then µS = (πST )∗(µT ).

Examples 5.2. (i) If µ is a probability measure on E define µT := T∗(µ) for each T ∈ A (E). Then if πST ◦T = S
as above,

µS = S∗(µ) = (πST ◦ T )∗(µ) = (πST )∗(T∗(µ)) = (πST )∗(µT ).

If a csm {µT }T∈A (E) on E corresponds to a measure in this way (i.e., there is a measure µ on E such that
µT = T∗µ on FT ) then we say that it “is” a measure, although we don’t yet know that it is unique.

(ii) If dim E < ∞ every csm on E is a measure — just take µ = µid for id : E → E the identity map.

(iii) A real Hilbert space {H, 〈·, ·〉H}. We have a canonical Gaussian csm on H, {γH
T |T ∈ A (H)}. γH

T on FT

(where T : H → FT is onto) is defined by γH
T := γ〈·,·〉T , where 〈·, ·〉T is the quotient inner product on FT :

〈u, v〉T :=
〈
T |−1

(ker T )⊥u, T |−1
(ker T )⊥v

〉
H

.

Equivalently, 〈·, ·〉T on FT is determined by 〈·, ·〉T on F ∗T , where

〈`1, `2〉T = 〈T ∗`1, T ∗`2〉H∗ , (5.1)

so γ̂H
T (`) = exp(− 1

2‖T ∗`‖2H∗).

Exercise 5.3. Show that {γH
T |T ∈ A (H)} is a csm. Hint: Use Fourier transforms.

Proposition 5.4. For T = ` ∈ H∗, ` 6= 0, γH
` on R = F` is given by

γH
` (A) =

1√
2π‖`]‖H

∫

A

exp
( −t2

2‖`]‖2H

)
dt

where `] ∈ H is the Riesz representative of ` ∈ H∗.

Proof. Method One. Use (5.1). γ̂H
` (s) = exp(− 1

2‖`∗s‖2H∗) for s ∈ R ∼= R∗, where `∗ : R→ H ∼= H∗ is t 7→ t`] since

〈t`], h〉H = t〈`], h〉H = t`(h) = 〈t, `(h)〉R = 〈`∗(t), h〉H
as required. Therefore, γH

` (s) = exp(− 1
2‖`]‖2Hs2), which is the Fourier transform of the measure given.

Method Two. (ker `)⊥ = {s`]|s ∈ R} since this is one-dimensional (` 6= 0) and is h ∈ ker ` then

〈h, s`]〉H = s〈h, `]〉H = s`(h) = 0 for all s.

So set ˜̀= `|(ker `)⊥ . ˜̀ is
s`] 7→ `(sl]) = s`(`]) = s‖`]‖2H .

˜̀−1 : R→ (ker `)⊥ ⊆ H is given by t 7→ t`]

‖`]‖2H
, therefore

〈s, t〉` =
〈

s`]

‖`]‖2H
,

t`]

‖`]‖2H

〉

H

=
st

‖`]‖2H
,

so the measure is as given.
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Definition 5.5. The Fourier transform of a csm {µT |T ∈ A (E)} is defined to be µ̂· : E∗ → C given by

µ̂·(`) := µ̂`(1)

=
∫

R
e−it dµ`(t) (the Fourier transform of the measure µ` on R)

for ` 6= 0, and µ̂·(0) := 1. This agrees with the definition when the csm µ· is a measure, by Remark 2.5.

Proposition 5.6. For the canonical Gaussian csm on H, {γH
T }T∈A (E), if ` ∈ H∗ is non-zero,

(i) γ̂H· (`) = exp(− 1
2‖`]‖2H);

(ii)
∫
R t2 dγH

` (t) = ‖`]‖2H .

Definition 5.7. Suppose that θ : E1 → E2 is a linear map of separable Banach spaces. Given a csm {µT |T ∈
A (E1)} on E1 we get a push-forward csm {θ∗(µ·)S |S ∈ A (E2)} on E2 by

θ∗(µ·)S = µS◦θ

if S ◦ θ is onto. If S ◦ θ is not onto let F̃ be the image of S ◦ θ, i : F̃ ↪→ FS the inclusion, and define

θ∗(µ·)S = i∗(µS̃◦θ)

where S̃ ◦ θ : E1 → F̃ is such that i ◦ S̃ ◦ θ = S ◦ θ.

Definition 5.8. (i) Given a csm {µT }T on E and θ ∈ L(E; G), G a separable Banach space, we say that θ
radonifies {µT }T if θ∗(µ·) is a measure on G.

(ii) θ ∈ L(H; G), H a separable Hilbert space, G a separable Banach space, is γ-radonifying if {θ∗(γH
· )T }T is a

measure on G, i.e. θ radonifies the canonical Gaussian csm {γH
T }T∈A (H) on H.

Examples 5.9. (i) If θ has finite rank then θ radonifies all csms. For example, θ∗(µ·) = µθ if θ : E → G is onto
and dimG < ∞.

(ii) If id : E → E is the identity then id radonifies {µT }T if, and only if, {µT }T is a measure.

Definitions 5.10. For H a separable Hilbert space and E a separable Banach space, if i : H → E is a continuous
linear injective map with dense range that γ-radonifies we say that i : H → E is an abstract Wiener space (or aws).
For example, L2 → L1. The measure induced on E is called the abstract Wiener measure of i : H → E.

Proposition 5.11. An abstract Wiener measure is a Gaussian measure.

Proof. We need to show that `∗γ is Gaussian on R for all ` ∈ E∗:

H
i //

`◦i ##GG
GG

GG
GG

G E, γ

`

²²
R, `∗(γ)

`∗(γ) = `∗(i∗(γH))

= (i∗(γH))`

= γH
`◦i

which is Gaussian if ` 6= 0; if ` = 0 we get δ0.

Example 5.12. Classical Wiener space. Let

H := L2,1
0 ([0, T ];Rn)

=
{
paths beginning at 0 with first derivative ∈ L2

}

=
{

σ : [0, T ] → Rn

∣∣∣∣∃φ ∈ L2([0, T ];Rn) with σ(t) =
∫ t

0

φ(s) ds

}
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So σ̇(s) = φ(s) for almost all s ∈ [0, T ] and σ(0) = 0.

〈σ1, σ2〉L2,1
0

=
∫ T

0

〈σ̇1(s), σ̇2(s)〉Rn ds

The operator d
dt : L2,1

0 → L2 is an isometry of Hilbert spaces. Let

E := C0([0, T ];Rn)
= {σ : [0, T ] → Rn |σ is continuous and σ(0) = 0}

‖σ‖E := ‖σ‖∞ := sup
0≤t≤T

‖σ(t)‖Rn

Then the inclusion i : H ↪→ E is continuous and linear. By Cauchy-Schwarz, it is injective. The image is dense in E
by the standard approximation theorems — e.g., polynomials p with p(0) = 0 are dense in C0 (the Stone-Weierstrass
Theorem).

Theorem 5.13. (Wiener, Gross et. al.) The inclusion i : L2,1
0 ↪→ C0 is γ-radonifying.

Definitions 5.14. The Gaussian measure γ induced on C0 is classical Wiener measure. Also, C0, or i : L2,1
0 ↪→ C0,

is called classical Wiener space. L2,1
0 is called the corresponding Cameron-Martin space or the reproducing kernel

Hilbert space.

Some questions to deal with:

(i) Is the map

probability measures on E → csms on E

µ 7→ {T∗(µ)|T ∈ A (E)}

injective?

(ii) How about Fourier transforms of measures in infinite dimensions? Do we have an analogue of Bochner’s
Theorem?

Lemma 5.15. If E, G are separable Banach spaces, θ ∈ L(E;G) and {µT }T∈A (E) is a csm on E, then

θ̂∗(µ)(`) = µ̂·(θ∗(`))

for all ` ∈ G∗. In particular, if T ∈ A (E), then µ̂T (`) = µ̂(T ∗(`)) for all ` ∈ F ∗T .

Proof. If ` 6= 0 then

θ̂∗(µ·)(`) = θ̂∗(µ·)`(1) by definition of µ̂·
= µ̂`◦θ(1) if ` ◦ θ 6= 0 by definition of θ∗(µ·)
= µ̂θ∗(`)(1)
= µ̂·(θ∗(`)) by definition of µ̂·

If ` ◦ θ = 0 then θ∗(`) = 0 so RHS = 1 (probabilty measure) but LHS = 1 since θ∗(µ·) = δ0.

Theorem 5.16. (Extended Bochner Theorem.) The functions of positive type f : E∗ → C with f(0) = 1 are
precisely the Fourier transforms of csms on E and µ̂· = ν̂· =⇒ {µT }T = {νT }T .

Proof. Given f : E∗ → C of positive type and T ∈ A (E) (so that T : E → FT is surjective), the composition
f ◦ T ∗ : F ∗T → C is continuous, since dim F ∗T < ∞, and positive, and so is of positive type. Therefore, by the
finite-dimensional Bochner Theorem, we get µT on FT with µ̂T = f ◦ T ∗. One can check that {µT }T∈A (E) forms a
csm.

This argument shows that µ̂· determines {µT }T∈A (E).
Given a csm {µT }T∈A (E) on E and `1, . . . , `n ∈ E∗, we need to show that

(a) ∀ξ1, . . . , ξn ∈ C,
∑n

i,j=1 µ̂·(`i − `j)ξiξj ≥ 0;
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(b) if F = span{`1, . . . , `n}, then µ̂· is continuous on F .

(a) Let ˜̀
1, . . . , ˜̀

N be a basis for F . Define T : E → RN by T (x) :=
(

˜̀
1(x), . . . , ˜̀

N (x)
)
, which is surjective.

Therefore, we get µT on RN . Also, since T is onto, T ∗ : (RN )∗ → E∗ is injective. Its image is F since it sends the
dual basis in (RN )∗ to {˜̀j}N

j=1. Take e′j ∈ (RN )∗ such that T ∗(e′j) = `j . Then

∑

i,j

µ̂·(`i − `j)ξiξj =
∑

i,j

µ̂·T ∗(e′i − e′j)ξiξj

=
∑

i,j

µ̂T (e′i − e′j)ξiξj by Lemma 5.15

≥ 0 since µT is a measure

(b) µ̂T = µ̂· ◦ T ∗ by Lemma 5.15, therefore µ̂·|F = µ̂T ◦ (T ∗|−1
F ), which is continuous since µ̂T is.

Theorem 5.17. Let E be a separable Banach space with finite measures µ, ν on E. Then

(i) if T∗µ = T∗ν for all T ∈ A (E) then µ = ν;

(ii) if µ̂ = ν̂ then µ = ν.

Proof. By the Extended Bochner Theorem, Theorem 5.16, (i) =⇒ (ii), so we need only prove the first part. We
define the cylinder sets Cyl(E) := {T−1(B)|B ∈ B(FT ), T ∈ A (E)}. This is an algebra of subsets, but not a
σ-algebra if dim E = ∞. Given a probability measure µ on E and T ∈ A (E), A = T−1(B) for some B ∈ B(FT ),
µ(A) = T∗(µ)(B) = µT (B). Therefore, the csm {T∗µ|T ∈ A (E)} determines µ(A) for all A ∈ Cyl(E). Thus, the
theorem follows from the following Lemma 5.18:

Lemma 5.18. If E is a separable Banach space then B(E) = σ(Cyl(E)), the smallest σ-algebra containing Cyl(E).

Theorem 5.19. (Uniqueness of Carathéodory’s Extension. [RW1].) Let µ, ν be finite measures on a measurable
space {X, A } and let A 0 ⊂ A be an algebra of subsets of X such that σ(A 0) = A . Then if µ = ν on A 0, µ = ν
on A as well. (This actually holds if A 0 is just a π-system, one that is closed under finite intersections.)

Proof of Lemma 5.18. Since T : E → FT is continuous it is measurable, and T−1(B) is Borel if B is Borel, so
Cyl(E) ⊆ B(E).

Consider the special case that E ⊆ C([0, T ];R) is a closed subspace. Then B(E) = {E ∩U |U ∈ B(C([0, T ];R))}
since

• the RHS is a σ-algebra;

• RHS ⊆ B(E) since the inclusion i : E ↪→ C([0, T ];R) is continuous, therefore measurable;

• all open balls in E lie in the RHS.

Take x0 ∈ E and ε > 0. We show that Bε(σ0) ∈ σ(Cyl(E)). Since B(E) is generated by all such balls, the result
will follow. For this, let {q1, q2, . . . } be an enumeration of Q ∩ [0, T ]. So

Bε(x0) = {x ∈ E|∀r ∈ [0, 1], |x(r)− x0(r)| ≤ ε}
= {x ∈ E||x(qi)− x0(qi)| ≤ ε, 1 ≤ i < ∞}

=
∞⋂

i=1

{x ∈ E||x(qi)− x0(qi)| ≤ ε}

∈ Cyl(E),

because
{x ∈ E||x(qi)− x0(qi)| ≤ ε} = ev−1

qi

(
BRε (x0(qi))

)
∈ Cyl(E).

For the general case we use

Theorem 5.20. (Banach-Mazur. [BP]) Any separable Banach space is isometrically isomorphic to a closed subspace
of C([0, T ];R).
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Such an isomorphism maps E → Ẽ ⊆ C([0, T ];R); it maps Cyl(E) to Cyl(Ẽ) and B(E) and B(Ẽ) bijectively.
We proved the result for Ẽ, so it is true for E.

Remark 5.21. The proof showed that B(E) = σ{`|` ∈ E∗} = smallest σ-algebra such that each ` ∈ E∗ is
measurable as a function ` : E → R, and that for E closed in C([0, T ];R), B(E) = σ{evq |q ∈ Q ∩ [0, 1]}, where
evq(x) := x(q) is the evaluation map.
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6 The Paley-Wiener Map and the Structure of Gaussian Measures

6.1 Construction of the Paley-Wiener Integral

Let i : H → E be an aws with measure γ. Let j : E∗ → H ∼= H∗ be the adjoint of i, defined by 〈j(`), h〉H = `(i(h))

for h ∈ H, i.e. j(`) = (` ◦ i)] = (i∗(`))]. So E∗ j→ H
i→ E.

Lemma 6.1. (i) j : E∗ → H is injective.

(ii) j has dense range (i.e. j(E∗) = H).

Proof. (i)

j(`) = 0 =⇒ (` ◦ i)] = 0
=⇒ ` ◦ i = 0
=⇒ `|i(H) = 0
=⇒ ` = 0

since i(H) is dense in E and ` is continuous.
(ii) Suppose that h ⊥ j(E∗), i.e. 〈h, j(`)〉H = 0 for all ` ∈ E∗. Then `(i(h)) = 0 for all ` ∈ E∗. So i(h) = 0 by

the Hahn-Banach Theorem. So h = 0, since i is injective. So j(E∗) is dense in H.

Lemma 6.2. Given Banach spaces F and G, a dense subspace F0 ⊆ F , and a map α ∈ L(F0; G) such that ∃k such
that ‖α(x)‖G ≤ k‖x‖F for all x ∈ F0, then there exists a unique α̃ ∈ L(F ;G) such that α̃|F0 = α. Also, ‖α̃‖ ≤ k.
Moreover, if ‖α(x)‖G = k‖x‖F for all x ∈ F0, then ‖α̃(x)‖G = k‖x‖F for all x ∈ F , and so α̃ is an isometry if
k = 1.

Proof. Let x ∈ F . Take (xn)∞n=1 in F0 with xn → x in F . Then

‖α(xn)− α(xm)‖G = ‖α(xn − xm)‖G ≤ k‖xn − xm‖F

and so (α(xn))∞n=1 is Cauchy in G, and so it converges in G. Set α̃(x) = limn→∞ α(xn). Check that this is
independent of the choice of the xn → x. So we get α̃ : F → G extending α. Check that it is linear and unique.
For the last part,

‖α̃(x)‖G =
∥∥∥ lim

n→∞
α(xn)

∥∥∥
G

= lim
n→∞

‖α(xn)‖G

≤ lim
n→∞

k‖xn‖F

= k‖x‖F

Therefore, ‖α̃‖ ≤ k and α̃ is continuous. If ‖α(xn)‖G = k‖xn‖F for all n, the above argument shows that
‖α̃(x)‖G = k‖x‖F for all x ∈ F .

Theorem 6.3. If ` ∈ E∗ then ` ∈ L2(E, γ;R) with ‖`‖L2 = ‖j(`)‖H . Consequently, there is a unique continuous
linear I : H → L2(E, γ;R), with I(h) := 〈h,−〉∼H , such that

H
I // L2(E, γ;R)

E∗
j

``AAAAAAAA π: 7̀→[`]

99ssssssssss

Moreover, ‖I(h)‖L2 = ‖h‖H , so I is an isometry into L2(E, γ;R).
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Proof. Let ` ∈ E∗, ` 6= 0.

‖`‖2L2 =
∫

E

`(x)2 dγ(x)

=
∫

R
t2 d(`∗(γ))(t)

=
∫

R
t2 dγH

` (t)

= ‖(` ◦ i)]‖2H by Proposition 5.6 (ii)

= ‖j(`)‖2H < ∞
For the “consequently” part, we apply Lemma 6.2 with F0 = j(E∗), F = H, G = L2(E, γ;R).

Definition 6.4. The isometry I : H → L2(E, γ;R) is called the Paley-Wiener map. It is the unique extension to
all of H of the natural map j(E∗) → L2(E, γ;R) given by j(`) 7→ [`]L2 , which is well-defined by Lemma 6.1(i).

Remark 6.5. For h ∈ H, I(h) = limn→∞ `n in L2, where `n ∈ E∗ with j(`n) → h in H. We have E∗ j→ H
i→ E

with 〈j(`), h〉H = `(i(h)), j(`) = (` ◦ i)] = (i(`))]. I : H → L2(E, γ;R) is isometric onto its image.

Remark 6.6. If dim H < ∞ we can take H = E and i = id, so j : E∗ → H is j(`) = (` ◦ id)] = `]. In this case, j
is the Riesz transform H∗ → H.

If h ∈ H = the image of j, take `n such that `]
n = h for all n, so I(h) = `n = 〈h,−〉H . Thus, in finite dimensions,

I(h) = 〈h,−〉H ; thus, in infinite dimensions we sometimes write 〈h,−〉∼H for I(h).
Note that 〈h, x〉H does not (in general) exist in the infinite-dimensional case. If x ∈ E, we can make classical

sense of it if x ∈ i(H), x = i(k) for some k ∈ H: we use 〈h, k〉H . If h = `(j), ` ∈ E∗, we use `(x).
Now use I(h) = 〈h,−〉∼H — this is only defined as an element of L2(E, γ;R), so I(h)(x) only makes sense up to

sets of measure zero.
In classical Wiener space C0([0, T ];Rn) with its Cameron-Martin space H = L2,1

0 ([0, T ];Rn),

〈h1, h2〉H =
∫ T

0

〈ḣ1(s), ḣ2(s)〉Rn ds

= “
∫ T

0

〈ḣ1(s), dh2(s)〉Rn” (Stieltjes)

“dh(s)” means “ḣ(s) ds”.
We often write 〈h,−〉∼H : C0 → R as

σ 7→
∫ T

0

〈ḣ(s),dσ(s)〉Rn .

This is only defined up to sets of Wiener measure zero, and is the Paley-Wiener integral of ḣ. However, this “line
integral” exists even if the path σ is merely continuous; we do not need it be differentiable.

Definition 6.7. The Paley-Wiener integral for f ∈ L2([0, T ];Rn) is
(

σ 7→
∫ T

0

〈f(s), dσ(s)〉Rn

)
:= I

(∫ ·

0

f(s) ds

)
.

That is, take h ∈ L2,1
0 ([0, T ];R) such that ḣ = f . It is in L2(C0, γ;R) as a function of σ.

H = L2,1
0

d
dt

++
L2R ·

0 −ds

mm

Exercise 6.8. Let µ· be a csm on E and let ` ∈ E∗, ` 6= 0. Prove that for s ∈ R ∼= R∗, µ̂`(s) = µ̂·(s`).

Proposition 6.9. For any aws i : H → E, if h ∈ H, h 6= 0, then

I(h)∗(γ) = γH
〈h,−〉H .
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Proof. If h = j(`) for some ` ∈ E∗, then `◦i = 〈h,−〉H ∈ H∗ and I(h) = ` by definition. Then `∗(γ) = (`◦i)∗(γH
· ) =

γH
〈h,−〉H , as required.

In general, let `n ∈ E∗ with j(`n) → h in H, so I(h) = limn→∞[`n] in L2. If s ∈ R then

(̂`n)∗γ(s) = γ̂H
`n◦i(s)

= e−
1
2 s2‖j(`n)‖2H by Proposition 5.6 and Exercise 6.8

→ e−
1
2 s2‖h‖2H as n →∞

= γ̂H
〈h,−〉(s) by Proposition 5.6 and Exercise 6.8.

But (̂`n)∗γ(s) = γ̂(s`n) =
∫

E
eis`n(x) dγ(x). Now `n → I(h) in L2 and

∣∣∣eis`n(x) − eisI(h)(x)
∣∣∣ ≤ 2

∣∣∣∣sin
s`n(x)− sI(h)(x)

2

∣∣∣∣

since eix − eiy = 2iei(x+y)/2 sin x−y
2

≤ |s`n(x)− sI(h)(x)|
→ 0 in L2 as n →∞
→ 0 in L1.

So

γ̂(s`n) →
∫

E

eisI(h)(x) dγ(x)

=
∫

R
eist d(I(h)∗γ)(t)

= Î(h)∗γ(s)

and the result follows from Bochner’s Theorem.

Corollary 6.10. If f, g : [0, T ] → Rn are in L2 and γ is classical Wiener measure on C0([0, T ];Rn) then

(i)
∫

C0

(∫ T

0
〈f(s),dσ(s)〉Rn

)
dγ(σ) = 0;

(ii)
∫

C0

(∫ T

0
〈f(s),dσ(s)〉Rn

)2

dγ(σ) =
∫ T

0
‖f(s)‖2Rn ds = ‖f‖2L2 ;

(iii)
∫

C0

(∫ T

0
〈f(s),dσ(s)〉Rn

∫ T

0
〈g(s), dσ(s)〉Rn

)
dγ(σ) =

∫ T

0
〈f(s), g(s)〉2Rn ds = 〈f, g〉2L2 .

Proof. (i) Set h(t) :=
∫ T

0
f(s) ds, so h ∈ L2,1

0 and, by definition,
∫ T

0
〈f(s),dσ(s)〉 = I(h)(σ). Therefore,

∫

C0

∫ T

0

〈f(s), dσ(s)〉Rn dγ(σ) =
∫

C0

I(h)(σ) dγ(σ)

=
∫

R
t dγH

〈h,−〉(t) by Proposition 6.9

= 0 by the symmetry of γ

(ii) Recall that ‖I(h)‖2L2 = ‖h‖2
L2,1

0
= ‖f‖2L2 by construction.

(iii) Follows from (ii) by the polarization identity for inner product spaces:

〈a, b〉 =
‖a + b‖2 − ‖a− b‖2

4
.

We have a map L2([0, T ];R) → L2(C0, γ;R) given by

f 7→
(

σ 7→
∫ T

0

〈f(s), dσ(s)〉Rn

)
,

an isometry onto its image.
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6.2 The Structure of Gaussian Measures

Definition 6.11. If {Ω, F ,P} is a probability space, G a separable Banach space, and f : Ω → G, we say that f
is a Gaussian random variable (or random vector) if

(i) f is measurable;

(ii) f∗P is a Gaussian measure on G.

Example 6.12. I(h) : E → R is a Gaussian random variable on {E,B(E), γ} if i : H → E is an aws and h ∈ H,
by Proposition 6.9.

Remark 6.13. Let {Ω,F , µ} be a measure space, {X, d} a metric space, and fj , g : Ω → X measurable functions
for j ∈ N. fj → g almost everywhere/almost surely/with probability 1 means that there is a set Z ∈ F with
µ(Z) = 0 such that fj(x) → g(x) as j → ∞ for all x 6∈ Z. Convergence almost everywhere is not implied by L2

convergence: consider for example the sequence of functions

χ[0,1], χ[0,1/2], χ[1/2,1], χ[0,1/4], χ[1/4,1/2], χ[1/2,3/4], . . . ,

which converges to 0 in L2 but not almost surely. However, if the fj are dominated then convergence almost surely
implies L2 convergence.

Lemma 6.14. Let {Ω, F ,P} be a probability space and fj : Ω → R a sequence of Gaussian random variables such
that fj → 0 almost surely as j →∞. Then fj → 0 in L2. In particular, every Gaussian R-valued random variable
lies in L2(Ω, F ,P;R).

Proof. Set γj := (fj)∗P on R.

γ̂j(s) =
∫

R
eist dγj(t)

=
∫

Ω

eisfj(ω) dP(ω)

→ 1 as j →∞ by DCT

So γ̂j(s) → 1 for all s ∈ R (z). Now,

dγj(t) =
1√
2π

c
1/2
j e−

1
2 cjt2 dt

for some cj > 0 if fj 6≡ 0, so γ̂j(s) = e−
1
2 c−1

j s2
for s ∈ R, by Lemma 3.9. Therefore, c−1

j → 0 as j →∞ by (z). But

‖fj‖2L2 =
∫

R
t2 dγj(t)

=
∫

R

c
1/2
j t2√

2π
e−

1
2 cjt2 dt

= c
−1/2
j by Lemma 3.1

→ 0

Remark 6.15. From the proof we saw that if f : Ω → R is a Gaussian random variable then f ∈ L2 and
f̂∗P(s) = e−

1
2 s2‖f‖2

L2 . Cf. Theorem 3.13.

Theorem 6.16. (Structure Theorem for Gaussian Measures — Kallianpur, Sato, Stefan, Dudley-Feldman-LeCamm
1977.) Let γ be a strictly positive Gaussian measure on a separable Banach space E. Then there exists a separable
Hilbert space {H, 〈·, ·〉H} and an i : H → E such that i : H → E is an aws with γ = i∗(γH

· ).

Remark 6.17. The Structure Theorem tells us that all (centred, non-degenerate) Gaussian measures on separable
Banach spaces arise as the push-forward of the canonical Gaussian csm on some separable Hilbert space. Put
another way, the aws construction is the only way to obtain a Gaussian measure on a separable Banach space.

Proof of Theorem 6.16. We must construct H and i. Let ` ∈ E∗, ` 6= 0. Then ` ∈ L2 by Remark 6.15. Let
j : E∗ → L2(E, γ;R) be the projection ` 7→ [`]. Set H := j(E∗) with 〈·, ·〉H := 〈·, ·〉L2 . Consider j as a map
E∗ → H. By definition, this is linear with dense range. So see that it is continuous, let `n → ` in E∗ as n → ∞.
Then
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(i) `n − ` → 0 in E∗ and `n − ` is a Gaussian random variable on {E, γ};
(ii) `n(x)− `(x) → 0 for all x ∈ E, so `n − ` → 0 (almost) surely.

Therefore, by Lemma 6.14, `n−` → 0 in L2, and so j is continuous. (Note: this argument shows that j is continuous
from E∗ with the weak-∗ topology to L2.) Now define i := j∗ : H ∼= H∗ → E∗∗ by i(h)(`) := 〈h, j(`)〉H for h ∈ H,
` ∈ E∗ (†).

Case 1. Suppose that E is reflexive, so the natural map k : E → E∗∗ given by k(x)(`) := `(x) for x ∈ E,
` ∈ E∗, is surjective (and so is an isometry). Then we get i : H → E defined by (†), which is equivalent to
`(i(h)) = 〈h, j(`)〉H for ` ∈ E∗, h ∈ H (‡).

Case 2. If E is not reflexive observe that the continuity of j : (E∗, w∗) → H was proved above. Use the theorem
that (E∗, w∗) ∼= E. Again, we get i satisfying (‡). We now have three checks to perform:

(i) i∗γH
· = γ. Observe that

î∗γH· (`) = γ̂H· (i∗(`))

= γ̂H· (j(`))

= e−
1
2‖j(`)‖2H by Proposition 5.6

= e−
1
2‖`‖2L2 by the definition of j

But γ̂(`) = e−
1
2‖`‖2L2 , so i∗γH

· = γ by the Extended Bochner Theorem.

(ii) i is injective. This is easy, since j has dense range.

(iii) i has dense range. It is enough to show that j is injective. Suppose that ` ∈ ker j, so j(`) = 0. Then ` = 0
almost surely. But if ` 6= 0 ∈ E∗ then ker ` is a proper closed subspace of E, so there exist x ∈ E and r > 0
with Br(x) ∩ ker ` = ∅. So γ(Br(s)) = 0, since ` = 0 almost surely, which contradicts the strict positivity of
γ.

Theorem 6.18. (Uniqueness of Abstract Wiener Spaces.) Suppose that i : H → E and i0 : H0 → E are
abstract Wiener spaces with the same measure γ on E. Then there exists a unique orthogonal U : H0 → H
(U∗U = UU∗ = id) such that i ◦ U = i0:

H0
U //

i0 ÃÃA
AA

AA
AA

A H

iÄÄ~~
~~

~~
~~

E

Proof. Take j : E∗ → H and j0 : E∗ → H0 as usual. We proved that ‖j(`)‖H = ‖`‖L2 = ‖j0(`)‖H0 for ` ∈ E∗ in
Theorem 6.3. Define W0 : j(E∗) → j0(E∗) by W0(j(`)) := j0(`). This is linear and well-defined since j is injective.
Also, for all h ∈ j(E∗), ‖W0(h)‖H0 = ‖h‖H .

Therefore, since j(E∗) is dense in H, there is a unique continuous linear W : H → H0 extending W0. Moreover,
for all h ∈ H, ‖W (h)‖H0 = ‖h‖H . Also, W is surjective since its image contains the dense subspace j0(E∗).
Therefore, W is a norm-preserving isometry, so W ∗W = WW ∗ = id. Also,

H
W // H0

E∗
j

``BBBBBBBB j0

=={{{{{{{{

So take U = W ∗ : H0 → H, so since W ◦ j = j0, i ◦ U = i0 as required.
For uniqueness, note that

i ◦ U ′ = i0 =⇒ (U ′)∗ ◦ j = j0

=⇒ (U ′)∗ = W since j(E∗) = H

=⇒ U ′ = U

Example 6.19. Classical Wiener Space. We used the inclusion i : L2,1
0 ↪→ C0. Other authors use i0 : H0 :=

L2([0, T ];R) → C0, where i0(h)(t) =
∫ t

0
h(s) ds for 0 ≤ t ≤ T , h ∈ H0. We have U : L2 → L2,1

0 as U(h)(t) =∫ t

0
h(s) ds for 0 ≤ t ≤ T , h ∈ L2.
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7 The Cameron-Martin Formula: Quasi-Invariance of Gaussian Mea-
sures

Let i : H → E be an aws with measure γ. Consider Th : E → E given by Th(x) = x + i(h) for h ∈ H. Suppose
that dim E = n and consider γn on Rn with H = E = Rn and i = id. Recall that

γn(A) := (2π)−n/2

∫

A

e−‖x‖
2/2 dx

for A ⊆ Rn Borel. If h ∈ Rn then

(Th)∗(γn)(A) = γn(T−1
h (A))

= (2π)−n/2

∫

T−1
h (A)

e−‖x‖
2/2 dx

= (2π)−n/2

∫

A

e−‖y−h‖2/2 dy

=
∫

A

e〈h,y〉− 1
2‖h‖2 dγn(y).

Therefore, (Th)∗(γn) = e〈h,−〉− 1
2‖h‖2γn. Thus we have

Proposition 7.1. (Th)∗γn ≈ γn with Radon-Nikodym derivative

d(Th)∗γn

dγn
(x) = e〈h,x〉Rn− 1

2‖h‖2Rn .

Recall that if µ, ν on {X, A } are such that µ(A) = 0 =⇒ ν(A) = 0 then we write ν ≺ µ and say that ν
is absolutely continuous with respect to µ. The Radon-Nikodym Theorem then says that there exists a function
dν
dµ : X → R≥0 such that ν = dν

dµµ, i.e.

ν(A) =
∫

A

dν

dµ
(x) dµ(x)

for all A ∈ A . If µ ≺ ν and ν ≺ µ then we write µ ≈ ν, say µ and ν are equivalent, and we have dµ
dν (x) = ( dν

dµ (x))−1

almost everywhere.

Proposition 7.2. If µ is a probability measure (or, indeed, just finite) on a separable Banach space E, define
Tv : E → E : x 7→ x + v for a choice of v ∈ E. Then for all ` ∈ E∗,

̂(Tv)∗(µ)(`) = ei`(v)µ̂(`).

Proof.

̂(Tv)∗(µ)(`) =
∫

E

ei`(x) d(Tv)∗(µ)(x)

=
∫

E

ei`(y+v)dµ(y)

= ei`(v)µ̂(`).

Lemma 7.3. For any aws i : H → E with measure γ,

(i) for h ∈ H, eI(h) ≡ e〈h,−〉∼ ∈ Lp for all 1 ≤ p < ∞;

(ii) for all ρ, z ∈ C, g, h ∈ H,
∫

E

eρ〈g,−〉∼H(x)+z〈h,−〉∼H(x) dγ(x) = e
1
2 ρ2‖g‖2H+ 1

2 z2‖h‖2H+ρz〈g,h〉H .
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Proof. (i) Take h 6= 0, otherwise trivial. We know I(h) ∈ L2 and Proposition 6.9 implies that I(h)∗γ = γH
〈h,−〉H .

Therefore,
∫

E

(e〈h,−〉∼H )p dγ =
∫

R
tp d(I(h)∗γ)(t)

=
∫

R
tp dγH

〈h,−〉H (t)

< ∞ for 1 ≤ p < ∞

since dγH
〈h,−〉H (t) = 1

N e−ct2 dt for some N, c > 0.
(ii) If ρ = ai, z = bi for some a, b ∈ R, we have the desired result, since h 7→ I(h) is linear and so∫

E
eρ〈g,−〉∼H(x)+z〈h,−〉∼H(x) dγ(x) =

∫
E

ei〈ag+bh,−〉∼H dγ and ag+bh ∈ H since H is a real Hilbert space. So
∫

E
eρ〈g,−〉∼H(x)+z〈h,−〉∼H(x) dγ(x) =

e−
1
2‖ag+bh‖2H from before, as required.
Next fix ρ = ai. Both sides are analytic in z ∈ C (see below) and agree for z ∈ iR, and so agree for all z ∈ C.

Next fix z ∈ C and observes that both sides are analytic in ρ ∈ C and agree for ρ ∈ iR, and so agree for all
ρ ∈ C.

Remark 7.4. Why do we have analyticity above? Consider a measure space {Ω,F , µ}. Let F : C × Ω → C be
(jointly) measurable and F (z, ω) analytic in z for almost all ω ∈ Ω. When is

∫
Ω

F (z, ω) dµ(ω) analytic in z ∈ C?
Take a piecewise C1 closed curve σ : [0, T ] → C, σ(0) = σ(T ), parameterizing a closed contour C . By Fubini’s

Theorem, ∫

C

∫

Ω

F (z, ω) dµ(ω)dz =
∫

Ω

∫

C

F (z, ω) dzdµ(ω) = 0

by Cauchy’s Theorem. This gives analyticity by Morera’s Theorem. But in order to apply Fubini’s Theorem we
must have ∫ T

0

∫

Ω

|F (σ(t), ω)||σ̇(t)| dµ(ω)dt < ∞.

This is at most length(σ)
∫
Ω

supz∈C |F (z, ω)| dµ(ω), where length(σ) :=
∫ T

0
|σ̇(t)| dt. So we are all right if ω 7→

supz∈K |F (z, ω)| is in L1(Ω, µ;R) for all compact K ⊂ C. But this does not hold in our case!
For us, with, say, fixed ρ,

|F (z, ω)| = eRe ρ〈g,−〉∼H(ω)+Re z〈h,−〉∼H(ω)

= e〈(Re ρ)g+(Re z)h,−〉∼H(ω)

for ω ∈ E, and ∫ T

0

∫

E

|σ̇(t)||F (σ(t), ω)|dγ(σ)dt =
∫ T

0

∫

E

e〈k(t),−〉∼H(ω) dγ(ω)|σ̇(t)| dt < ∞,

where k(t) = (Re ρ)g + (Re σ(t))h ∈ H as usual.
∫

E

e〈k(t),−〉∼H dγ =
∫

R
es dγH

〈k(t),−〉H (s) < ∞.

Theorem 7.5. (Cameron-Martin Formula.) For an aws i : H → E with measure γ, let Th : E → E be Th(x) :=
x + i(h) for h ∈ H. Then (Th)∗γ ≈ γ with

(Th)∗γ = e〈h,−〉∼− 1
2‖h‖2H γ.

Remark 7.6. The Cameron-Martin Theorem is the analogue of Proposition 7.1 for translations by elements of the
dense subspace i(H) ⊆ E.

Proof of Theorem 7.5. Set γh := (Th)∗γ. By Proposition 7.2, for ` ∈ E∗,

γ̂h = e
√−1`(i(h))γ̂(`)

= e
√−1`(i(h))e−

1
2‖j(`)‖2H

= e
√−1〈j(`),h〉∼H− 1

2‖j(`)‖2H .
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Now set γ̃ := e〈h,−〉∼− 1
2‖h‖2H γ.

ˆ̃γ(`) =
∫

E

e
√−1`(x) dγ̃(x)

=
∫

E

e
√−1`(x)e〈h,−〉∼− 1

2‖h‖2H dγ(x)

= e−
1
2‖h‖2H

∫

E

e
√−1〈j(`),h〉∼H+〈h,−〉∼(x) dγ(x)

= e−
1
2‖h‖2H e−

1
2‖j(`)‖2H+ 1

2‖h‖2H+
√−1〈j(`),h〉H

= γ̂h(`)

Therefore, Bochner’s Theorem for infinite dimensions implies that γh = γ̃.

Theorem 7.7. (Integrated Cameron-Martin.) If F : E → R (or E → any separable Banach space) is measurable
and h ∈ H then ∫

E

F (x + i(h)) dγ(x) =
∫

E

F (x)e〈h,−〉∼(x)− 1
2‖h‖2H dγ(x)

in the sense that if one side exists, both exist and are equal.

Proof. By Theorem 7.5 and Proposition 2.4,

γ // (Th)∗γ

E
Th //

F◦Th ##GGGGGGGGG E

F

²²
R

Remarks 7.8. (i) Consider t 7→ th : R→ H. We get
∫

E

F (x + ti(h)) dγ(x) =
∫

E

F (x)et〈h,−〉∼(x)− 1
2 t2‖h‖2H dγ(x).

Formally differentiate at t = 0:
∫

E

DF (x)(i(h)) dγ(x) =
∫

E

F (x)〈h,−〉∼(x) dγ(x).

If F is a “nice” differentiable function with derivative DF : E → L(E;R), we have the above integration by parts
formula.

(ii) In R, ∫

R
f ′(x)v(x) dx = −

∫

R
f(x)v′(x) dx

if f and v are “nice” (“vanishing at ∞”), f, v, f ′, v′ ∈ L2(R;R). In Rn, for f : Rn → R and a vector field
V : Rn → Rn,

∫

Rn

Df(x)(V (x)) dx =
∫

Rn

〈∇f(x), V (x)〉Rn dx

= −
∫

Rn

div V (x)f(x) dx

For us the vector field is V : E → E : x 7→ i(h) for all x ∈ E.

“ div V (x)” = −〈h,−〉∼(x)

We want to allow more general vector fields V : E → E. In the classical case these will be “stochastic processes”.
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Remark 7.9. The Cameron-Martin Theorem says that γ is quasi-invariant under translations by elements in the
image of i. The converse is also true: γ is quasi-invariant under x 7→ x + v ⇐⇒ v ∈ i(H).

Theorem 7.10. If H is an infinite-dimensional separable Hilbert space then the canonical Gaussian csm on H,
{γH
· }, is not a measure on H.

Proof. Suppose not, so that γH
· = γ is a measure on H. Then i = id : H → H is γ-radonifying, and so an aws. So,

by the Cameron-Martin Theorem, γ is quasi-invariant under all h ∈ H. Thus dim H < ∞ by Theorem 1.15.

Remarks 7.11. For i : H → E an aws,

(i) It is possible to show that i(H) is Borel measurable in E and has measure 0.

(ii) L. Gross proved that ∃i0 : H → E0, also an aws, and k ∈ L(E0;E) injective and compact such that k ◦ i0 = i:

H
i //

i0 ÃÃA
AA

AA
AA

A E

E0

k

OO

So γ “lives” on E0“ ⊆ ”E. (k compact means that k(bounded set) is compact.)

Example 7.12. Classical case, E = C0, E0 = closure of L2,1
0 in the norm

‖σ‖0+α := sup
s,t∈[0,T ],s 6=t

|σ(s)− σ(t)|
|s− t|α

for any 0 < α < 1
2 .

26



8 Stochastic Processes and Brownian Motion in Rn

8.1 Stochastic Processes

Definition 8.1. A stochastic process indexed by a set S with state space a measurable space {X, A } is a map
z : S×Ω → X for some probability space {Ω, F ,P} such that for all s ∈ S, the map Ω → X : ω 7→ zs(ω) := z(s, ω)
is measurable.

Often S = [0, T ] for some T > 0, or S = [0,∞). A stochastic process is then a family of maps/paths S → X :
s 7→ zs(ω) parametrized by ω ∈ Ω.

In the Kolmogorov model of probability theory, the probability that our system or process behaves is a certain
way is P{ω ∈ Ω|s 7→ zs(ω) behaves that way} for a suitably chosen stochastic process.

Example 8.2. If Ai ∈ A for i = 1, . . . , k and s1, . . . , sk ∈ S then the probability that the process has value in Ai

at s = si for each i is P{ω ∈ Ω|zsi(ω) ∈ Ai for i = 1, . . . , k}, which we often write as P{zsi ∈ Ai for i = 1, . . . , k} or
Ps(A1 × · · · ×Ak), where Ps is the push-forward measure (zs)∗(P) on Xk, where

zs : Ω → Xk

ω 7→ (zs1(ω), . . . , zsk
(ω)) ,

and s := (s1, . . . , sk). These {Ps|s ⊆ S finite} are probability measures on Xk, called the finite-dimensional
distributions of the process.

Example 8.3. If i : H → E is an aws with measure γ, consider z : H × E → R, {E,B(E), γ} our measure space,
given by z(h, ω) = 〈h,−〉∼H(ω) so S = H here. (Strictly, we need to choose a representative of the class of 〈h,−〉∼
in L2.)

Definition 8.4. If S, X are topological spaces (and A = B(X)) we say that a stochastic process z is continuous
(or sample continuous) if the map S → X : s 7→ zs(ω) is continuous for all ω ∈ Ω. (Some authors allow almost all
ω ∈ Ω.)

Example 8.5. Let Ω = C0 = C0([0, T ];Rn) = {continuous paths in Rn starting at 0}, P = Wiener measure,
X = Rn, A = B(Rn), S = [0, T ]. Any measurable vector field V : C0 → C0 determines a sample continuous process
z : [0, T ]× C0 → Rn by zs(σ) = V (σ)(s) for σ ∈ C0 and s ∈ [0, T ].

Simplest example: V = id, so V (σ) = σ for all σ ∈ C0. Then zs(σ) = σ(s) for 0 ≤ s ≤ T , which we call the
canonical process on C0([0, T ];Rn).

Exercise 8.6. Conversely, if z : [0, T ]× Ω → X is a continuous process, with X a separable Banach space, we get
Φ : Ω → C([0, T ];X) given by Φ(ω)(t) = zt(ω) ∈ X. Check that this is measurable. Hint: Use Lemma 5.18 and try
the special case X = R.

Definition 8.7. The law Lz of z is the push-forward measure Lz := Φ∗(P) on C([0, T ]; X). (If z0(ω) = 0 for all
ω ∈ Ω we can use C0([0, T ];X).)

Remark 8.8. The canonical process [0, T ] × C([0, T ];X) → X using the measure Lz on C([0, T ];X) has the
same finite-dimensional distributions as z : [0, T ]× Ω → X. Consequently, the finite-dimensional distributions of z
determine its law.

Definition 8.9. A Brownian motion (or bm) on Rn is an stochastic process B : [0, T ]× Ω → Rn such that

(i) B0(ω) = 0 for all ω ∈ Ω;

(ii) B is sample continuous;

(iii) LB is Wiener measure on C0([0, T ];Rn).

Example 8.10. Canonical bm with Ω = C0, P = Wiener measure.

Remark 8.11. We could write [0,∞) instead of [0, T ] but then we would have to take care with condition (iii): it
is enough to say that B : [0,∞)× Ω → Rn is a bm on Rn if for all T > 0, B|[0,T ]×Ω is a bm on Rn.
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Definition 8.12. If h ∈ H := L2,1
0 ([0, T ];R) ⊂ C0 and B is a bm on Rn, write

∫ T

0
〈ḣ(s),dBs〉Rn : Ω → R for the

composition

Ω Φ−→ C0
I(h)=〈h,−〉∼−→ R

ω 7→ Bs(ω)

which makes sense since Φ preserves sets of measure 0. Then if f ∈ L2([0, T ];R),

∫ T

0

〈f(s), dBs〉 := I

(∫ ·

0

f(s) ds

)
◦ Φ : Ω → R.

Definition 8.13. For a function f on a probability space {Ω, F ,P}, write Ef :=
∫
Ω

f(x) dP(x) for the expectation
of f .

Theorem 8.14. For B a bm on Rn and f ∈ L2([0, T ];R),
∫ T

0
〈f(s), dBs〉 : Ω → R is in L2(Ω, F ,P;R) and

(i) ei
R T
0 〈f(s),dBs〉 = e−

1
2

R T
0 |f(s)|2 ds = e−

1
2‖f‖2L2 ;

(ii) for f, g ∈ L2([0, T ];R), E
∫ T

0
〈f(s), dBs〉

∫ T

0
〈g(s),dBs〉 =

∫ T

0
〈f(s), g(s)〉 ds = 〈f, g〉L2

(iii) E
∫ T

0
〈f(s),dBs〉 = 0.

Proof. This follows from Corollary 6.10 and the push-forward theorem.

8.2 Construction of Itō’s Integral

We want to construct the Itō integral ∫ T

0

〈as, dBs〉 : Ω → R,

where a : [0, T ]× Ω → Rn is a process. In the canonical version,

σ 7→
∫ T

0

〈as(σ), dσs〉.

Note that in the Paley-Wiener integral
∫ t

0
〈f(s), dBs〉 we have f not dependent upon ω ∈ Ω. These are “constant

vector fields”. We want to give a more concrete definition that includes time evolution.

Definition 8.15. Let {Ω,F ,P} be a probability space. A filtration is a family of σ-algebras on Ω, {Ft|t ∈ [0, T ]},
such that

• for all t ∈ [0, T ], Ft ⊆ F ; and

• 0 ≤ s ≤ t ≤ T =⇒ Fs ⊆ Ft.

Example 8.16. Given a process z : [0, T ]×Ω → X, with {X, A } any measurable space, define Ft := F z
t = σ{zr :

Ω → X|0 ≤ r ≤ t}, the “events up to time t” or “the past at time t”. F z
∗ is called the natural filtration of z.

Example 8.17. If Ω = C0([0, T ];Rn) and z is canonical (zs(ω) = ω(s)), then if 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk ≤ t and
A1, . . . , Ak ∈ B(Rn),

{σ ∈ C0|σ(sj) ∈ Aj , 1 ≤ j ≤ k} ∈ F z
t .

To define Itō’s integral
∫ T

0
〈as, dBs〉 for a : [0, T ]×Ω → Rn, we will need a to be “non-anticipating” or “adapted”

to some filtration of F , usually FB
∗ .

Definition 8.18. A process a : [0, T ] × Ω → Rn is adapted to a filtration {Ft|0 ≤ t ≤ T} if at : Ω → Rn is
Ft-measurable for all 0 ≤ t ≤ T . (In general, we can replace Rn by any measurable space {X, A }.)

Take n = 1 for ease of notation.

28



Definitions 8.19. Given a filtration {Ft|0 ≤ t ≤ T} on {Ω, F ,P}, a process a : [0, T ] × Ω → R is elementary if
for all ω ∈ Ω, 0 ≤ t ≤ T ,

at(ω) = α−1(ω)χ{0}(t) +
k−1∑

j=0

αj(ω)χ(tj ,tj+1](t)

for some partition 0 ≤ t0 < t1 < · · · < tk ≤ T of [0, T ]. (Some authors, such as [Ø], use [tj , tj+1].) Here each
αj : Ω → R is Ftj

-measurable for each j = 0, . . . , k − 1 and α−1 is F0-measurable. Write E ([0, T ];R) for the
collection of all elementary processes [0, T ]× Ω → R. By comparison with the Fundamental Theorem of Calculus,
it is reasonable to define, for elementary processes a ∈ E ([0, T ];R),

∫ T

0

〈as, dBs〉(ω) :=
k−1∑

j=0

αj(ω)
(
Btj+1(ω)−Btj

(ω)
)
.

Now we approximate more general processes by elementary processes to get integrals converging in the function
space L2(Ω,F ,P;R).

Let B be a bm on R, B : [0, T ]× Ω → R. Given 0 ≤ t0 < t1 < · · · < tk ≤ T , set

∆jB(ω) := Btj+1(ω)−Btj
(ω)

∆jt = tj+1 − tj .

Then
∥∥∥∥∥∥

k∑

j=0

αj∆jB

∥∥∥∥∥∥

2

L2

=
∫

Ω

∣∣∣∣∣∣

k∑

j=0

αj(ω)∆jB(ω)

∣∣∣∣∣∣

2

dP(ω)

= 2
∫

Ω

∑

i<j

αj(ω)∆jB(ω)αi(ω)∆iB(ω) dP(ω)

+
∫

Ω

∑

i

(αi(ω)∆iB(ω))2 dP(ω)

We will show that for suitable filtrations F∗, e.g. Ft := FB
t ,

Proposition 8.20. If B is a bm on R and αj is Ftj -measurable for each j and bounded then

(i) if i < j,
∫
Ω

αiαj∆iB∆jB dP = 0;

(ii)
∫
Ω

α2
i (∆iB)2 dP = (Eα2

i )∆it;

(iii) as an immediate consequence of (i) and (ii),

∥∥∥∥∥∥
∑

j

αj∆jB

∥∥∥∥∥∥

2

L2

=

∥∥∥∥∥
∫ T

0

as dBs

∥∥∥∥∥

2

L2

=
∑

j

‖αj‖2L2∆jt

=
∫ T

0

‖as‖2L2 ds

= ‖as‖2L2([0,T ]×Ω;R).

Assuming Proposition 8.20,

Theorem 8.21. For an elementary bounded process a : [0, T ]× Ω → R,
∥∥∥∥∥
∫ T

0

as dBs

∥∥∥∥∥
L2

= ‖a·‖L2([0,T ]×Ω;R).
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For B and F∗ as above, let E := E ([0, T ];R) be the space of elementary bounded processes a : [0, T ]× Ω → R,
with norm

‖a‖ :=

√∫ T

0

E|as|2 ds = ‖a·‖L2([0,T ]×Ω;R).

Let Ē be the closure of E in L2([0, T ]× Ω;R). Define I : E → L2(Ω, F ,P;R) by I (a) :=
∫ T

0
as dBs.

Corollary 8.22. I extends uniquely to a continuous linear Ī : Ē → L2(Ω, F ,P;R). This is an isometry into
L2(Ω, F ,P;R). Write it as Ī (a) =

∫ T

0
asdBs. So, for a ∈ Ē , we have the Itō isometry

∥∥∥∥∥
∫ T

0

as dBs

∥∥∥∥∥
L2(Ω;R)

= ‖a‖L2(Ω×[0,T ];R),

i.e.,
∫

Ω

(∫ T

0

as dBs(ω)

)2

dP(ω) =
∫ T

0

E|as|2 ds.

Proof. Lemma 6.2.

We still need to prove Proposition 8.20 parts (i) and (ii), identify Ē , and relate the Itō and Paley-Wiener
integrals.

Theorem 8.23. Let {Ω,F ,P} be a probability space and A ⊂ F a σ-algebra. For f ∈ L1(Ω,F ,P;R) there exists
a unique f̄ ∈ L1(Ω,A ,P|A ;R) such that, for all A ∈ A ,

∫

A

f dP =
∫

A

f̄ dP.

If f ∈ L2 then f̄ ∈ L2 and f̄ = PA (f) for PA : L2(Ω, F ,P;R) → L2(Ω,A ,P|A ;R) the orthogonal projection.
Write f̄ as E{f |A }, the conditional expectation of f given / with respect to A . Then also

(i) f ≥ 0 almost everywhere =⇒ f̄ ≥ 0 almost everywhere;

(ii) |E{f |A }(ω)| ≤ E{f |A }(ω) almost everywhere;

(iii) E{−|A } : L1(Ω, F ,P;R) → L1(Ω, A ,P|A ;R) is a continuous linear map with norm 1.

Proof. (Uniqueness.) Suppose that f̄ and f̃ are A -measurable and satisfy
∫

A

f dP =
∫

A

f̄ dP =
∫

A

f̃ dP.

Set g := f̄ − f̃ , which is A -measurable, in L1, and has
∫

A
g dP = 0 for all A ∈ A . Thus, g = 0 almost surely, and

so f̄ = f̃ almost surely.

(L2 part.) PA f satisfies our criteria for f̄ since

• it is A -measurable;

• it is in L2, and so is in L1;

• if A ∈ A ,
∫

A

PA f dP =
∫

Ω

χAPA f dP

= 〈χA, PA f〉L2(Ω,F ,P;R)

= 〈PA χA, f〉L2(Ω,F ,P;R) since (PA )∗ = PA

= 〈χA, f〉L2(Ω,F ,P;R)

=
∫

A

f dP.
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Thus f̄ = PA f by uniqueness.

(Existence.) For f ∈ L1 and f ≥ 0 almost everywhere, define µf on {Ω, A } by µf (A) =
∫

A
f dP for A ∈ A , a

measure with µf ≺ P|A . Set f̄ := dµf

d(P|A ) : Ω → R≥0. This satisfies the requirements for f̄ since, if A ∈ A ,

∫

A

dµf

d(P|A )
dP =

∫

A

dµf

d(P|A )
d(P|A ) =

∫

A

dµf = µF (A) =
∫

A

f dP

From this
∫
Ω

f̄ dP =
∫
Ω

f dP < ∞ so f̄ ∈ L1 since f̄ ≥ 0. This also gives (i). For general f ∈ L1, write f = f+− f−

in the usual way and take f̄ = f+ − f−. It is easy to see that this satisfies all the requirements, but we must check
(ii) and (iii).

(ii) |f(ω)| = |f |(ω) = f+(ω) + f−(ω), so E{|f ||A }(ω) = f+(ω) + f−(ω). Also, |E{|f ||A }(ω)| = |f̄(ω)| =
|f+(ω) + f−(ω)|, giving (ii), since f+ ≥ 0, f− ≥ 0 almost everywhere.

(iii) If f ∈ L1,

‖E{f |A }‖L1 =
∫

Ω

|E{f |A }| dP

≤
∫

Ω

E{f |A }dP by (i)

=
∫

Ω

|f | dP

= ‖f‖L1

So E{−|A } is bounded linear with norm ≤ 1. But if f ≡ 1, E{f |A } ≡ 1, so the norm is 1.

Definition 8.24. If θ : Ω → X is measurable, {X, A } a measure space, define E{−|θ} := E{−|σ(θ)}, where
σ(θ) := {θ−1(A)|A ∈ A }.
Lemma 8.25. Given a probability space {Ω, F ,P}, a measurable space {X, A }, and θ : Ω → X and f : Ω → R
measurable, there exists a measurable g : X → R such that E{f |θ} = g ◦ θ almost everywhere, and this map is
unique θ∗(P)-almost surely.

Ω
θ //

E{f |θ} ÂÂ?
??

??
??

X

g
~~~~

~~
~~

~

R

Proof. Suppose f ≥ 0. We have Pf on {Ω, F} given by Pf (A) :=
∫

A
f dP for A ∈ F . We get a probability measure

θ∗(Pf ) on {X, A }; note that θ∗(Pf ) ≺ θ∗(P). Set g := θ∗(Pf )
θ∗(P) : X → R≥0, which is A -measurable. We claim that

g ◦ θ = E{f |θ}. To see this note that

• g ◦ θ is σ(θ)-measurable;

• if A ∈ A then
∫

θ−1(A)

g ◦ θ dP =
∫

A

g dθ∗(P)

=
∫

A

θ∗(Pf )
θ∗(P)

dθ∗(P)

=
∫

A

dθ∗(Pf )

=
∫

θ−1(A)

dPf

=
∫

θ−1(A)

f dP
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• taking A = X above gives g ◦ θ ∈ L1, therefore g ◦ θ = E{f |θ}.
For general f write f = f+ − f− as before to get g = g+ − g−.

Remark 8.26. We write E{f |θ = x} for g(x) = “the conditional expectation of f given θ = x” or “given θ(ω) = x”
for x ∈ X. This gives us an intuitive way to calculate E{f |θ} for f and θ as in Lemma 8.25:

• let x be some value of θ;

• calculate the “average value” of f on the preimage θ−1(x);

• the result of this calculation is E{f |θ = x}; call it g(x);

• the conditional expectation E{f |θ} : Ω → R is given by

E{f |θ}(ω) = g(θ(ω)) for ω ∈ Ω.

Remark 8.27. If f is σ(θ)-measurable then f = E{f |θ} almost surely, so there is a g with f = g ◦ θ almost surely.

Example 8.28. (Weather forecasting.) Let Ω be the set of all time evolutions of all possible weather patterns. Let
θn be the value at the nth morning, i.e.

θn : Ω → X = {{wind speeds} × {rain volume} × . . . }.
Consider just wind speed, for instance. Let fn : Ω → R be the windspeed at mid-day on the nth day. Given some
observation in the morning, we want to forecast fn. We need gn : X → R, which tells us that if on the nth morning
x ∈ X holds then gn(x) is the windspeed at mid-day. That is, we need gn such that gn ◦ θn is the “best” estimate
that we can make of fn. “Best” usually means best in the mean square, the L2(Ω,F ,P;R) norm. Now, by Lemma
8.25 functions of the form gn ◦ θn in L2 are exactly elements of L2

(
Ω, σ(θn),P|σ(θn);R

)
. To get the closest of these

to fn, take P (fn), the orthogonal projection of fn, i.e., we take E{fn|σ(θn)}.
Remark 8.29. E{f |θ = x} =

∫
θ−1(x)

f(y) dPx(y), where Px is a measure on the fibre θ−1(x), known as the
disintegration of P.

Definition 8.30. Let {Ω, F ,P} be a probability space.

(i) If A , B ⊆ F , we say that A and B are independent, and write A qB, if A ∈ A , B ∈ B =⇒ P(A ∩B) =
P(A)P(B).

(ii) If for j = 1, 2, {Xj , Aj} are measurable spaces with fj : Ω → Xj measurable functions, f1 and f2 are
independent, f1 q f2, if σ(f1)q σ(f2).

Theorem 8.31. f1 q f2 if, and only if, the product function f1 × f2 : Ω → X1 ×X2 : ω 7→ (f1(ω), f2(ω)) satisifies
(f1 × f2)∗(P) = (f1)∗(P)⊗ (f2)∗(P), the product of the two push-forward measures.

Recall that a measure µ on X1 ×X2 is a product µ1 ⊗ µ2 if, and only if, for all A1 ∈ A1 and A2 ∈ A2, we have
µ(A1 ×A2) = µ1(A1)µ2(A2), since µ is determined by its values on rectangles.

Proof. Assume that f1 q f2 and Aj ∈ Aj for j = 1, 2. Then

(f1 × f2)∗(P)(A1 ×A2) = P{ω ∈ Ω|(f1(ω), f2(ω)) ∈ A1 ×A2}
= P{ω ∈ f−1

1 (A1) ∩ f−1
2 (A2)}

= P(f−1
1 (A1))P(f−1

2 (A2)) since f1 q f2

= (f1)∗(P)(A1)(f2)∗(P)(A2)

So we have a product measure. Conversely, suppose it is the product measure. Take typical elements f−1
1 (A1) ∈

σ(f1) and f−1
2 (A2) ∈ σ(f2). Then

P(f−1
1 (A1) ∩ f−1

2 (A2)) = (f1 × f2)∗(P)(A1 ×A2)
= (f1)∗(P)(A1)(f2)∗(P)(A2) by hypothesis

= P(f−1
1 (A1))P(f−1

2 (A2)),

so f1 q f2.
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Corollary 8.32. For f1, f2 as above with f1 q f2, if Fj : Xj → R are measurable for j = 1, 2, then

E{F1(f1(−))F2(f2(−))} = EF1(f1(−))EF2(f2(−))

provided F1 ◦ f1, F2 ◦ f2 ∈ L1(Ω, F ,P;R).

Proof. The left-hand side is
∫

X1×X2

F1(x)F2(y) d(f1 × f2)∗(P)(x, y) =
∫

X1

F1(x) d(f1)∗(P)(x)
∫

X2

F2(y) d(f2)∗(P)(y)

by Fubini’s Theorem. If both integrals exists, this is equal to
∫

Ω

F1 ◦ f1 dP
∫

Ω

F2 ◦ f2 dP.

Theorem 8.33. Let B : [0, T ] × Ω → R be a bm on R. Fix t0 ∈ (0, T ). Set B̃s(ω) := Bs+t0(ω) − Bt0(ω). Then
B̃ and B|[0,t0] are independent, i.e., B̃ : Ω → C0([0, T − t0];R) is independent of B·|[0,t0] : Ω → C0([0, t0];R). Also,
both B̃ and B·|[0,t0] are bms on R.

Proof. If σ : [0, T ] → R then define θt0(σ) : [0, T − t0] → R by θt0(σ)(s) = σ(t0 + s)− σ(t0). The following diagram
commutes:

Ω

B $$JJJJJJJJJJ
B̃×B|[0,t0] // C0([0, T − t0];R)× C0([0, t0];R)

C0([0, T ];R)
Ψt0

33gggggggggggggggggggg

where Ψt0 is the product map Ψt0(σ) := (θt0(σ), σ|[0,t0]). By Theorem 8.31, it is enough to know that Ψt0 sends
Wiener measure to the product of Wiener measures. For this, see Exercises 3.4, 4.4, 2.6.

Corollary 8.34. A bm has independent increments: fix 0 ≤ s ≤ t ≤ u ≤ v ≤ T . Then if B is a bm on R, Bt −Bs

is independent of Bv −Bu, i.e.,
Bt −Bs qBv −Bu.

Proof. Set Fu = BB
u := σ{Br|0 ≤ r ≤ u} and Fu

t := σ{B(u+r) = Bu|0 ≤ r ≤ T − u}. But Bt − Bs is
Fu-measurable, and Bv − Bu is Fu

t -measurable. Therefore, σ{Bt − Bs} ⊆ Fu and σ{Bv − Bu} ⊆ Fu
t , so

σ{Bt −Bs} q σ{Bv −Bu}.
Theorem 8.35. Given a probability space {Ω, F ,P}, A ⊆ F a σ-algebra, and f ∈ L1(Ω, F ,P;R), then

f qA =⇒ E{f |A } = Ef.

Proof. First, Ef is A -measurable and in L1. Secondly, if A ∈ A , then
∫

A

(Ef) dP = (Ef)
∫

A

dP = Ef · EχA = E(f · χA),

since f q χA. By Corollary 8.32 with F1 = F2 = id, this is
∫

A
f dP. Thus Ef = E{f |A }, as required.

Theorem 8.36. (The Martingale Property of Brownian Motion.) If Fs = FB
s = σ{Br|0 ≤ r ≤ s} for a bm B on

R, then for 0 ≤ s ≤ t,
E{Bt|Fs} = Bs.

Proof. Bt −Bs qFs by Corollary 8.34 and Theorem 8.35. Also,

E{Bt −Bs|Fs} = E{Bt −Bs} = 0.

Since Br : Ω → R is Gaussian, EBr = 0 for all r, and so
∫

C0
σγ dγ(σ) = 0:

Ω,P //

Br ##GG
GG

GG
GG

G C0, γ

ev

²²

σ

²²
R σr
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But, since Bs is Fs-measurable,

E{Bt −Bs|Fs} = E{Bt|Fs} − E{Bs|Fs}
= E{Bt|Fs} −Bs.

Theorem 8.37. If B is a bm on R with its natural filtration Fs := FB
s , then for s ≤ t, E{(Bt−Bs)2|Fs} = t− s.

Proof. Theorem 8.36 implies that Bt −Bs qFs, so (Bt −Bs)2 qFs, so

E{(Bt −Bs)2|Fs} = E{(Bt −Bs)2}
= E{B2

t − 2BtBs + B2
s}

= t− 2(t ∧ s) + s

= t− s.

Lemma 8.38. (Conditional Expectations.) Let {Ω, F ,P} be a probability space, A ⊆ F a σ-algebra, θ : Ω → R
A -measurable and f : Ω → R F -measurable.

(i) if θ, f ∈ L2 or θ bounded and f ∈ L1,
E{θf |A } = θE{f |A };

(ii) if B ⊆ A is a σ-algebra then
E{f |B} = E{E{f |A }|B}.

Proof. (i) For θ, f ∈ L2, write E{f |A } = Pf , where P = PA is the orthogonal projection. Note that θE{f |A } is
A -measurable and in L1. If A ∈ A , then

∫

A

θ · (f − Pf) dP =
∫

Ω

χAθ(id−P )(f) dP

= 〈χAθ, (id−P )f〉L2

= 〈(id−P )(χAθ), f〉L2 since (id−P )∗ = (id−P )
= 0 since P (χaθ) = χAθ.

Therefore,
∫

A
θf dP =

∫
A

θE{f |A }dP, as required.
Following from the above, if θ is bounded and A -measurable, and g ∈ L1, then E{gθ|A } = θE{g|A }. If f ∈ L1,

take fn ∈ L2(Ω, F ,P;R) with fn → f in L1 as n →∞. For instance, by the Dominated Convergence Theorem,

fn(ω) :=
f(ω)

1 + 1
n |f(ω)|

will do. Again by the Dominated Convergence Theorem, θfn → θf in L1, so

θE{f |A } = lim
n→∞

θE{fn|A }
= lim

n→∞
E{θfn|A }

= E{θf |A }

by the continuity of E{−|A } in L1.
(ii) Easy exercise.

Lemma 8.39. For B a bm on R with its natural filtration F∗ := FB
∗ and for a partition 0 ≤ ti < ti+1 ≤ tj <

tj+1 ≤ T of [0, T ], if αi, αj : Ω → R are bounded and Fti- and Ftj -measurable respectively, then

(i) Eαiαj∆iB∆jB = 0;

(ii) Eα2
i (∆iB)2 = (Eα2

i )∆it.
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Proof. (i) ω 7→ αi(ω)αj(ω)(Bti+1(ω)−Bti
) is Ftj

-measurable.

E{αiαj∆iB∆jB} = E{E{αiαj∆iB∆jB|Ftj}}
= E{αiαj∆iBE{∆jB|Ftj

}} by Lemma 8.38
= 0

since E{∆jB|Ftj
} = 0 (the martingale property).

(ii)

Eα2
i (∆iB)2 = E{E{α2

i (∆iB)2|Fti}}
= E{α2

iE{(∆iB)2|Fti
}} by Lemma 8.38

= (Eα2
i )∆it by Lemma 8.38

Remark 8.40. This proves Proposition 8.20, and so, by Theorem 8.21

I : E ([0, T ]) → L2(Ω, F ,P;R)

a 7→
∫ T

0

αj dBj =
∑

j

αj∆jB

is an isometry into L2(Ω,F ,P;R) and so has a continuous linear extension

Ī : Ē → L2(Ω, F ,P;R)

that is norm-preserving, where Ē is the closure of E in L2([0, T ]×Ω,B[0, T ] ~ F , λ1⊗P;R). For a ∈ Ē write Ī (a)
as

∫ T

0
as dBs, the Itō integral. We usually write L2(B) for Ē , equipped with the norm

‖a‖L2(B) :=

√∫ T

0

E(as)2 ds

L2(B) is also an inner product space: for a, b ∈ L2(B),

〈a, b〉L2(B) :=
∫ T

0

(Easbs) ds = E

{∫ T

0

as dBs

∫ T

0

bsdBs

}
.

In particular, we have the Itō isometry:

E

(∫ T

0

as dBs

)2

= E

(∫ T

0

(as)2 ds

)
.

Definitions 8.41. Given a filtration {Ft|0 ≤ t ≤ T} of a probability space {Ω, F ,P} and a measurable space
{X, A }, a process a : [0, T ]× Ω → X is progressively measurable (or progressive) if for all t ∈ [0, T ] the map

[0, t]× Ω → X

(s, ω) 7→ as(ω)

is B[0, t] ~ Ft-measurable (and so a is adapted). Also, we say that P ⊆ [0, T ]×Ω is progressively measurable if the
process as(ω) := χP (s, ω) is progressive. The set of such P form a σ-algebra on [0, T ] × Ω, denoted Prog, and a
process a is progressive if, and only if, it is Prog-measurable.

It is a fact that L2(B) is the set of equivalence classes of Prog-measurable processes in L2([0, T ]× Ω;R). Also,
any adapted process with right- or left-continuous paths is Prog-measurable.

If as is independent of ω ∈ Ω then we have both the Paley-Wiener integral
∫ T

0
as dBs and the Itō integral∫ T

0
as dBs, defined in different ways. Later work will show that they agree.

Definition 8.42. For B : [0, T ]× Ω → R a bm on R, a ∈ L2(B) and 0 ≤ t ≤ T , define
∫ t

0

as dBs :=
∫ T

0

χ[0,t](s)as dBs.
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Exercise 8.43. a ∈ L2(B) =⇒ χ[0,t] · a ∈ L2(B), so the RHS above makes sense.

Also note that B|[0,t] is a bm on R and a|[0,t] ∈ L2(B|[0,t]), so we can form
∫ t

0
(a|[0,t])s d(B|[0,t])s, and since it

clearly agrees with
∫ t

0
as dBs for a ∈ E , by continuity, it agrees for all a ∈ L2(B).

Definition 8.44. Let {Ω, F ,P} be a probability space with filtration {Ft|0 ≤ t ≤ T} or {Ft|0 ≤ t < ∞}. A
process M : [0, T ]× Ω → Rn or [0,∞)× Ω → Rn is an F∗-martingale if

(i) it is adapted (i.e. Mt : Ω → Rn is Ft-measurable);

(ii) Mt ∈ L1 for all t (and so EMt exists for all t);

(iii) the martingale property: if s ≤ t then E{Mt|Fs} = Ms almost surely.

If no filtration is specified then M is a martingale if it is an FM
∗ -martingale.

Example 8.45. Brownian motions are martingales, as we have proved for n = 1.

Theorem 8.46. Let B be a bm on R and a ∈ L2(B). Then the process z : [0, T ]× Ω → R defined by

zt(ω) :=
(∫ t

0

as dBs

)
(ω)

is an FB
∗ -martingale.

Proof. If a ∈ E ([0, T ];R), s < t,

ar(ω) = α−1(ω)χ{0}(r) +
k∑

j=0

αj(ω)χ(tj ,tj+1](r)

for α−1 F0-measurable and αj Ftj -measurable. We can assume that s = tj1 , t = tj2 for some j1, j2. Then

∫ t

0

ar dBr =
∫ s

0

ar dBr +
j2−1∑

j=j1

αj∆jB.

Now
∫ s

0
ar dBr is Fs-measurable and, applying the conditional expectation E{−|Fs} to both sides,

E





j2−1∑

j=j1

αj∆jB

∣∣∣∣∣∣
Fs



 =

j2−1∑

j=j1

E{E{αj∆jB|Ftj}Fs}

=
j2−1∑

j=j1

E{αj E{∆jB|Ftj}︸ ︷︷ ︸
(•)

|Fs}

= 0

since the martingale property of B implies that (•) = 0. Therefore, for a ∈ E , E
{∫ t

0
ar dBr

∣∣∣ Fs

}
=

∫ s

0
ar dBr

almost surely. Since E{−|Fs} is continuous in L2, the result follows for a ∈ L2(B).

Corollary 8.47. Let B be a bm on R and let a ∈ L2(B). Then E
∫ t

0
as dBs = 0 for all t ∈ [0, T ].

Proof. Since zt :=
∫ t

0
as dBs is an FB

∗ -martingale,

Ezt = E{zt|FB
0 } = z0 = 0,

and zt qFB
0 since FB

0 = {∅, Ω}.
Remark 8.48. It can be proved that [0, T ] → R : t 7→ ∫ t

0
as dBs(ω) may be chosen to be continuous (so that∫ t

0
as dBs for 0 ≤ t ≤ T is sample continuous). For each t we have to choose some version of

∫ t

0
as dBs from its

L2-equivalence class. But it we want
∫ t

0
as dBs to be FB

t -measurable as well, we need to modify FB
t to include

sets of measure zero in FB
T . Then we get a process that is both continuous and adapted. These are the “usual

conditions” on F∗.
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Theorem 8.49. (Itō’s Formula.) Let B be a bm on R with its natural filtration Ft = FB
t . Let z : [0, T ]× Ω → R

be given by

zt(ω) = at(ω) +
(∫ t

0

αs dBs

)
(ω),

for an adapted a : [0, T ] × Ω → R such that t 7→ at(ω) is piecewise C1 (or of bounded variation), and α ∈ L2(B).
Suppose that θ : R→ R is C2. Then for 0 ≤ t ≤ T ,

θ(zt(ω)) = θ(z0(ω)) +
∫ t

0

θ′(zs(ω))a′s(ω) ds +
(∫ t

0

θ′(zs(−))αs dBs

)
(ω)

+
1
2

∫ t

0

θ′′(zs(ω))αs(ω)αs(ω) ds almost surely.

For us, we need θ′(zs(ω))αs(ω) in L2(B). The idea of the proof is to use stopping times to extend our definition
of the integrand. We take 0 = t0 < t1 < · · · < tk+1 = t. For “nice” θ,

θ(zt(ω))− θ(z0(ω))

=
k∑

j=0

(
θ(ztj+1(ω))− θ(ztj

(ω))
)

=
k∑

j=0

(
θ′(ztj (ω))

(
ztj+1(ω)− ztj (ω)

)
+

1
2
θ′′(ztj (ω))

(
ztj+1(ω)− ztj (ω)

)2 + higher order
)

The first and second terms in Itō’s formula come from the first term here.

∆jz ≈ (a′tj
)∆jt + αtj ∆jB

so

(∆jz)2 ≈ (a′tj
)2(∆jt)2 + 2a′tj

αtj ∆jB∆jt + (αtj )
2(∆jB)2

≈ 0 + 0 + (αtj )
2∆jt

as we know that E{(∆jB)2} = ∆jt. We summarize these results in the Itō multiplication table:

dt dB
dt 0 0
dB 0 dt

See exercises for a more in-depth treatment of this.

Examples 8.50. (i) zt = Bt = 0 +
∫ t

0
dBs; this is a ≡ 0, α ≡ 1 in Itō’s formula. Let θ : R→ R be θ(x) = x2. So

B2
t = B2

0 +
∫ t

0

2Bs dBs +
1
2

∫ t

0

2 ds

= 0 + 2
∫ t

0

Bs dBs + t.

Thus, ∫ t

0

Bs dBs =
1
2
B2

t −
1
2
t.

(ii) Exponential martingales. Let h ∈ L2,1
0 ([0, T ];R). Since ḣ ∈ L2, h(t) =

∫ t

0
ḣ(s) ds. For 0 ≤ t ≤ T , set

Mt = exp
(∫ t

0

ḣ(s) dBs − 1
2

∫ t

0

|ḣ(s)|2 ds

)
,

using either the Paley-Wiener or Itō integral as h is independent of ω.
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Claim 8.51. M satisfies

Mt = 1 +
∫ t

0

Msḣ(s) dBs

almost surely for 0 ≤ t ≤ T .

This is an example of a stochastic differential equation:
{

dMt = Mtḣt dBt

M0 = 1

Proof. Set

zt =
∫ t

0

ḣ(s) dBs − 1
2

∫ t

0

|ḣ(s)|2 ds

with θ : R→ R given by θ(x) = ex. Then

θ(zt(ω)) = θ(z·(ω)) +
∫ t

0

ezs(ω)

(
−1

2
ḣ2

s

)
ds

+
(∫ t

0

ezs(−)ḣs dBs

)
(ω) +

1
2

∫ t

0

ezs(ω)(ḣs)2 ds

almost surely for 0 ≤ t ≤ T . So

Mt = 1 +
∫ t

0

Msḣ(s) dBs almost surely.

We should check that Msḣ(s) ∈ L2(Bs), i.e., M·ḣ(·) ∈ L2(B).

Lemma 8.52. Mt ∈ Lp for 1 ≤ p < ∞. In fact,

E{(Mt)p} = e
1
2 p(p−1)

R t
0 (hs)2 ds.

Proof. Method 1. By Proposition 7.1, with H = L2,1
0 , for w ∈ C,

∫

C0

ew〈h,−〉∼H(σ) dγ(σ) = e
1
2 w2‖h‖2H .

Therefore,
∫

C0

ep〈h,−〉∼H− 1
2 p‖h‖2H dγ = e

1
2 p2‖h‖2H− 1

2 p‖h‖2H

= e
1
2 p(p−1)‖h‖2H

But Mt is the composition

Ω
B|[0,t](−)

// C0([0, t];R) e〈h,−〉∼H−
1
2 |h|

2
H // R.

Method 2. Use Cameron-Martin: in the Wiener space C0([0, t];R), if F : C0 → R is measurable, then for p ∈ R,
∫

C0

F (σ + ph) dγ(σ) =
∫

C0

F (σ)ep〈h,−〉∼H− 1
2 p2‖h‖2H dγ(σ),

so
E{F (B + ph)} = E

{
F (B)(Mt)pe

1
2 p‖h‖2H− 1

2 p2‖h‖2H
}

.

Now take F ≡ 1 to get

1 =
∫

C0

ep〈h,−〉∼H− 1
2 p2‖h‖2H

= E{(Mt)p}e 1
2 p‖h‖H− 1

2 p2‖h‖2H .
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Proposition 8.53. Mt, 0 ≤ t ≤ T , is an FB
∗ -martingale. In particular, EMt = 1 for all 0 ≤ t ≤ T .

Proof. This is immediate from Claim 8.51.

Remark 8.54. As was noted above, an exponential martingale is an example of a stochastic differential equation.
A general stochastic differential equation on R takes the form

{
dxt = A(xt) dt + X(xt) dBt

x0 = q.

This means that x : [0, T ]× Ω → R satisifes

xt = q +
∫ t

0

A(xs) ds +
∫ t

0

X(xs) dBs almost surely.

q could be a point of R or a function q : Ω → R; we need x· to be adapted. Note that if X(x) = 0 for all x, we have
an ordinary differential equation

dxt

dt
= A(xt).
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9 Itō Integrals as Divergences

9.1 The Clark-Ocone Theorem and Integral Representation

We work with canonical 1-dimensional Brownian motion:

Ω = C0([0, T ];R)
Ft = σ{evs |0 ≤ s ≤ t} = σ{ρ 7→ ρ(s)|0 ≤ s ≤ t}

Bt(ω) = ω(t) = evt(ω)

so Ft = FB
t .

Theorem 9.1. For V : [0, T ]× C0 → R such that

Vt(σ) =
k∑

j=0

(t ∧ tj+1 − t ∧ tj)αj(σ)

where 0 = t0 < t1 < · · · < tk+1 = T and αj : Ω → R has αj(σ) depending only on σ|[0,tj ], i.e. αj is Ftj -measurable,
and αj is bounded for all j, then if F : C0 → R is measurable, then

∫

C0

F (σ + V·(σ))e−
R T
0

∂
∂t Vt(σ) dσ(t)+ 1

2

R T
0 | ∂

∂t Vt(σ)|2 dt dγ(σ) =
∫

C0

F (σ) dγ(σ),

where γ is Wiener measure.

Proof. We use induction on k. Consider the case k = 0. 0 = t0 < t1 = T and α0 is constant, since it is F0-
measurable and F0 = {∅,Ω}. Thus Vt = tα0 for 0 ≤ t ≤ T , so V· ∈ H := L2,1

0 ([0, T ];R) and we can apply the
Cameron-Martin Formula, Theorem 7.7, with F̌ : C0 → R given by F̌ (σ) := F (σ + V·). Thus

∫

C0

F̌ (σ + V·) dγ(σ) =
∫

C0

F̌ (σ)e−〈V·,−〉
∼(σ)− 1

2‖V·‖2L2 dγ(σ),

i.e. ∫

C0

F (σ) dγ(σ) =
∫

C0

F (σ + V (σ))e−
R T
0 V̇s dσs− 1

2

R T
0 |V̇s|2 ds dγ(σ)

Now assume true for k = n− 1 for some n ∈ N and consider the case k = n. Set T0 = tn so 0 = t0 < · · · < tn =
T0 < tn+1 = T . We have

C0([0, T ];R) Θ //

TV

²²

C0([0, T0];R)× C0([0, T − T0];R)

T̃V

²²
C0([0, T ];R)

Θ
// C0([0, T0];R)× C0([0, T − T0];R)

where TV (σ) := σ + V (σ), T̃V (σ, ρ) := Θ(σ̃ + V (σ̃)), where

σ̃(t) :=
{

σ(t) 0 ≤ t ≤ T0

σ(T0) + ρ(t− T0) T0 ≤ t ≤ T,

so T̃V = Θ ◦ TV ◦Θ−1, σ̃ = Θ−1(σ, ρ). Then

Vt(σ̃) =
{∑k−1

j=0 (t ∧ tj+1 − t ∧ tj)αj(σ) =: V T0
t (σ) 0 ≤ t ≤ T0

(t− T0)αk(σ) T0 ≤ t ≤ T,

since αj(σ̃) depends only on σ̃|[0,tj ], so αj(σ̃) = αj(σ). Thus, T̃V (σ, ρ) = (σ + V T0(σ), ρ + tαk(σ)). Also,

∫ T

0

∂

∂s
Vs(σ̃) dσ̃(s) =

∫ T0

0

∂

∂s
Vs(σ) dσ̃(s) +

∫ T−T0

0

αk(σ) dρ(s),
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since these are elementary Itō integrals and so just a sum of ∆jσs because ∂
∂sVs ∈ E . Set

F̃ := F ◦Θ−1 : C0([0, T0];R)× C0([0, T − T0];R) → R.

Then
∫

C0

F (σ + V (σ))e−
R T
0

∂
∂s Vs dσs− 1

2

R T
0 ( ∂

∂s Vs)2
ds dγ(σ)

=
∫

C
T0
0 ×C

T−T0
0

F̃ ◦ T̃V e−
R T0
0 V̇s dσs− 1

2

R T0
0 (V̇s(σ))2

dse−
R T−T0
0 α̇(σ)s dρs− 1

2

R T−T0
0 (α̇k(σ)s)2 ds dγT−T0(ρ)dγT0(σ)

where γτ denotes Wiener measure on Cτ
0 := C0([0, τ ];R), τ ∈ {T0, T − T0}

=
∫

C
T0
0

{∫

C
T−T0
0

F̃ (σ + V T0(σ), ρ) dγT−T0(ρ)

}
e−
R T0
0 V̇ T0

s dσs− 1
2

R T0
0 (V̇ T0

s )2
ds dγT0(σ)

by applying the Cameron-Martin Formula to γT−T0 as in the case k = 0, and so, by the induction hypothesis,

=
∫

C
T0
0

{∫

C
T−T0
0

F̃ (σ, ρ) dγT−T0(ρ)

}
dγT0(σ)

=
∫

C0

F (σ) dγ(σ)

as required.

Lemma 9.2. (Improved Integration by Parts.) For V as in Theorem 9.1, F : C0 → R of class1 BC1 and γ =
Wiener measure, ∫

C0

DF (σ)(V (σ)) dγ(σ) =
∫

C0

F (σ)

(∫ T

0

∂V

∂s
(σ) dσ(s)

)
dγ(σ).

Proof. For τ ∈ R replace V by τV in the formula of Theorem 9.1 and differentiate both sides with respect to τ and
evaluate at τ = 0.

Definition 9.3. If i : H → E is an aws (such as L2,1
0 → C0) and F : E → R is differentiable we get DF (x) ∈

L(E;R) = E∗ for x ∈ E. So, for all x ∈ E, DHF (x) := DF (x)◦ i : H → R is a continuous linear map, the derivative
of F in H-direction or H-derivative.

Thus, we get ∇HF : E → H defined by

〈∇HF (x), h〉H = DHF (x)(h) = lim
t→0

F (x + ti(h))− F (x)
t

.

So ∇HF (x) = j(DF (x)), with j : E∗ → H as usual. Therefore, if F is C1, then ∇HF : E → H is continuous. If F
is BC1 then ‖∇HF (x)‖ ≤ ‖j‖‖DF (x)‖E∗ ≤ constant, so ∇HF is bounded.

Remark 9.4. Lemma 9.2 can be written
∫

C0

〈∇HF (x), V (x)〉H dγ(x) = −
∫

C0

F (x) div V (x) dγ(x)

where div V : C0 → R is − ∫ T

0
V̇s dBs.

Definition 9.5. If E is a normed vector space, a subset S ⊆ E is total in E if the span of S is dense in E:

spanS :=





k∑

j=1

αjxj

∣∣∣∣∣∣
αj ∈ R, xj ∈ S, k ∈ N



 .

1F is bounded and Fréchet differentiable with DF : C0 → L(C0;R) bounded.
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Lemma 9.6. S is total in a Hilbert space H if, and only if,

〈h, s〉H = 0∀s ∈ S =⇒ h = 0.

Proof. 〈h, s〉H = 0∀s ∈ S ⇐⇒ h ⊥ spanS ⇐⇒ h ⊥ span S and span S
⊥

= 0 ⇐⇒ spanS = H.

Proposition 9.7. In an aws i : H → E,
{

e〈h,−〉∼H− 1
2‖h‖2H

∣∣∣ h ∈ H
}

is total in L2(E, γ;R). (In fact, we need only
that h ∈ j(E∗).)

Proof. Note that e−
1
2‖h‖2H is constant and so is irrelevant. Suppose f : E → R is in L2 with

∫
E

f(x)e〈h,−〉∼H(x) dγ(x) =
0 for all h ∈ j(E∗). Taking h = j(`) this gives that for all ` ∈ E∗,

∫

E

f(x)e`(x) dγ(x) = 0.

Note that z 7→ ∫
E

ez`(x)f(x) dγ(x) : C→ C is analytic in z ∈ C, as usual. Therefore, for all z ∈ C and ` ∈ E∗,
∫

E

ez`(x)f(x) dγ(x) = 0,

and so, for all ` ∈ E∗, ∫

E

ei`(x)f(x) dγ(x) = 0,

The result then follows from Lemma 9.8.

Lemma 9.8. If f ∈ L1(E,µ;R) is such that
∫

E

f(x)ei`(x) dµ(x) = 0

for all ` ∈ E∗, where µ is a finite measure on E, then f = 0 µ-almost surely.

Proof. Set f = f+ − f− as usual, so f+(x)f−(x) = 0 for all x ∈ E. Form measures µf± by µf±(A) :=∫
A

f+(x) dµ(x). Then
∫

E
f(x)ei`(x) dµ(x) = 0 for all ` ∈ E∗, so µ̂f+ = µ̂f− , and so µf+ = µf− by Bochner’s

Theorem. Thus,
∫

E

(f+(x))2 dµ(x) =
∫

E

f+(x) dµf+(x)

=
∫

E

f+(x) dµf−(x)

=
∫

E

f+(x)f−(x) dµ(x)

= 0.

So f+ = 0 almost surely, as does f−, and, therefore, so does f .

Remark 9.9. Lemma 9.8 shows that {sin `(·), cos `(·)|` ∈ E∗} is total in L2(E,µ;R), since cos `(x) + i sin `(x) =
ei`(x), so f ⊥ sin `(·), f ⊥ cos `(·) =⇒ f = 0 by Lemma 9.8. In particular, the BC1 functions E → R are dense in
L2(E,µ;R).

Proposition 9.10.
{

1, σ 7→ ∫ T

0
αs dσ(s)

∣∣∣ α ∈ E
}

is total in L2(C0, γ;R) for γ = Wiener measure on C0([0, T ];R).

Proof. For h ∈ H and 0 ≤ t ≤ T , set

Mh
t := exp

(∫ t

0

ḣs dσ(s) +
1
2

∫ t

0

|ḣs|2 ds

)
.

By Claim 8.51, Mh
T = 1 +

∫ T

0
Mh

s ḣs dσ(s). Therefore,
{

1, σ 7→ ∫ T

0
αs dσ(s)

∣∣∣ α ∈ L2(B)
}

is total in L2(C0;R) by

Proposition 9.7. But each
∫ T

0
αs dσ(s) is an L2 limit as n →∞ of a sequence

∫ T

0
αn

s dσ(s) for some αn ∈ E .
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Theorem 9.11. (Clark-Ocone Theorem for BC1 Functions.) If F : C0 → R is BC1 then

F (σ) =
∫

C0

F dγ +
∫ T

0

E
{

∂

∂t
∇HFt(·)

∣∣∣∣ Ft

}
(σ) dσ(t),

where Ft is the natural filtration of canonical bm, σ{evs |0 ≤ s ≤ t}.

Proof. Set G(σ) :=
∫ T

0
V̇s(σ) dσ(s); V̇ is elementary, so V is as in Theorem 9.1. By Proposition 9.10, the set of

such G together with the constants is total is L2. Set F̄ := F − ∫
C0

F dγ, so
∫

C0
F̄ dγ = 0, so F̄ ⊥ all constants in

L2. Then
∫

C0

F̄ (σ)G(σ) dγ(σ) =
∫

C0

〈∇HF (σ), V (σ)〉L2,1
0

dγ(σ)

=
∫

C0

{∫ T

0

∇̇HFs(σ)V̇s(σ) ds

}
dγ(σ)

Now ∇̇HF (σ) ∈ L2([0, T ];R), bounded in σ ∈ C0, and so is V̇ (σ). Therefore, ∇̇HF (σ)V̇ (σ) ∈ L1([0, T ]× Ω;R), so
we can apply Fubini’s Theorem to the above:

RHS =
∫ T

0

(∫

C0

˙∇HF s(σ)V̇s(σ) dγ(σ)
)

ds

=
∫ T

0

(∫

C0

E
{

˙∇HF s(σ)
∣∣∣ Fs

}
V̇s(σ) dγ(σ)

)
ds

since V̇s(σ) is Fs-measurable

=
∫

C0

(∫ T

0

E
{
∇̇HFs(−)

∣∣∣ Fs

}
(σ) dσ(s)

)(∫ T

0

V̇s(σ) dσ(s)

)
dγ(σ)

=
∫

C0

(
G(σ)

∫ T

0

E
{
∇̇HFs(−)

∣∣∣ Fs

}
(σ) dσ(s)

)
dγ(σ)

by the isometry property of the Itō integral. Now subtract the LHS from the RHS and use the totality of the Gs
and constants together with the fact that the expectation of an Itō integral is zero. Therefore,

(
F̄ (σ)−

∫ T

0

E
{

˙∇HFs(σ)
∣∣∣ Fs

}
dσ(s)

)
⊥ G

for all G. Since ∫

C0

(
F̄ (σ)−

∫ T

0

E
{

˙∇HF s(−)
∣∣∣ Fs

}
(σ) dσ(s)

)
dγ(σ) = 0,

it is orthogonal to all constants. Thus, by the totality of {G, constants},

F̄ =
∫ T

0

E
{

˙∇HF s(−)
∣∣∣ Fs

}
dσ(s),

as claimed.

Remark 9.12. This says that for F ∈ BC1, F =
∫

F + div U for some U , since if F is BC1, F = div U for nice
U ⇐⇒ ∫

C0
F = 0. The result for F ∈ L2 is called the Integral Representation Theorem.

Theorem 9.13. (Integration by Parts on C0.) Let V : C0 → L2,1
0 be such that V̇ : [0, T ] × C0 → R is in L2(B),

and so is adapted. Let F : C0 → R be BC1. Then

∫

C0

DF (σ)(V (σ)) dγ(σ) =
∫

C0

F (σ)

(∫ T

0

V̇s(σ) dσ(s)

)
dγ(σ)
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i.e. ∫

C0

〈∇HF (σ), V (σ)〉L2,1
0

dγ(σ) = −
∫

C0

F (σ) div V (σ) dγ(σ),

where div V : C0 → R is div V (σ) := − ∫ T

0
V̇s(σ) dσ(s).

Proof. Use Clark-Ocone to substitute for F in the RHS since, by the martingale property of Itō integrals,
∫

C0

(∫ T

0

V̇ (σ)s dσ(s)

)
dγ(σ) = 0.

Thus

RHS = 0 +
∫

C0

(∫ T

0

E
{

˙∇HF (σ)s

∣∣∣ Fs

} ∫ T

0

V̇ (σ)s dσ(s)

)
dγ(σ)

=
∫ T

0

(∫

C0

E
{

˙∇HF (σ)s

∣∣∣ Fs

}
V̇ (σ)s

)
dγ(σ)ds

=
∫ T

0

∫

C0

˙∇HF (σ)sV̇ (s) dγ(σ)ds since V̇ (−) is Fs-measurable

=
∫

C0

〈∇HF (σ), V (σ)〉L2,1
0

dγ(σ)

= LHS

The above result shows that Itō integrals are divergences.

Theorem 9.14. (Integral Representation for C0.) If F ∈ L2(C0;R) then there exists a unique αF : [0, T ]×C0 → R
in L2(B) such that

F (σ) =
∫

C0

F dγ +
∫ T

0

αF (σ)s dσ(s) almost surely.

Proof. For an alternative proof, see [MX]. To show existence, set L̂2 := {f ∈ L2|Ef = 0}. If F ∈ L̂2 ∩BC1 then

F (σ) =
∫ T

0

U(F )(σ)s dσ(s),

where U(F )s = E
{

∂
∂t∇HF (−)s

∣∣ Fs

} ∈ L2(B),

U : L̂2 ∩BC1 → L2(B) ⊂ L2([0, T ]× C0;R).

Recall the the Itō integral Ī : L2(B) → L2 is norm-preserving. Thus, Clark-Ocone implies that Ī ◦U(F ) = F for
all F ∈ L̂2 ∩BC1, and

‖F‖L2 = ‖Ī ◦ U(F )‖L2 = ‖U(F )‖L2(B),

so U preserves the L2 norm. But BC1 is dense in L2 by Remark 9.9, so L̂2∩BC1 is dense in L̂2, since the projection
F 7→ F − ∫

C0
F dγ maps BC1 to L̂2 ∩BC1. Therefore, U has a unique continuous linear extension Ū : L̂2 → L2(B)

that is norm-preserving. Since Ī ◦ U = id on the dense subset L̂2 ∩BC1, Ī ◦ Ū = id on L̂2. So for f ∈ L̂2,

f =
∫ T

0

Ū(fs)(σ) dσ(s).

So for F ∈ L2, set

αF := Ū

(
F −

∫

C0

F dγ

)
.

As for uniqueness, suppose we are given two candidates αF and α̃F . Set β := αF − α̃F ∈ L2(B). Then∫ T

0
β(σ)s dσ(s) = 0. Therefore,

√∫ T

0

‖β(σ)s‖2L2 ds =

∥∥∥∥∥
∫ T

0

β(σ)s dσs

∥∥∥∥∥
L2

= 0,

so ‖β‖L2(B) = 0 by the isometry property, i.e. β = 0.
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Theorem 9.15. (Integral Representation.) Let {Ω,F ,P} be a probability space, B : [0, T ] × Ω → R a bm with
filtration F∗ = FB

∗ . Suppose f : Ω → R is in L2 and FT -measurable. Then there is a unique af ∈ L2(B) such that

f = Ef +
∫ T

0

af
s dBs almost surely.

Proof. Consider the map Ω → C0 : ω 7→ B·(ω), so Ft = σ(B·). Let F (σ) := E{f |B· = σ} for almost all σ ∈ C0, so
f = F ◦B. F ∈ L2 since (B·)∗(P) = γ, Wiener measure. Take αF so that

F (ω) =
∫

C0

F dγ +
∫ T

0

αF (σ)s dσ(s).

Therefore,

f(ω) = F (B·(ω)) = Ef +
∫ T

0

αF (σ)s dσ(s)

∣∣∣∣∣
σ=B(ω)

.

But the composition

Ω
B·(−) // C0

R T
0 αF dσ

// R

is

ω 7→
(∫ T

0

αF (B·(−))s dBs

)
(ω)

since it holds is αF is elementary. Therefore, take af (ω)s = aF (B·(ω))s. Uniqueness follows as before.

Corollary 9.16. (Martingale Representation of Brownian Motion.) For B a bm on R, suppose that M is an
FB
∗ -martingale with MT ∈ L2. Then there is a unique α ∈ L2(B) such that

Mt = M0 +
∫ t

0

αs dBs almost surely

for 0 ≤ t ≤ T .

Proof. Take αs = aMT
s as in Theorem 9.15. Hence,

MT = EMT +
∫ T

0

aMT
s dBs.

Therefore, by the martingale property of Itō integrals,

Mt = E{MT |FB
t } = EMT +

∫ t

0

aMt
s dBs.

Finally, note that FB
0 = {∅, Ω}, since B0(ω) = 0 for all ω ∈ Ω. Therefore, E{−|FB

0 } = E, and so

EMT = E{MT |FB
0 } = M0.

Uniqueness holds just for MT by Theorem 9.15.

Remark 9.17. We claimed (but did not prove) that we can choose
(∫ t

0
αs dBs

)
(ω) for each t to make it continuous

in t for all ω ∈ Ω. Therefore, if {Mt}t∈[0,T ] is as above, there exists {M ′
t}t∈[0,T ] so that

• it is continuous in t for all ω ∈ Ω;

• M ′
t = Mt almost surely for each t ∈ [0, T ] (they disagree on sets of measure zero in FT );

so M ′
t is FB

t ∨ ZT measurable for each t, where ZT is the collection of sets of measure zero in FT . In fact,
{M ′

t}t∈[0,T ] will be a F ′
t := FB

t ∨ ZT -martingale. (See [RW1] and [RW2].)
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Example 9.18. Consider Ω = [0, 1] with Lebesgue measure λ1 and the process a : [0, 1]× Ω → R given by

at(ω) :=
{

t t 6= ω
0 t = ω

Set a′t(ω) := t for all ω ∈ Ω. a′t(ω) = at(ω) almost surely for each t ∈ [0, 1], but it is not true that at = a′t for all
t ∈ [0, 1] almost surely. Note, however, that a = a′ in L2([0, 1]× Ω;R).

Corollary 9.19. If M is an FB
∗ -martingale with MT in L2, there exists a process 〈M〉 : [0, T ] × Ω → R≥0 such

that

(i) it is adapted;

(ii) 〈M〉0 = 0;

(iii) t 7→ 〈M〉t(ω) is non-decreasing;

(iv) {(Mt)2 − 〈M〉t|0 ≤ t ≤ T} is an FB
∗ -martingale.

Definition 9.20. 〈M〉 is the increasing process of M , or its quadratic variation.

Proof. (For M· bounded, i.e., ∃C such that |Mt(ω)| ≤ C for all t and ω. This is not the case for bm.) For some
α ∈ L2(B),

Mt = M0 +
∫ t

0

αs dBs.

Apply Itō’s formula

“M2
t = M2

0 +
∫ t

0

2Mt dMt +
1
2

∫ t

0

2 dMtdMt”

with θ : R→ R given by θ(x) = x2, so M2
t = θ(Mt):

“θ(xt) = θ(x0) +
∫ t

0

θ′(xs) dxs +
1
2

∫ t

0

θ′′(xs) dxsdxs”

So

M2
t = M2

0 + 2
∫ t

0

Msαs dBs +
1
2
2

∫ t

0

α2
s ds.

Hence,

M2
t −

∫ t

0

α2
s ds = M2

0 + 2
∫ t

0

Msαs dBs,

and since M· is bounded, M·α· ∈ L2(B), and so the RHS is an FB
∗ -martingale. (M0 is constant since it is

FB
0 -measurable, and FB

0 = {∅, Ω}.) Now set 〈M〉t :=
∫ t

0
α2

s ds.

Example 9.21. If Mt = Bt then B2
t − t = 2

∫ t

0
Bs dBs, so 〈B〉t = t almost surely. This actually characterizes bm.

9.2 Chaos Expansions

Suppose that f : C0 → R is in L2. For some α ∈ L2(B),

f(σ) =
∫

C0

f +
∫ T

0

αt(σ) dσ(t) almost surely,

with Bt(σ) = σ(t). α : [0, T ]× Ω → R has αt ∈ L2(C0;R) for almost all t ∈ [0, T ] and is Ft-measurable, therefore,
there exists {αs,t|0 ≤ s ≤ t} in L2(B|[0,t]) such that

αt =
∫

C0

αt +
∫ t

0

αs,t(σ) dσ(s) almost surely
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Therefore, writing ᾱt :=
∫

C0
αt,

f(σ) =
∫

C0

f +
∫ T

0

ᾱt dσ(t) +
∫ T

0

∫ t

0

αs,t(σ) dσ(s)dσ(t).

αs,t is Fs-measurable and in L2, so we repeat the above. Thus

f(σ) = f̄ +
∫ T

0

ᾱ
(1)
t1 dσ(t1)

+
∫ T

0

∫ t2

0

ᾱ
(2)
t1,t2 dσ(t1)dσ(t2)

+ . . .

+
∫ T

0

∫ tk

0

. . .

∫ t2

0

α
(k)
t1,...,tk

(σ) dσ(t1) . . . dσ(tk) a.s.,

where ᾱ(k−1) ∈ L2({0 ≤ t1 ≤ · · · ≤ tk−1 ≤ T} ⊆ [0, T ]k−1;R) and α
(k)
t1,...,tk

is Ft1-measurable in L2({0 ≤ t1 ≤ · · · ≤
tk ≤ T} × Ω;R). This corresponds to an orthogonal decomposition of L2(C0;R), the Wiener homogeneous chaos
decomposition. (All of the terms with an ᾱ are orthogonal to the others.)

Example 9.22. E
∫ T

0

∫ t

0
as,t dσ(s)dσ(t)

∫ T

0
bs dσ(s) = 0. By the isometry property,

LHS =
∫ T

0

E
(∫ t

0

as,t dσ(s) bt

)
dt

=
∫ T

0

btE
(∫ t

0

as,t dσ(s)
)

dt

= 0

since the expectation of an Itō integral is zero. This leads to the notion of Fock spaces in quantum field theory.
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