### Preprint: Bayesian probabilistic numerical methods

Jon Cockayne, Chris Oates, Mark Girolami and I have just uploaded a preprint of our latest paper, “Bayesian probabilistic numerical methods” to the arXiv. Following on from our earlier work “Probabilistic meshless methods for partial differential equations and Bayesian inverse problems”, our aim is to provide some rigorous theoretical underpinnings for the emerging field of probabilistic numerics, and in particular to define what it means for such a method to be “Bayesian”, by connecting with the established theories of Bayesian inversion and disintegration of measures.

**Abstract.** The emergent field of probabilistic numerics has thus far lacked rigorous statistical principals.
This paper establishes Bayesian probabilistic numerical methods as those which can be cast as solutions to certain Bayesian inverse problems, albeit problems that are non-standard.
This allows us to establish general conditions under which Bayesian probabilistic numerical methods are well-defined, encompassing both non-linear and non-Gaussian models.
For general computation, a numerical approximation scheme is developed and its asymptotic convergence is established.
The theoretical development is then extended to pipelines of computation, wherein probabilistic numerical methods are composed to solve more challenging numerical tasks.
The contribution highlights an important research frontier at the interface of numerical analysis and uncertainty quantification, with some illustrative applications presented.

Published on Tuesday 14 February 2017 at 12:00 UTC #publication #preprint #prob-num

### Preprint: Probabilistic numerical methods for PDE-constrained Bayesian inverse problems

Jon Cockayne, Chris Oates, Mark Girolami and I have just uploaded a preprint of our latest paper, “Probabilistic numerical methods for PDE-constrained Bayesian inverse problems” to the arXiv. This paper is intended to complement our earlier work “Probabilistic meshless methods for partial differential equations and Bayesian inverse problems” and to give a more concise presentation of the main ideas, aimed at a general audience.

Published on Wednesday 18 January 2017 at 12:00 UTC #publication #preprint #prob-num #inverse-problems

### Preprint: Bayesian inversion with heavy-tailed stable priors

A revised version of “Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors” has been released on arXiv today. Among other improvements, the revised version incorporates additional remarks on the connection to the existing literature on stable distributions in Banach spaces, and generalises the results of the previous version of the paper to quasi-Banach spaces, which are like complete normed vector spaces in every respect except that the triangle inequality only holds in the weakened form

\( \| x + y \| \leq C ( \| x \| + \| y \| ) \)

for some constant \( C \geq 1 \).

Published on Monday 21 November 2016 at 11:30 UTC #publication #preprint #inverse-problems #cauchy-distribution

### Preprint: Cameron-Martin theorems for Cauchy-distributed random sequences

Han Cheng Lie and I have just uploaded a preprint of our latest paper, on Cameron–Martin-type theorems for sequences of Cauchy-distributed random variables, to the arXiv.
Inspired by questions of prior robustness left unanswered in this earlier paper on *α*-stable Banach space priors, this paper addresses the basic probabilistic question:
when is an infinite-dimensional Cauchy distribution, e.g. on sequence space, mutually absolutely continuous with its image under a translation?
In the Gaussian case, the celebrated Cameron–Martin theorem says that this equivalence of measures holds if a weighted \(\ell^{2}\) norm (the Cameron–Martin norm) of the translation vector is finite.
We show that, in the Cauchy case, the same weighted version of the translation vector needs to lie in the sequence space \(\ell^{1} \cap \ell \log \ell\).
More precisely, if the Cauchy distribution on the *n*^{th} term of the sequence has width parameter \(\gamma_{n} > 0\), and the translation vector is the sequence \(\varepsilon = (\varepsilon_n)_{n = 1}^{\infty}\), then a sufficient condition for mutual absolute continuity is that

\( \displaystyle \sum_{n = 1}^{\infty} \left| \frac{\varepsilon_{n}}{\gamma_{n}} \right| < \infty \)

and, with the usual convention that \(0 \log 0 = 0\),

\( \displaystyle \sum_{n = 1}^{\infty} \left| \frac{\varepsilon_{n}}{\gamma_{n}} \log \left| \frac{\varepsilon_{n}}{\gamma_{n}} \right| \right| < \infty . \)

We also discuss similar results for dilation of the scale parameters, i.e. \(\gamma_{n} \mapsto \sigma_{n} \gamma_{n}\) for some real sequence \(\sigma = (\sigma_n)_{n = 1}^{\infty}\).

Published on Monday 15 August 2016 at 10:00 UTC #publication #preprint

### Preprint: Probabilistic meshless methods for PDEs and BIPs

Jon Cockayne, Chris Oates, Mark Girolami and I have just uploaded a preprint of our latest paper, “Probabilistic meshless methods for partial differential equations and Bayesian inverse problems” to the arXiv. This paper forms part of the push for probabilistic numerics in scientific computing.

**Abstract.** This paper develops a class of meshless methods that are well-suited to statistical inverse problems involving partial differential equations (PDEs). The methods discussed in this paper view the forcing term in the PDE as a random field that induces a probability distribution over the residual error of a symmetric collocation method. This construction enables the solution of challenging inverse problems while accounting, in a rigorous way, for the impact of the discretisation of the forward problem. In particular, this confers robustness to failure of meshless methods, with statistical inferences driven to be more conservative in the presence of significant solver error. In addition, (i) a principled learning-theoretic approach to minimise the impact of solver error is developed, and (ii) the challenging setting of inverse problems with a non-linear forward model is considered. The method is applied to parameter inference problems in which non-negligible solver error must be accounted for in order to draw valid statistical conclusions.

Published on Thursday 26 May 2016 at 09:00 UTC #publication #preprint #prob-num